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Abstract This paper introduces an accurate yet analyticallyPACS 45.40.Ln- 45.10.-b- 45.80.+r
simple approximation to the stance dynamics of the Spring-

Loaded Inverted Pendulum (SLIP) model in the presence OM
non-negligible damping and non-symmetric stance trajecto

ries. Since the SLIP model has long been established as
accurate descriptive model for running behaviors, itsfohre
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analysis is instrumental in the design of successful locoma;gns: damping; gait control

tion controllers. Unfortunately, none of the existing astial
methods in the literature explicitly take damping into ac-

count, resulting in degraded predictive accuracy when they |nioduction

are used for dissipative runners. We show that the methods

we propose not only yield average predictive errors below 1 \otivation and Scope
2% in the presence of significant damping, but also outper-

form existing alternatives to approximate the trajectoné

a lossless model. Finally, we exploit both the predictivie pe
formance and analytic simplicity of our approximations in
the design of a gait-level running controller, demonstigati
their practical utility and performance benefits.
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The adoption of mobile robots for tasks in unstructured out-
door environments has been slow due to the limited mobility
and performance offered by existing wheeled and tracked
platforms [11, 22]. In contrast, legged morphologies offer
promising mobility advantages (as evidenced by numerous
legged solutions devised by nature), and provide effective
means with which power and actuator limitations can be
overcome through the use of properly designed and tuned
second order passive dynamics [2, 30]. However, the use of
intuitive biological inspiration alone as a basis for bdtle t
design and control of such platforms has inherently limited
promise since currently available sensor and actuator tech
nologies are drastically different than their biologicalio-
terparts [13, 23]. In addition to such sources of inspirgtio
we need to have an accurate understanding of the physical
principles underlying locomotory systems, while also dieve
oping analytical tools to provide a basis for the morpholog-
ical design and control of legged robot platforms [18].

In this context, a very successful mathematical model for
accurate prediction and control of legged locomotory behav
iors has been the Spring-Loaded Inverted Pendulum (SLIP)
model [35]. This model, consisting of a simple point mass
riding on a single compliant leg, resulted from early stadie



in biomechanics [2, 3], revealing center of mass (COM) dy-
namics common to a surprisingly large range of biological
runners with widely varying sizes and morphologies [8, 12].
SLIP dynamics seem to elegantly capture the cyclic inter-
change between kinetic and potential energy that yields ef-
ficient and controllable locomotion, while providing a suf-
ficiently simple analytical basis for a variety of questions
related to the energetics, stability and control [16, 34].

The utility of the SLIP model is not limited to its de-
scriptive power. A number of successful robotic platforms _ - ) _
have been built, based either directly (e.g. Raibert's runI_:lg. 1 The Spring-Loaded Inverted Pendulum Model with Damping
ners [28], the ARL monopods [1, 15], the Bow-Leg robot

[37], the BiMasc platform [19] and the Jena-hopper) or in-ihe |eg, with additional corrections introduced to compen-
directly (e.g. Scout quadrupeds [26], RHex [30] and Sprawkgate for the effect of gravity on the angular momentum for
hexapods [10], BigDog [24] and others) on the principlesyon.symmetric stepThe resulting analytic return map for
embodied in this seemingly simple spring-mass model. Evepnning behaviors has substantial practical utility siitce
though it has not yet been shown that neural control syssan pe used as a basis for the design of locomotion con-
tems in running animals are organized in a way that interyg|iers for physically plausible robot morphologies ongh
nally encodes this model, its use as an explicit controEtarg terrain, while also providing an analytical tool for the cha
received considerable attention in the robotics communitysierization of associated dynamic legged behaviors. None
(25, 29], yielding both an intuitive high-level control & of the existing alternatives in the literature explicitike
face for running behaviors, while also allowing a decompo—damping into account, making their direct application tersu
sition of the control problem into simpler pieces [31]. systems very difficult and inaccurate.

Given the almost universal dependence of existing liter- | order to illustrate the applicability and performance of
ature related to legged robotic running on the SLIP modelgyr approximations in such settings, we carefully characte
there is a clear need for accurate tools for both the analysjse their predictive performance with respect to a simalate
and control of this model. Starting from earlier, intuit&e-  podel within a non-dimensional formulation, across a large
proaches [27,28, 33], to later formalizations [9, 14,21, 36 yange of initial conditions and parameter combinations. We
a number of methods were developed to address the moggmpare our results with two previously available analytic
significant problem with this seemingly simple model: its approximation methods proposed in [14] and [36], first in
dynamics during phases of toe contact (i.e. stance) are Nofe context of a lossless SLIP model for which they were
integrable under the effect of gravity [17]. Available meth gesigned for, and then a dissipative runner that challenges
ods suffer from unrealistic assumptions such as the consegyeir underlying assumptions. Finally, we present how our
vation of angular momentum and the neglection of dampzpproximations can be used to achieve high level control of
ing losses. The former is readily violated in the presence OIEgged locomotion by designing a deadbeat controller fr th
gravity with non-symmetric, transient strides [20], ané th yegylation of running speed and hopping height of a simu-
latter is an undesirable but unavoidable disturbance ptese|gteq planar monopod. Once again, we compare the perfor-

in all physical legged platforms. In this paper, we propose &nance of our proposed controller to a similar application of
new analytical approximation to the trajectories of thefSLI gjternative approximations in the literature.

