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Abstract This paper introduces an accurate yet analytically
simple approximation to the stance dynamics of the Spring-
Loaded Inverted Pendulum (SLIP) model in the presence of
non-negligible damping and non-symmetric stance trajecto-
ries. Since the SLIP model has long been established as an
accurate descriptive model for running behaviors, its careful
analysis is instrumental in the design of successful locomo-
tion controllers. Unfortunately, none of the existing analytic
methods in the literature explicitly take damping into ac-
count, resulting in degraded predictive accuracy when they
are used for dissipative runners. We show that the methods
we propose not only yield average predictive errors below
2% in the presence of significant damping, but also outper-
form existing alternatives to approximate the trajectories of
a lossless model. Finally, we exploit both the predictive per-
formance and analytic simplicity of our approximations in
the design of a gait-level running controller, demonstrating
their practical utility and performance benefits.
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1 Introduction

1.1 Motivation and Scope

The adoption of mobile robots for tasks in unstructured out-
door environments has been slow due to the limited mobility
and performance offered by existing wheeled and tracked
platforms [11, 22]. In contrast, legged morphologies offer
promising mobility advantages (as evidenced by numerous
legged solutions devised by nature), and provide effective
means with which power and actuator limitations can be
overcome through the use of properly designed and tuned
second order passive dynamics [2, 30]. However, the use of
intuitive biological inspiration alone as a basis for both the
design and control of such platforms has inherently limited
promise since currently available sensor and actuator tech-
nologies are drastically different than their biological coun-
terparts [13, 23]. In addition to such sources of inspiration,
we need to have an accurate understanding of the physical
principles underlying locomotory systems, while also devel-
oping analytical tools to provide a basis for the morpholog-
ical design and control of legged robot platforms [18].

In this context, a very successful mathematical model for
accurate prediction and control of legged locomotory behav-
iors has been the Spring-Loaded Inverted Pendulum (SLIP)
model [35]. This model, consisting of a simple point mass
riding on a single compliant leg, resulted from early studies
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in biomechanics [2, 3], revealing center of mass (COM) dy-
namics common to a surprisingly large range of biological
runners with widely varying sizes and morphologies [8, 12].
SLIP dynamics seem to elegantly capture the cyclic inter-
change between kinetic and potential energy that yields ef-
ficient and controllable locomotion, while providing a suf-
ficiently simple analytical basis for a variety of questions
related to the energetics, stability and control [16, 34].

The utility of the SLIP model is not limited to its de-
scriptive power. A number of successful robotic platforms
have been built, based either directly (e.g. Raibert’s run-
ners [28], the ARL monopods [1, 15], the Bow-Leg robot
[37], the BiMasc platform [19] and the Jena-hopper) or in-
directly (e.g. Scout quadrupeds [26], RHex [30] and Sprawl
hexapods [10], BigDog [24] and others) on the principles
embodied in this seemingly simple spring-mass model. Even
though it has not yet been shown that neural control sys-
tems in running animals are organized in a way that inter-
nally encodes this model, its use as an explicit control target
received considerable attention in the robotics community
[25, 29], yielding both an intuitive high-level control inter-
face for running behaviors, while also allowing a decompo-
sition of the control problem into simpler pieces [31].

Given the almost universal dependence of existing liter-
ature related to legged robotic running on the SLIP model,
there is a clear need for accurate tools for both the analysis
and control of this model. Starting from earlier, intuitiveap-
proaches [27, 28, 33], to later formalizations [9, 14, 21, 36],
a number of methods were developed to address the most
significant problem with this seemingly simple model: its
dynamics during phases of toe contact (i.e. stance) are non-
integrable under the effect of gravity [17]. Available meth-
ods suffer from unrealistic assumptions such as the conser-
vation of angular momentum and the neglection of damp-
ing losses. The former is readily violated in the presence of
gravity with non-symmetric, transient strides [20], and the
latter is an undesirable but unavoidable disturbance present
in all physical legged platforms. In this paper, we propose a
new analytical approximation to the trajectories of the SLIP
model that is significantly more accurate in the presence of
both passive damping and non-symmetric steps under grav-
ity, yielding a critical analytical tool for both the design
and control of dynamically stable legged platforms. We be-
lieve that the resulting tools are sufficiently accurate to sup-
port physical implementation of novel dexterous locomotion
controllers on rough terrain such as those presented in [7].