model that is significantly more accurate in the presence of

both passive damping and non-symmetric steps under grav-

ity, yielding a crmcall analytical tool for both the design 2 The Lossy Spring-Loaded Inverted Pendulum Model
and control of dynamically stable legged platforms. We be-
lieve that.the .resultlng toolls are sufficiently accurateups. 2.1 System Model and Dynamics
port physical implementation of novel dexterous locommtio

controllers on rough terrain such as those presented in [7]'Fig. 1 shows the Spring-Loaded Inverted Pendulum model
we use in this paper, consisting of a point masatached to
a freely rotating massless leg, endowed with a linear spring
1.2 Contributions damper pair of compliande rest length and, differently
from ideal SLIP model, viscous dampiig Throughout lo-
Our primary contribution in this paper is the derivation of acomotion, the model alternates betwestanceand flight
highly accurate analytical approximation to the stance maphases, further divided into tltempressiopdecompression
of a planar hopper witfinear compliance and dampinig  andascentdescensubphases, respectively. Four important




Table 1 State variables, parameters and the definitions of their dimen- % g g & %
sionless counterparts for the SLIP model. Variables with aritloui f—3 2 = &
bars correspond to physical and dimensionless quantities, reghect § 2
$
Physical | Dimensionless
Quantity Group Definition Description
t t =t/A Time (whereA := /lo/0)
(%2 | bi=[y.z] | =[y/lo.Z/lo] Body position
[p, 0] q:=[p, 0] =[p/lo, 6] Leg length and leg angle
\Z % =yt /lo Foot position
k K =k (lo/(mg)) Leg spring stiffness
d c :=d (lo/(Amg)) Leg viscous damping
F F =F /(mg) Force variables
E E :=E /(mgb) Energy variables
P Pe =pe /(A/(mB)) || Angular momentum ascent
Ps Po =pg (A/(mb)) Radial momentum

Fig. 2 SLIP locomotion phases and associated return map components

events define discrete transitions between these subphases
touchdownbottom liftoff, andapex During flight, the body !N this paper, we also adopt the apex return map for both
is assumed to be a projectile acted upon by gravity, wheregaluating the performance of our approximations, and de-
in stance, the toe is assumed to be fixed on the ground ardgning gait controllers based on these approximations.
the mass feels radial leg forces. Table 1 details all relevan "€ apex return map for the SLIP model is a combi-
variables and parameters for this model. nation of four subsequent maps, illustrated in Fig. 2, cor-
In order to eliminate redundant parameters and providéesponding to descent (apex to touchdown), compression
an efficient way to interpret our simulation results, we will (fouchdown to bottom), decompression (bottom to liftoff)
use a dimensionless formulation. Redefining timet as ~ @Nd asc_en} (I|katof|f to apex) subphases of locomotion, de-
/A with A := \/Io/g, scaling all distances with the spring noted withif, Pf, ,f and ?f, respectively. The apex return
rest lengtHo, dimensionless SLIP dynamics are given as Map hence takes the form

k k
Flight [y} { 0 } ) X = H6ana0kera (Xa)
ight: || = ; :
R EA RS = (o blinanol i) °3llaana) ) ()
S [P [p62—k(p—1)—cp — cosh 9 where several key parameters that can be used to control
tance: 6| (—2p 9+sin9)/p . (@ progression through these submaps are explicitly shown. In

) . . . . . . particular,64, k; andky denote the familiar touchdown an-
with flight dynamics written in cartesian coordinates and . . . .
o . . gle, compression and decompression spring constants as in
stance dynamics in polar coordinates for convenience sfran . . . .
many earlier hopper implementations [1, 28], wiplg and

formations between these coordinate systems requires the

) ; . Pio denote leg lengths and touchdown and liftoff similar to
foot locationys as a separate state which undergoes dlséontrol parameters used by the Bow-Leg hopper [37]. Al
crete changes from touchdown to touchdown. Note, als y '

0 .
— . o .. components of the return map, together with relevant con-
that (d/dt)" = A"(d/dt)" and all time derivatives are with P . urh map, tog w v
trol inputs are illustrated in Fig. 2.

respect to the newly defined, scaled time variable. Through- It is important to note that from among these available

outthe rest of the paper, we will only work with d|men3|on.- control inputs, any choice of three that includes the touch-

Ie_ss qu_antmes and hence will not explicitly mention theIrdown anglefy grants full controllability to the system (i.e.
dimensionless nature unless necessary. ) . .

gives independent authority over all of the apex states) [35
37], with the primary difference being in the way the energy
of the system is regulated. In this paper, we will assume that
the landing and liftoff leg lengths are explicitly contraltlle

A commonly used and convenient abstraction for both thé@S in the Bow-Leg hopper.
analysis and control of the SLIP model is the apex return  Civen this choice, the descent and ascent submaps are

map, defined as the Poinéasection taken a = 0 during Xt'ﬁ, =LF(XX) := [Ya+VaAty, paCOSBq, Va, —Atg]  (5)

2.2 Modeling of Running Gaits: The Apex Return Map

flight [35], leading to the definition of thapex states XKL = 8f(XK) 1= [y + V1 Ata, P1oCOSBo +2/3, V1], (6)
Xa := [Ya, Za, Va|T . (3)  Where we define the touchdown and liftoff states<as:=
[ptd7 eldvlptda 6[d7}T and X|O = [p|07 6|O7p|07 9|07]T1 respec-

Such a section not only reduces the dimension of the systertively, with Aty := /2(za — ptg C0SBq). Note that bothXq

but also allows a convenient discrete, task level abstmacti and X, are defined as intermediate states and hence incor-
suitable for the characterization of steady-state ga#§, [3 porate additional, redundant dimensions for conveniesce a
designing controllers [32] and analyzing their stabili.[ compared to the three dimensional apex states in (3).



Not surprisingly, the most difficult components in the whereé =3pw/4+p/4.
apex return map are the compression and decompression Furthermore, these equations can be iterated to yield in-
phases, both requiring closed-form integration of thesdan creasingly accurate analytic approximations. Howevecesi
dynamics. While there are a number of existing approximathe solutions are formulated as a function of the radiakstat
tions for this purpose, none of them incorporate dampindinding the bottom instant represents one of the problems
and have substantial difficulty in modeling the effect ofigra with this approach. Nevertheless, it is possible to use an en
ity on the angular momentum in the presence of stance trargy based solution to the bottom radial length [6, 29]. We
jectories that are not symmetric with respect to the vdrtica omit the details of this derivation for space consideration

It is important to note that Schwind’s method critically
relies on the assumption of a lossless plant model and con-
servation of energy, making its direct application to ayoss

In the followi i oW WO i ant i system very difficult, requiring nontrivial modificatiorfaur-
h the following sections, we review two important analyti- thermore, its analytical complexity substantially ingea

cal approximations to the stance dynamics of the undampqﬂith each iteration, at least two of which are required for
SLIP model. Our approximation is inspired from the methodreasonably accurat’e results

proposed in [14], but substantially improves predictivel an

control performance.by accurately mcorporatlng the effec 2.3.2 Simple Approximate Stance Map by Geyer et al.
of damping and varying angular momentum during stance.

2.3 Existing Analytical Tools for the Undamped SLIP

) ) ) In [14], Geyer proposes a method to obtain an analytical ap-
2.3.1 lterative Approximate Stance Map by Schwind et al. rgximation to the stance dynamics of a lossless SLIP. In
this section we review their method, adapted to use the leg

In [36], Schwind uses an iterative application of the mean]ength control parametepsy andp, within a dimensionless
value theorem for integral operators to obtain an analwcaformulation compatible to ours

approximation to the stance dynamics of a lossless SLIP.
Their derivation is based on a Hamiltonian formulation ofi
the conservative SLIP dynamics, yielding the dimensianles
Hamiltonian function as
1 pZ. 1
H:=Z(p2+ —2)+ =k(1—p)?+pcosh . 7
2(|Op+pz)+2 (1-p)*+p ()
The equations of motion can then be written in terms of the
radial degree of freedom as an independent variable by all
suming that the system energy stays constant and solving tRe

As proposed in [14], if we assume that the stance phase
s predominantly vertical with a sufficiently small angular
spanA@, the effect of gravity can be linearized arouéd-

0, making both the angular momentyg and the total me-
chanical energy constants of motion. Combined with the as-
sumption that the relative spring compression remains-suffi
iently small with|1— p| < 1, and some additional approx-
ations detailed in [14], analytic expressions for theahd

d angular stance trajectories can be found as

equatiorH (pp) =E toyieldHT :=H1(E) = p, asafunc- p(t) = 1+a+bsin(apt) (16)

tion of the leg lengtlp. It then becomes possible to obtain g(t) = 64 + pg(1— 2a)(t —tiq)

an approximate solution, yielding the following solutiaor f 2bpe . .

the decompression phase + [cog(apt) — cog dotia)] , (17)
fa0) (P) =to+ (0 — Po)/He (8) in dimensionless coordinates with the definitions
Bins1)(P) = Bb+ Pon(€)(p — po)/(E2H) (9) o= VK+3pe?, (18)
A - . s 2 1) /A2

Bo(ns1) (P) = Pop -+ Sin(6n(€)) (P — po)/Hy (10 a= (P -1/, (19)

Ffp(nH) (p) = H,Ll ) (11) b:= \/a2+ (2E — pe2—2) /6% , (20)

where the total mechanical energy, denoted \Eitlis com-
uted based on prior apex states. Subsequently, leg length
control inputs at touchdown and liftoff can be used as bound-
ary conditions on (16) to determine touchdown, bottom and
liftoff times relative to an arbitrary time origin as,

wheren indicates the iteration numbaf, =3pp/4+p/4
arises from the application of the mean value theorem an
th, Pb, B @and pgy, represent the system state at bottom.
Given touchdown stategy, prg, &g andpeq, the com-
pression phase mapping can be similarly derived as

S tg = (T— i —1-a)/b))/& 21

£ () =t — (0~ pra)/H] (1) ‘o= Uraresilipe =1 -a)/b)/c, @

5 oy (i - Ly o= (@ arsi(p, —1-a)/b))/d, (22)
Pe(ni1)(P) = Pora — & Sin(6n(&)) (P — Aa)/Hy (14) Following a final, energy-based correction on the horizionta
p“p(nH) (p) = —H,Ll , (15) component of the liftoff velocity, these derivations yield



analytically simple but accurate approximation to the sym-75% of the leg rest length), which is true for most running

metric stance trajectories of a lossless SLIP. behaviors except extreme cases such as kangaroo hopping
Unfortunately, both assumptions in these derivations, ther quadrupedal pronking behaviors. Nevertheless, under th

conservation of angular momentum and the lack of any damgpproximation, (26) reduces to

ing, limit their direct applicability to the control of mane

verable running on practical legged robots. Neverthelss, P+ CP+ (K +3p§)p = —1+K +4pj , (28)

described in Section 3, we will be able to adapt key ideas R

from this method in the derivation of our new approxima-Where we define the natural frequency of the syst@~

tions with substantially more general applicability. K +3p§, the damping ratioé := c¢/(2dy), the damped

frequencymy := ap+/1— £2 and the forcing terrff := —1+
2 .
3 A New Analytic Approximation to the Stance Map K +4pj and obtain

m ~ . ,\2 o
We start the presentation of our approximations by derivap+25w0p+w°p =F. (29)