1.2 Contributions

Our primary contribution in this paper is the derivation of a
highly accurate analytical approximation to the stance map
of a planar hopper withlinear compliance and dampingin
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Fig. 1 The Spring-Loaded Inverted Pendulum Model with Damping

the leg, with additional corrections introduced to compen-
sate for the effect of gravity on the angular momentum for
non-symmetric steps. The resulting analytic return map for
running behaviors has substantial practical utility sinceit
can be used as a basis for the design of locomotion con-
trollers for physically plausible robot morphologies on rough
terrain, while also providing an analytical tool for the char-
acterization of associated dynamic legged behaviors. None
of the existing alternatives in the literature explicitly take
damping into account, making their direct application to such
systems very difficult and inaccurate.

In order to illustrate the applicability and performance of
our approximations in such settings, we carefully character-
ize their predictive performance with respect to a simulated
model within a non-dimensional formulation, across a large
range of initial conditions and parameter combinations. We
compare our results with two previously available analytic
approximation methods proposed in [14] and [36], first in
the context of a lossless SLIP model for which they were
designed for, and then a dissipative runner that challenges
their underlying assumptions. Finally, we present how our
approximations can be used to achieve high level control of
legged locomotion by designing a deadbeat controller for the
regulation of running speed and hopping height of a simu-
lated planar monopod. Once again, we compare the perfor-
mance of our proposed controller to a similar application of
alternative approximations in the literature.

2 The Lossy Spring-Loaded Inverted Pendulum Model

2.1 System Model and Dynamics

Fig. 1 shows the Spring-Loaded Inverted Pendulum model
we use in this paper, consisting of a point massmattached to
a freely rotating massless leg, endowed with a linear spring-
damper pair of compliancek, rest lengthl0 and, differently
from ideal SLIP model, viscous dampingd. Throughout lo-
comotion, the model alternates betweenstanceand flight
phases, further divided into thecompression, decompression
andascent, descentsubphases, respectively. Four important
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Table 1 State variables, parameters and the definitions of their dimen-
sionless counterparts for the SLIP model. Variables with and without
bars correspond to physical and dimensionless quantities, respectively.

Physical Dimensionless
Quantity Group Definition Description

t̄ t := t̄ /λ Time (whereλ :=
√

l0/g)
[ ȳ, z̄ ] b := [ y, z ] := [ ȳ/l0, z̄/l0 ] Body position
[ ρ̄, θ̄ ] q := [ ρ, θ ] := [ ρ̄/l0, θ̄ ] Leg length and leg angle

ȳf yf := ȳf /l0 Foot position
k κ := k (l0/(mg)) Leg spring stiffness
d c := d (l0/(λmg)) Leg viscous damping
F̄ F := F̄ /(mg) Force variables
Ē E := Ē /(mgl0) Energy variables
p̄θ̄ pθ := pθ /(λ/(ml20)) Angular momentum
p̄ρ̄ pρ := p̄ρ̄ (λ/(ml0)) Radial momentum

events define discrete transitions between these subphases:
touchdown, bottom, liftoff, andapex. During flight, the body
is assumed to be a projectile acted upon by gravity, whereas
in stance, the toe is assumed to be fixed on the ground and
the mass feels radial leg forces. Table 1 details all relevant
variables and parameters for this model.

In order to eliminate redundant parameters and provide
an efficient way to interpret our simulation results, we will
use a dimensionless formulation. Redefining time ast :=
t̄/λ with λ :=

√

l0/g, scaling all distances with the spring
rest lengthl0, dimensionless SLIP dynamics are given as

Flight:

[

ÿ
z̈

]

=

[

0
−1

]

, (1)

Stance:

[

ρ̈
θ̈

]

=

[

ρ θ̇ 2−κ(ρ −1)− cρ̇ − cosθ
(−2 ρ̇ θ̇ +sinθ)/ρ

]

, (2)

with flight dynamics written in cartesian coordinates and
stance dynamics in polar coordinates for convenience. Trans-
formations between these coordinate systems requires the
foot locationyf as a separate state which undergoes dis-
crete changes from touchdown to touchdown. Note, also,
that (d/dt)n = λ n(d/dt̄)n and all time derivatives are with
respect to the newly defined, scaled time variable. Through-
out the rest of the paper, we will only work with dimension-
less quantities and hence will not explicitly mention their
dimensionless nature unless necessary.