.tions bgsed on assuming- conservation ofangular momehtu%is is a second order ordinary differential equation tlaat c
in Section 3.1, followed in Section 3.2 by the computatloneasily be solved analytically. Assumidg< 1, we have
of components necessary to assemble the apex return map,

concluded in Section 3.3 with a method to reintroduce gravp(t) = e fnt (Acog wyt) + Bsin(ayt)) +F /&% (30)
ity and compensate for inaccuracies resulting from out-star

ing assumption, with A andB determined by touchdown states as

A=pa—F/0E, (31)

3.1 Approximating Stance Trajectories under Damping B = (Ptd + & GoA) /- (32)
. ) Simple differentiation yields the radial velocity as

We first rearrange the angular component of (2) to yield a
more convenient form of the stance dynamics as p(t)=—M e“f‘:’ot(fdbcos(wdt + @) + wysin(awgt + @)
p=pb6°—k(p—1)— cp — cosh 24
P % _ (p=1-cp ' (24) whereM := /A2 + B2 andg := arctar{—B/A). Further ma-
0= a(pZE)) —psing . (25) nipulations yield the simplest form of the radial motion as
In order to derive our analytical approximation, we conéinu p(t) =M g St coq gt + @) + F/dﬁ , (33)
with the commonly used assumption that the leg remaingt) — —M@pe %' cogwyt + @+ @) . (34)

close to the vertical throughout the entire stance phase. Co

sequently, as in [14], the gravitational potential can be li Whereg; := arctarf—/1— £2/&).

earized around = 0. Note that this assumption, as noted ~ Now that an analytical approximation to the radial tra-
before, is violated for non-symmetric stance trajectaties  jectory is available, the angular trajectory can be deteechi
arise during transient locomotion steps. However, as we dd using the constancy of the angular momentiim pg / 0?.
scribe in Section 3.3, it will be possible to introduce an ex-Linearizing I/p? aroundp = 1 yields

p_IlClt _correctlon tothe angu_lar momentum by separately conl/pz‘ L =1-2(p—-1)+0((p— 1)2) ’ (35)
sidering the effects of gravity. Nevertheless, for now, rére p

sulting conservation of the angular momentpg:= p26  with which we can obtain an analytical solution for the an-
reduces the radial dynamics of (24) to gular velocity of the leg as

p+cp+kp—pg/p°=—1+kK. (26)  O(t) =3pg —2pgF /@ — 2pgMe ¢ ™' cogwyt + @) . (36)

Unfortunately, even these reduced dynamics do not adntegration then yields the angular trajectory of the leg as
mit an analytical solution. However, using the method pro

t) = Xt
posed by Geyer [14], we further assume that the relative( ) 9[d+7£&bt
spring compression remains sufficiently small with- p| < +Y(e cofwyt +@— @) —cop—@)) , (37)
1, a_lllowing th(_e term 1p° to be a_pproximated by a Taylor \wherex :— 3pg — 2ng/c2)§ andY := 2pgM /.
series expansion aroumd= 1 to yield The approximate solutions in (33), (34), (37) and (36)
1/03 ~1-3(p—1)+0((p—1)). 27 provide a sufficiently simple analytic solution to the stanc
/P }pzl (p=1) (=17 @) dynamics of the lossy SLIP model. However, in order to

This assumption remains valid as long as the leg comeomplete the apex return map, we still need to solve for the
pression during stance is not excessive (i.e. not more théimes and states of bottom and liftoff events.



Xk:
.- Xkl
! REN t7 ~ (2m—arccogk (1—F/@f)/ (MMe @Y%) — o — gu) /ay, (41)
- t? ~ (2 arccos(p — F /GB)/(Me $%0)) — ) /auy, (42)
Xk (fgrce) where we define

‘ | ¢ M= \/ (Ca)? + k2 — 2K Cl COg ¢2) (43)

0t 2 ! ] Capsin
P 0= arctarﬁM). (44)

Fig. 3 An illustration of events throughout stance, together with th Capcog ) — K

possibility of two different liftoff conditions based on eithiae force

condition of (39) or the length condition of (40). Once the time instants associated with each event are4identi

fied, the corresponding states can be computed, completing

] N ) all necessary components in the apex return map.
3.2 Solving for Transition States: Bottom and Liftoff

The bottom of stance is reached with the leg at its maxim

compression withp(ts) — 0. Using (34), we have %.3 Compensating for the Effects of Gravity

th=(T/2—@—@)/wy . (38) Inthis section, we extend the method we introduced in Sec-
tion 3.1 with an explicit correction on the angular momen-

In contrast, liftoff occurs when the toe loses contact whié t 1, to account for the effect of gravity for non-symmetric

ground. For a lossless SLIP with= 0, this corresponds 0 yrajectories, yielding a much larger domain of validity for

the usual leg length conditiop(to) = po, which can eas- ¢ resulting analytic approximations.
ily be solved analytically through the use of (33). However,

when damping is present in the system, the liftoff event does
not depend on the leg length alone, but must take into ac- .
count the ground reaction force on the toe. This can be for-
malized as a condition on the leg force with

K(1—p(tY) —cp(t) =0. (39)

which corresponds to the point of vanishing net force ex-
erted on the toe by the Spring_damper pair. An a|ternativ§ig. 4 The total effect of gravity on the magnitude of the angular mo-