2.2 Modeling of Running Gaits: The Apex Return Map

A commonly used and convenient abstraction for both the
analysis and control of the SLIP model is the apex return
map, defined as the Poincaré section taken at ˙z= 0 during
flight [35], leading to the definition of theapex stateas

Xa := [ya, za, ẏa]
T . (3)

Such a section not only reduces the dimension of the system,
but also allows a convenient discrete, task level abstraction
suitable for the characterization of steady-state gaits [35],
designing controllers [32] and analyzing their stability [4].
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Fig. 2 SLIP locomotion phases and associated return map components

In this paper, we also adopt the apex return map for both
evaluating the performance of our approximations, and de-
signing gait controllers based on these approximations.

The apex return map for the SLIP model is a combi-
nation of four subsequent maps, illustrated in Fig. 2, cor-
responding to descent (apex to touchdown), compression
(touchdown to bottom), decompression (bottom to liftoff)
and ascent (liftoff to apex) subphases of locomotion, de-
noted with t

af, b
t f, l

bf and a
l f, respectively. The apex return

map hence takes the form

Xk+1
a = a

af[θtd,ρtd,ρlo,κc,κd]
(Xk

a)

:= (a
l f ◦ l

bf[κd,ρlo]
◦ b

t f[κc] ◦ t
af[θtd,ρtd]

)(Xk
a) (4)

where several key parameters that can be used to control
progression through these submaps are explicitly shown. In
particular,θtd, κc andκd denote the familiar touchdown an-
gle, compression and decompression spring constants as in
many earlier hopper implementations [1, 28], whileρtd and
ρlo denote leg lengths and touchdown and liftoff similar to
control parameters used by the Bow-Leg hopper [37]. All
components of the return map, together with relevant con-
trol inputs are illustrated in Fig. 2.

It is important to note that from among these available
control inputs, any choice of three that includes the touch-
down angleθtd grants full controllability to the system (i.e.
gives independent authority over all of the apex states) [35,
37], with the primary difference being in the way the energy
of the system is regulated. In this paper, we will assume that
the landing and liftoff leg lengths are explicitly controllable
as in the Bow-Leg hopper.

Given this choice, the descent and ascent submaps are

Xk
td = t

af(Xk
a) := [ya+ ẏa∆ td, ρtd cosθtd, ẏa, −∆ td] (5)

Xk+1
a = a

l f(Xk
lo) := [yl + ẏl ∆ ta, ρlo cosθlo + ż2

l /3, ẏl ] , (6)

where we define the touchdown and liftoff states asXtd :=
[ρtd,θtd, ρ̇td, θ̇td, ]

T and Xlo := [ρlo,θlo, ρ̇lo, θ̇lo, ]
T , respec-

tively, with ∆ td :=
√

2(za−ρtd cosθtd). Note that bothXtd

andXlo are defined as intermediate states and hence incor-
porate additional, redundant dimensions for convenience as
compared to the three dimensional apex states in (3).
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Not surprisingly, the most difficult components in the
apex return map are the compression and decompression
phases, both requiring closed-form integration of the stance
dynamics. While there are a number of existing approxima-
tions for this purpose, none of them incorporate damping
and have substantial difficulty in modeling the effect of grav-
ity on the angular momentum in the presence of stance tra-
jectories that are not symmetric with respect to the vertical.

2.3 Existing Analytical Tools for the Undamped SLIP

In the following sections, we review two important analyti-
cal approximations to the stance dynamics of the undamped
SLIP model. Our approximation is inspired from the method
proposed in [14], but substantially improves predictive and
control performance by accurately incorporating the effects
of damping and varying angular momentum during stance.

2.3.1 Iterative Approximate Stance Map by Schwind et al.

In [36], Schwind uses an iterative application of the mean-
value theorem for integral operators to obtain an analytical
approximation to the stance dynamics of a lossless SLIP.
Their derivation is based on a Hamiltonian formulation of
the conservative SLIP dynamics, yielding the dimensionless
Hamiltonian function as

H :=
1
2
(p2

ρ +
p2

θ
ρ2 )+

1
2

κ(1−ρ)2+ρ cosθ . (7)

The equations of motion can then be written in terms of the
radial degree of freedom as an independent variable by as-
suming that the system energy stays constant and solving the
equationH(pρ) = E to yieldH† := H−1(E) = pρ as a func-
tion of the leg lengthρ . It then becomes possible to obtain
an approximate solution, yielding the following solution for
the decompression phase

t̂d(n+1)
(ρ) = tb+(ρ −ρb)/H†

n (8)

θ̂(n+1)(ρ) = θb+ p̂θ n(ξ̂ )(ρ −ρb)/(ξ̂ 2H†
n) (9)

p̂θ (n+1)(ρ) = pθ b+ ξ̂ sin(θ̂n(ξ̂ ))(ρ −ρb)/H†
n (10)

p̂ρ (n+1)(ρ) = H†
n+1 , (11)

wheren indicates the iteration number,ξ̂ := 3ρb/4+ ρ/4
arises from the application of the mean value theorem and
tb, ρb, θb andpθ b represent the system state at bottom.

Given touchdown states,ttd, ρtd, θtd andpθ td, the com-
pression phase mapping can be similarly derived as

t̂c(n+1)
(ρ) = ttd − (ρ −ρtd)/H†

n (12)

θ̂(n+1)(ρ) = θtd − p̂θ n(ξ̂ )(ρ −ρtd)/(ξ̂ 2H†
n) (13)

p̂θ (n+1)(ρ) = pθ td − ξ̂ sin(θ̂n(ξ̂ ))(ρ −ρtd)/H†
n (14)

p̂ρ (n+1)(ρ) = −H†
n+1 , (15)

whereξ̂ := 3ρtd/4+ρ/4.
Furthermore, these equations can be iterated to yield in-

creasingly accurate analytic approximations. However, since
the solutions are formulated as a function of the radial state,
finding the bottom instant represents one of the problems
with this approach. Nevertheless, it is possible to use an en-
ergy based solution to the bottom radial length [6, 29]. We
omit the details of this derivation for space considerations.

It is important to note that Schwind’s method critically
relies on the assumption of a lossless plant model and con-
servation of energy, making its direct application to a lossy
system very difficult, requiring nontrivial modifications.Fur-
thermore, its analytical complexity substantially increases
with each iteration, at least two of which are required for
reasonably accurate results.

2.3.2 Simple Approximate Stance Map by Geyer et al.

In [14], Geyer proposes a method to obtain an analytical ap-
proximation to the stance dynamics of a lossless SLIP. In
this section we review their method, adapted to use the leg
length control parametersρtd andρlo within a dimensionless
formulation compatible to ours.

As proposed in [14], if we assume that the stance phase
is predominantly vertical with a sufficiently small angular
span∆θ , the effect of gravity can be linearized aroundθ =
0, making both the angular momentumpθ and the total me-
chanical energy constants of motion. Combined with the as-
sumption that the relative spring compression remains suffi-
ciently small with|1−ρ | ≪ 1, and some additional approx-
imations detailed in [14], analytic expressions for the radial
and angular stance trajectories can be found as

ρ(t) = 1+a+bsin(ω̂0 t) , (16)

θ(t) = θtd + pθ (1−2a)(t − ttd)

+
2bpθ
ω̂0

[cos(ω̂0 t)−cos(ω̂0ttd)] , (17)

in dimensionless coordinates with the definitions

ω̂0 :=
√

κ +3pθ 2 , (18)

a := (pθ
2−1)/ω̂2

0 , (19)

b :=
√

a2+(2E− pθ 2−2)/ω̂2
0 , (20)

where the total mechanical energy, denoted withE, is com-
puted based on prior apex states. Subsequently, leg length
control inputs at touchdown and liftoff can be used as bound-
ary conditions on (16) to determine touchdown, bottom and
liftoff times relative to an arbitrary time origin as,

ttd = (π −arcsin((ρtd −1−a)/b))/ω̂0, (21)

tlo = (2π +arcsin((ρlo −1−a)/b))/ω̂0, (22)

tb = 3π/(2ω̂0) . (23)

Following a final, energy-based correction on the horizontal
component of the liftoff velocity, these derivations yieldan
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analytically simple but accurate approximation to the sym-
metric stance trajectories of a lossless SLIP.

Unfortunately, both assumptions in these derivations, the
conservation of angular momentum and the lack of any damp-
ing, limit their direct applicability to the control of maneu-
verable running on practical legged robots. Nevertheless,as
described in Section 3, we will be able to adapt key ideas
from this method in the derivation of our new approxima-
tions with substantially more general applicability.