. . - s . mentum during stance is (a) negative, (b) zero and (c) posBike
liftoff condition arises within platforms where the liffdeg and red regions, marked with and +, represent instantaneous de-

length can be explicitly chosen by a controller (e.g. as @ th ¢reasing and increasing effects of gravity on the magnitudaeof-
Bow-Leg hopper [37]). In such cases, the time of liftoff is gular momentum, respectively. Locomotion direction is to thatrig

given by the solution to the equation

P(tlcz) =M. (40) As illustrated in Fig. 4, angular momenta at touchdown
Using both (39) and (40), the actual liftoff time can then beand liftoff are identical only for perfectly symmetric SLIP
found ast; = min(tlcl, tICZ), with the earlier one of the two trajectories, observed only for steady-state running dn fla
events triggering the actual liftoff. Fig. 3 illustratesutisi- ~ terrain. Unfortunately, for legged robots negotiatinggbu
tion events during stance together with the possible paasen terrain, non-symmetric trajectories will dominate witttete

of two different liftoff conditions. riorated controller performance as a result.

Unfortunately, exact analytical solution of these equa- Inthe presence of gravity, the instantaneous angular mo-
tions is not possible. Even though numerical methods argnentum around the toe during stance can be computed as
feasible due to the simple, one dimensional nature of these t
equations, we use a sufficiently accurate approximation tde(t) = p6(0)+/ p(n)siné(n)dn , (45)
compute both liftoff times in order to preserve the analyti- 0
cal nature of our approximations. To this end, we propose ¥herepg(0) denotes the angular momentum at touchdown.
new approximation for the exponential term in (33) with its We propose a new method to modify our approximations to
value at a specific instant during decompressioer 460t ~ take into account the total effect of gravity on the angular
e $® with y > 1 introduced as a tunable parameter. Amomentum during stance by a constant average value com-
reasonable choice ig= 2, corresponding to compression Puted between touchdown and liftoff as

and decompression phases of roughly equal duration. We 1 rto

hence obtain Po == i Jo Pe(n)dn . (46)



Once computed, we could replace all occurrencepgoin  return map under a wide range of initial conditions and con-
the derivations of Section 3.1 withg,yielding an analytic trol inputs, using normalized percentage errors in difiere
correction scheme to compensate for gravitational effects state components. In particular, errors in the apex pwositio
Unfortunately, even with the solutions of (33) and (37),and liftoff velocity predictions are respectively definexd a
exact computation of this expression in closed-form is not

feasible. Consequently, we propose a new approximation t8Eap := 100@.

(52)

the integrand in (45)7(t) := p(t)sinB(t) with an average _H [y.ala] Hf .

of its extreme values at touchdown and liftoff as PEqy 1= 100 I ([p"]"’?'pl(’] 73[’)]"""9'0} 2 , (53)
0> Yo/ [|12

T(t) = 1(t) == (1(0) +7(t0)) /2. (47)

where[J,, 2.] and|pio, é|o] denote apex and liftoff states pre-

It hence becomes possible to compute an approximate aficted by one of three approximations described earlieitewh

justment for the angular momentum of (46) as [Ya,Za] and [p|0,9|0} are obtained by numerical integration
of the SLIP model for a single stride. We use the velocity

A t . . i i7 9
Bo = Po(0) + to (p(0)sinB(0) + p(ti) SiNB(tio)) (48) at I|ft9ff rather than the apex to en.sure'that.normall.zal:ﬂon
meaningful even for non-symmetric gaits with possibly zero

We use this adjusted angular momentum in the “gravity2P€X velocities. Our simulations cover a total of four diffe
corrected” performance results presented in Section 4 N ent dimensions of initial states and control inputs: thexape
that computation of (48) requires an initial estimate of-sys N€ight &), the apex velocityya), the spring constantk{
tem states at liftoff. We use the uncompensated map fond the “relative touchdown angle”, which we define as

this purpose, with the correction incorporated as a secon& — 846 (54)
drel -— btd — Y%dn>

step. This also gives an “iterative” character to our correc
tion method similar to the approach adopted in [36]. wherefly , denotes the “neutral” touchdown angle that re-

Our experiments also showed that a final, energy base|jis in a symmetric SLIP trajectory for the lossless model,
correction to the stance map significantly increases the-acc yefined as the fixed point of the apex return map With=

racy of the resulting approximations. In previous work [14] gf[&d} (Xa) for a given initial apex stat,.

this correction was based on the fact that the system un- "T,o ranges considered for these dimensions were cho-
der study was conservative. In our case, however, damping,, 15 pe consistent with biomechanics literature as well as
losses need to be taken into account if the predicted I'ftOfExisting legged robots. In particular, experiments on msna
state; are to be cqrrected. Fortunately, We can use our aRgith gokg mass and 1m leg length on average) running at
proximations to estimate damping losses as different speeds (in the range 2.5-6.5m/s) reveal leg- stiff
£ o, Ot nesses in the range [10, 50] kN/m [5]. In the robotic do-
¢ = /0 cp(t) main, the RHex hexapod has an approximate mass of 10kg,
150 28 it leg length of 0.25 m and compliant legs with stiffness of
- QM wh( §(cos2p+ @) + 1—€ | around 2000N/m for each leg [30]. Motivated by these ob-
— cOS( 2ty + 2+ @) XMl ) | (49)  servations, Table 2 shows ranges of initial conditions and
_ . control inputs we use for our simulations, with tdamp-
which can then be used to compute a corrected liftoff velocing ratio, defined ag := c/(2,/k), parameterizing differing

ity and an associated angular velocity as amounts of damping for the results of subsequent sections.
Vi = V2(Ed—Eio—Ec) , (50) - . . -
Table 2 Ranges of initial conditions and control inputs for simulatio
. YA experiments in dimensionless units
blo = sgn(Bo) ——— (51)

Po [z [ Ya | Bde [ kK [ { |
[[L.15, 1.75] [0, 2.5] | [0.15, 0.25] | [25, 200] | [0, 0.4] |

with Erg := (V& + K(Pa — 1) + pra COSBq) /2 andEy :=

(K(p1o — 1)% 4 p1oCOSAB) /2. _ _
For each of our simulations, we check whether the tra-

jectories satisfy two conditions to ensure that we can stippo
4 Characterization of Predictive Performance meaningful comparisons to existing studies. Firstly, stan
trajectories that either never leave the groung € 0) or
4.1 Simulation Environment and Performance Criteria prevent foot protractionzf < 1), are excluded. Second, we
restrict the maximum allowable leg compression to 25% of
In the following sections, we investigate tisengle-stride  the rest length, excluding trajectories that violate thia-c
predictive performance of our approximations to the apexition. In each case, we define and compute “ground truth”



as the numerical integration of SLIP dynamics for a singlenformative entries highlighted in bold font. These avemg
stride within MATLAB using a variable time-step, fourth or- results show that the proposed gravity corrections result i
der Runge-Kutta integrator. We then compute estimates dafignificant increase in the performance of the approxima-
the apex states based on Geyer's and Schwind’s approximtens, particularly in their prediction of velocity compemts.
tion methods and our proposed method and compare esfihis is relatively natural since gravity primarily influess
mation performances using the error criteria defined abovengular momentum and hence the liftoff velocity.

For the Schwind approximations, we use the 10th iterate
(after which further iterations yield no improvements) to

. - Liftoff Velocity Error (PEj,) Apex Position Error (PE,,)
make sure we obtain the best possible performance for the * Proposed Method 2
method. Note that a characterization of performance ove £ 7 S Appro N
a single step is also an accurate indicator of performanc £ sf -~ == 8l .

across multiple steps since prediction errors accumutite a
ditively if apex states remain in the range of validity for as
sumptions underlying each method.

=)
[
J
N
=)
.

Percentage Predictio
N »
.
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Y
N

: 0 :
-0.1 0 0.1 0.2 -0.1 0 0.1 0.2

0
4.2 Performance for Non-symmetric, Lossless Steps Relative Touchdown Angle (s — 0ua,) Relative Touchdown Angle (61 — f1a,)
Fig. 6 Percentage prediction errors for all three methods forffifte-
In this section, we compare the predictive performance ofocity (left) and apex position (right) as a function of théative touch-
our gravity correction scheme, described in Section 3.8y wi down anglefq . Each data point represents the mean of all valid
Geyer’s and Schwind’s analytic approximations. In order tofi'mw"’?t'ons with the corresponding relative touchdown arfgfiandard
. . - . eviation bars are only shown for the proposed method for glarit
isolate performance gains resulting from the gravity corre
tion method alone, we use a lossless plant model avitD
for the results of this section. As we will show in the next  More importantly, however, we expect performance gains
section, the presence of damping represents a major deviesulting from the gravity correction scheme to be much
ation from the assumptions of Geyer’s and Schwind’s apmore pronounced for non-symmetric steps. This is also con-
proximations and makes it the dominant factor in all errorfirmed by our simulations, illustrated in Fig. 6 with plots of
measures. Consequently, a fair evaluation of our gravity co mean and standard deviations of liftoff velocity and apex po
rection scheme is only possible in the absence of dampingsition errors as a function of the relative touchdown angle.
Note that by definition, trajectories obtained wf o) = 0

16 are symmetric. For such steps, our approximation becomes

I - I:ﬁiﬁjfﬁiﬁ‘l‘;‘i ] equivalent to Geyer's method as is also evident from the co-
g | —&— Geyer’s Approx. | incident plots in the figure. In contrast, positive and ngat
= " values of6q ¢ result in decelerating and accelerating steps,
é or respectively. In both of these ranges, the gravity coroecti
E LI . method we propose outperforms existing alternativesgyiel
o el ] ing very accurate analytic approximations that can be ef-
35 Al | fectively used for applications such as locomotion on rough
;é il | terrain that require frequent use of non-symmetric steps.

. $ ¥ | it 3

b, b, Za o

4.3 Predictive Performance in the Presence of Dampin
Fig. 5 Percentage prediction errors in apex positibg)( liftoff ve- ping

locity (byo), apex heightZy) and liftoff position (y0) for the proposed . . . .
method, Schwind’s iterative approximations [36] and Geyapsroxi- AS noted in the previous section, the presence of damping
mations [14] in the absence of damping, but with non-symmetric stepschallenges the energy conservation assumption that under-

mean errors across 192655 valid _sir_nulations while the vertiaed b  |ies hoth Geyer's and Schwind’s approximations. The right
represent associated standard deviations. side of Table 3 illustrates percentage prediction errors fo
all three methods in the presence of non-negligible damp-
Fig. 5 illustrates mean and standard deviations of pering. As is evident from these error figures, existing analyti
centage prediction errors for all three approximation methapproximations for the SLIP model have deteriorated pre-
ods for 192655 valid simulations out of a total of 257040dictive performance (with errors exceeding 50%), while the
using different initial conditions and control parametigrs proposed method remains equally accurate with errors un-
the ranges shown in Table 2. Corresponding numerical vader 2%. There is even a slight increase in accuracy for our
ues are listed in the left three columns of Table 3, with mostnethod compared to its performance for the lossless case,