3 A New Analytic Approximation to the Stance Map

We start the presentation of our approximations by deriva-
tions based on assuming conservation of angular momentum
in Section 3.1, followed in Section 3.2 by the computation
of components necessary to assemble the apex return map,
concluded in Section 3.3 with a method to reintroduce grav-
ity and compensate for inaccuracies resulting from our start-
ing assumption.

3.1 Approximating Stance Trajectories under Damping

We first rearrange the angular component of (2) to yield a
more convenient form of the stance dynamics as

ρ̈ = ρ θ̇ 2−κ(ρ −1)− cρ̇ − cosθ , (24)

0 =
d
dt
(ρ2θ̇)−ρ sinθ . (25)

In order to derive our analytical approximation, we continue
with the commonly used assumption that the leg remains
close to the vertical throughout the entire stance phase. Con-
sequently, as in [14], the gravitational potential can be lin-
earized aroundθ = 0. Note that this assumption, as noted
before, is violated for non-symmetric stance trajectoriesthat
arise during transient locomotion steps. However, as we de-
scribe in Section 3.3, it will be possible to introduce an ex-
plicit correction to the angular momentum by separately con-
sidering the effects of gravity. Nevertheless, for now, there-
sulting conservation of the angular momentumpθ := ρ2θ̇
reduces the radial dynamics of (24) to

ρ̈ +cρ̇ +κρ − p2
θ/ρ3 =−1+κ . (26)

Unfortunately, even these reduced dynamics do not ad-
mit an analytical solution. However, using the method pro-
posed by Geyer [14], we further assume that the relative
spring compression remains sufficiently small with|1−ρ |≪
1, allowing the term 1/ρ3 to be approximated by a Taylor
series expansion aroundρ = 1 to yield

1/ρ3
∣

∣

ρ=1 ≈ 1−3(ρ −1)+O((ρ −1)2) . (27)

This assumption remains valid as long as the leg com-
pression during stance is not excessive (i.e. not more that

75% of the leg rest length), which is true for most running
behaviors except extreme cases such as kangaroo hopping
or quadrupedal pronking behaviors. Nevertheless, under this
approximation, (26) reduces to

ρ̈ +cρ̇ +(κ +3p2
θ )ρ =−1+κ +4p2

θ , (28)

where we define the natural frequency of the system,ω̂0 :=
√

κ +3p2
θ , the damping ratio,ξ := c/(2ω̂0), the damped

frequency,ωd := ω̂0

√

1−ξ 2 and the forcing termF :=−1+
κ +4p2

θ and obtain

ρ̈ +2ξ ω̂0ρ̇ + ω̂2
0ρ = F . (29)

This is a second order ordinary differential equation that can
easily be solved analytically. Assumingξ < 1, we have

ρ(t) = e−ξ ω̂0t(Acos(ωdt)+Bsin(ωdt))+F/ω̂2
0 , (30)

with A andB determined by touchdown states as

A = ρtd −F/ω̂2
0 , (31)

B = (ρ̇td +ξ ω̂0A)/ωd . (32)

Simple differentiation yields the radial velocity as

ρ̇(t) =−M e−ξ ω̂0t(ξ ω̂0cos(ωdt +φ)+ωd sin(ωdt +φ)) ,

whereM :=
√

A2+B2 andφ := arctan(−B/A). Further ma-
nipulations yield the simplest form of the radial motion as

ρ(t) = M e−ξ ω̂0t cos(ωdt +φ)+F/ω̂2
0 , (33)

ρ̇(t) = −Mω̂0 e−ξ ω̂0t cos(ωdt +φ +φ2) . (34)

whereφ2 := arctan(−
√

1−ξ 2/ξ ).
Now that an analytical approximation to the radial tra-

jectory is available, the angular trajectory can be determined
by using the constancy of the angular momentumθ̇ = pθ/ρ2.
Linearizing 1/ρ2 aroundρ = 1 yields

1/ρ2
∣

∣

ρ=1 = 1−2(ρ −1)+O((ρ −1)2) , (35)

with which we can obtain an analytical solution for the an-
gular velocity of the leg as

θ̇(t) = 3pθ −2pθ F/ω̂2
0 −2pθ Me−ξ ω̂0t cos(ωdt +φ) . (36)

Integration then yields the angular trajectory of the leg as

θ(t) = θtd +X t

+Y(e−ξ ω̂0t cos(ωdt +φ −φ2)−cos(φ −φ2)) , (37)

whereX := 3pθ −2pθ F/ω̂2
0 andY := 2pθ M/ω̂0.