Table 3 Percentageprediction errors for Geyer’s, Schwind’s and our methods exgmsition b,), liftoff velocity (by), apex heighty), liftoff
position @0), apex energyH,) and stance timetd). Simulations without and with damping are respectively reggbon the left and right sides of
the table. In each case, the performance of each method is sumdniayiflee mean, standard deviation and maximum values for theieperge
prediction errors across all simulations covering the rangdsible 2. Most informative entries are highlighted with badtt

SLIP Model Without Damping SLIP Model With Damping
Geyer's Method | Schwind’s Method| Proposed Method Geyer's Method | Schwind’s Method | Proposed Method
pto | max pto | max pto | max pto [ max pto [ max pto [ max

ba 2.70+£274 | 27.3 | 7.72£6.52 | 51.8 | 1.07+1.37 | 18.4 || 5833+330 | 221 | 547+£336 | 205 | 0.75+1.27 | 24.2
b || 3.34+3.66 | 41.3 | 7.18+4.59 | 245 | 1.294158 | 26.3 || 532+410 | 280 | 57.7+391 | 280 | 1.40+2.27 | 46.4
Za 0.91+1.04 | 153 | 7.43+£8.42 | 58.6 | 0.73+£0.98 | 7.56 || 40.6£26.7 | 213 | 490+£30.3 | 206 | 0.42+0.68 | 7.55
b || 0.71+£0.90 | 10.9 | 6.584+4.39 | 22.7 | 0.42+0.57 | 3.71 || 570+4.70 | 44.1 | 436+2.48 | 23.0 | 0.32+0.49 | 3.87
Es || 0.00£0.00 | 0.00 | 0.00+0.00 | 0.00 | 0.004£0.00 | 0.00 || 327+205 | 189 | 327+205 | 189 | 0.23+0.38 | 5.20
ts 0.35+0.47 | 4.36 | 189+0.30 | 20.3 | 0.38+0.48 | 4.28 || 126+8.08 | 48.5 | 9.86+4.84 | 24.7 | 0.38+0.52 | 6.03

which can be attributed to shorter stance times arising frord Application: Gait Control of Monopedal Running

damped radial trajectories.
5.1 Deadbeat Controller for Regulating Apex States

iftoff Velocity Error ov) Apex Position Error (PE,, . . .

. LR e P R 1 e Tty B (712 A natural application of an analytically formulated apex re
et A P turn map for the spring-mass hopper is the design of a dead-
5} PO - .
beat controller to regulate and stabilize the progressfon o
Y A e w' | its apex states. The control problem hence consists of find-
s ’ = = - Geyor's Appros. S ing appropriate control inputs:= [B4, Prd, Pio) tO satisfy
_a
z 10° 10° \\ X; - af(Xa7 u) ) (55)

[a¥
o o1 03 o4 o 01 5 03 o whereX, andX; denote the current and desired apex states,

0.2 2
Damping Ratio (¢) Damping Ratio (¢)

respectively and leg spring constants are chosen to be con-
Fig. 7 Percentage prediction errors in liftoff velocity (left)dapex  stant withk, = kg = K.

position (right) for all three methods as a function of incregslamp- Inversion of the associated map, however, still involves
ing ratio. Error axes are plotted in logarithmic scale to simmétausly ’ ’

show the predictive performances of Schwind's and Geyer'seapp ~ three coupled variables. We start by observing that we are
mations with the proposed method, which yields mean errors that a primarily interested in sustained, steady-state loconmagb

two orders of magnitude better than its alternatives. the Cyc"c Variab'wa can Comfortab|y be eliminated from
the domain of the controller, leaving only the apex height
Zy and the apex speed as variables of interest. However,

Fig. 7 illustrates the dependence of prediction errors fo{he solution of the resulting equation is not as simple and

all three methods on the dimensionless damping 1@atie . . .

: — requires an iterative procedure.
c¢/(2v/k), plotted in logarithmic scale so that the trends of o I .

. . Initially, we assume that no damping is present in the

all three methods are simultaneously visible. For evenlsmal .

. . . system and solve the energy balance equation
amounts of damping witl{ = 0.1, the proposed approxi-
mations perform almost two orders of magnitude better than (prg — 1)2 — K (10 — 1) = E(Z,V4) — E(Za, Va) (56)
bhest ayaulable al'i_erkr:a_tlves in the Igeratu(rje_. As notefd/ebo for the control inputsr andpro, Noting that eithepyg — 1
there is even a slight increase in the prediction performanc, oo = 1 (i.e. equal to the leg rest length in dimension-

for the apex position as the amount of damping increases ss units) when the desired energy differential is negativ

a resglt O,f shorter stapce t|mdes lthat b;:ngdtra.ljec.tonez?rlo or positive, respectively. Once these control inputs are de
to satisfying assumptions underlying the derivations afSe termined, (55) reduces to a one dimensional equation, whose

tlons.l.th ST . solution can be formulated as a minimization problem with
nother important performance measure for our approx-, . . 2
imations would have been the accuracy of its prediction fmﬂtd - ,i‘rgmmﬂ (Ya— ( W oaf(Xa, 6. ora: Pro) ) (57)

X X X <0<=
local linearizations of the return map, often used to arcalyzWh Tn m ;‘: | solution is feasible due to its one dimen
stability properties of both open-loop and feedback cdntro”. 0S€ numerical solution 1S feasible due 1o 11s one €

. S ; S sional and monotonic nature. Having computed estimates of

strategies. Some of our preliminary investigations shat th _ .
o . S all control inputs for a lossless system, we can now estimate
our approximations also remain accurate in this regard.-How . .
. . . damping losses using (49) and solve the complete energy
ever, we leave the treatment of this topic outside the scopg :
. alance equation

of the present paper since an adequate coverage would sub-

stantially lengthen the presentation. K(pg—1)? = K(pro — 1)2 = E(Z, V%) —E(za,Ya) + Ec (58)
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to yield better estimates of the control inpylg and pio ” _Apex State Brror (55F,)

as before. Using these new estimates, we can obtain a new 5 || Froposed Method

solution for the touchdown angle through (57), which now Eaol| z‘yn‘mf";" o
takes into account damping losses as well. This results in an £ T =

effective one stride deadbeat controller for the regutatib % 15t St

apex height and horizontal speed. Note that equations (58) § I et

and (57) can be iteratively applied to obtain increasingly a ?C 10p- =77 /"

curate solutions for the control inputs. % el

5.2 Steady-State Tracking Performance % 005 01 015 02 025 03 03 04

Damping Ratio (¢)

In order to show that our analytic approximations provideFig. 8 Percentage steady-state errors in the norm of the non-
a good basis for the design of high performance gait Conc_iimensior_lal apex state vector fo_r all three methods as a funofion_
trollers, we compare the steady-state tracking perforlﬂﬂanctsr-]e damping ratia. Each data point represents the mean of all valid
. . ) It } imulations with the corresponding damping ratio. Standaréatien

of the controller described in Section 5.1 to similar design pars are only shown for the proposed method for clarity.
based on Geyer's and Schwind’s approximations. Contsoller
based on Schwind’s approximations are rather simple with
no consideration of damping and have been previously préial deterioration of controllers based on both Geyer's and
sented in the literature [9, 29, 32]. Deadbeat control base8chwind’s methods since the resulting energy losses domi-
on Geyer’s approximations closely parallels the desaniysti  nate the associated prediction errors.
of Section 5.1 except the iterative treatment of damping.
We omit detailed derivations for controllers associatetthwi
these two methods for space considerations. .

In order to obtain a comprehensive picture for the perfor® Conclusion
mance of all three controllers, we ran simulations with the

SLIP models with different spring constartse [25,200 In this paper, we introduced a simple yet accurate new an-
and damping coefficient < [0,0.4], with a wide range of alytical approximation to the stance trajectories of aidiss

apex state goals ig € [1.3,1.6] andy: € [0.5,2.25). For pative Spring-Loaded Inverted Pendulum model with linear
3,1 o .5,2.25. , X ) )
each goal, simulations were started from a range of difterer/€9 compliance. Conservative versions of this model were
initial condition around the goal witl € [z; — 0.15,Z; + shown to be very successful in describing center of mass
0.15 andyj, € [y; —0.25,y; +0.25. In each case éimula- motions of running animals with widely different sizes and
) +—0.25,y5 4+ 0.25]. ,

tions were run using each one of three controllers for eighf?orPhologies. However, existing literature on this model
steps, at the end of which convergence to steady-state wainost universally excludes dissipative effects, andwexcl
confirmed with a tolerance of 16 and the difference from SIVEly focuses on symmetric steps that occur during loco-
the desired goal was measured. In particular, we are imepjotion at steady state. These two limitations substantiall

ested in the percentage error in non-cyclic components anpairtheir applicabi!ity in the design an_d .cont.rol of legy )
the apex state, defined as robots on rough terrain, where damping is inevitable and sig

. ) nificant, and non-symmetric steps are frequent.
SSE := 100 | [Za, Yal —.[z;,y;] 2 . (59) We have presented extensive simulation results, cover-
[z val ]2 ing a large range of operating conditions and parameter set-

Note that this error measure incorporates both the apekteidings within a dimensionless formulation to show that our
and speed in dimensionless coordinates, and avoids normapproximate map can provide extremely accurate estimates
ization problems associated with a vanishing apex velocityfor the trajectories of the dissipative SLIP model, witroesr

Fig. 8 illustrates mean percentage tracking errors in théhat are consistently below 2% for all but the most extreme
apex state at steady-sta&S$SE, for all three methods as a conditions. Not only does our method far outperform avail-
function of the damping ratio. The gait controller designable alternatives in the literature in the presence of dagpi
based on our approximations significantly improves on théwith up to two orders of magnitude improvement in pre-
performance of other methods, with average steady-state afictive accuracy), but it also shows improved performance
rors consistently below 4%. Note that deadbeat controlbaseon the lossless SLIP model for non-symmetric steps thanks
on Geyer's approximations has identical performance te outto a novel gravity correction method also introduced in this
in the absence of damping since steady-state locomotigmaper. Overall, the methods we present in this paper provide
consists of symmetric steps for the lossless SLIP [35]. Nevthe currently most accurate closed-form approximations to
ertheless, increasing amounts of damping result in substathe otherwise non-integrable trajectories of the dissipat
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SLIP model, whose importance in both the modeling and 4.

control of legged locomotion has long been established.

In addition to our systematic characterization of the pre-
dictive performance of our approximations, we have also
demonstrated their utility in the context of a gait congoll

for the dissipative SLIP model. The simple analytic form of 16-

our approximations provide a very straightforward way in

which a deadbeat stride controller can be formulated, natut7.

rally taking damping induced energy losses into account and
hence substantially improving on the performance of simila ;g
control strategies in the literature. Once again, througysa
tematic set of simulations, we show that the resulting feed-

back controller is capable of regulating gait parameters ot

steady-state running with tracking errors consistentlpwe
4%, almost an order of magnitude better than other methods
for a dissipative SLIP model.
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