The approximate solutions in (33), (34), (37) and (36)
provide a sufficiently simple analytic solution to the stance
dynamics of the lossy SLIP model. However, in order to
complete the apex return map, we still need to solve for the
times and states of bottom and liftoff events.
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Xk
a

Xk

td

Xk

b

Xk

lo
(length)

Xk+1
a

0 tb tc1
l

tc2
l

t

Xk

lo
(force)

Fig. 3 An illustration of events throughout stance, together with the
possibility of two different liftoff conditions based on either the force
condition of (39) or the length condition of (40).

3.2 Solving for Transition States: Bottom and Liftoff

The bottom of stance is reached with the leg at its maximal
compression witḣρ(tb) = 0. Using (34), we have

tb = (π/2−φ −φ2)/ωd . (38)

In contrast, liftoff occurs when the toe loses contact with the
ground. For a lossless SLIP withξ = 0, this corresponds to
the usual leg length conditionρ(tlo) = ρlo, which can eas-
ily be solved analytically through the use of (33). However,
when damping is present in the system, the liftoff event does
not depend on the leg length alone, but must take into ac-
count the ground reaction force on the toe. This can be for-
malized as a condition on the leg force with

κ(1−ρ(tc1
l ))−c ρ̇(tc1

l ) = 0 . (39)

which corresponds to the point of vanishing net force ex-
erted on the toe by the spring-damper pair. An alternative
liftoff condition arises within platforms where the liftoff leg
length can be explicitly chosen by a controller (e.g. as in the
Bow-Leg hopper [37]). In such cases, the time of liftoff is
given by the solution to the equation

ρ(tc2
l ) = ρl . (40)

Using both (39) and (40), the actual liftoff time can then be
found astl = min(tc1

l , tc2
l ), with the earlier one of the two

events triggering the actual liftoff. Fig. 3 illustrates transi-
tion events during stance together with the possible presence
of two different liftoff conditions.

Unfortunately, exact analytical solution of these equa-
tions is not possible. Even though numerical methods are
feasible due to the simple, one dimensional nature of these
equations, we use a sufficiently accurate approximation to
compute both liftoff times in order to preserve the analyti-
cal nature of our approximations. To this end, we propose a
new approximation for the exponential term in (33) with its
value at a specific instant during decompression ase−ξ ω̂0t ≈
e−ξ ω̂0γtb, with γ ≥ 1 introduced as a tunable parameter. A
reasonable choice isγ = 2, corresponding to compression
and decompression phases of roughly equal duration. We
hence obtain

tc1
l ≈ (2π −arccos(κ(1−F/ω̂2

0)/(MMe−ξ ω̂0γtb))−φ −φ3)/ωd, (41)

tc2
l ≈ (2π −arccos((ρl −F/ω̂2

0)/(Me−ξ ω̂0γtb))−φ)/ωd, (42)

where we define

M :=
√

(cω̂0)2+κ2−2κcω̂0cos(φ2) (43)

φ3 := arctan(
cω̂0sin(φ2)

cω̂0cos(φ2)−κ
). (44)

Once the time instants associated with each event are identi-
fied, the corresponding states can be computed, completing
all necessary components in the apex return map.

3.3 Compensating for the Effects of Gravity

In this section, we extend the method we introduced in Sec-
tion 3.1 with an explicit correction on the angular momen-
tum to account for the effect of gravity for non-symmetric
trajectories, yielding a much larger domain of validity for
the resulting analytic approximations.

_
+

_
+

_
+

(a) (b) (c)

Fig. 4 The total effect of gravity on the magnitude of the angular mo-
mentum during stance is (a) negative, (b) zero and (c) positive.Blue
and red regions, marked with− and+, represent instantaneous de-
creasing and increasing effects of gravity on the magnitude of the an-
gular momentum, respectively. Locomotion direction is to the right.

As illustrated in Fig. 4, angular momenta at touchdown
and liftoff are identical only for perfectly symmetric SLIP
trajectories, observed only for steady-state running on flat-
terrain. Unfortunately, for legged robots negotiating rough
terrain, non-symmetric trajectories will dominate with dete-
riorated controller performance as a result.

In the presence of gravity, the instantaneous angular mo-
mentum around the toe during stance can be computed as

pθ (t) = pθ (0)+
∫ t

0
ρ(η)sinθ(η)dη , (45)

wherepθ (0) denotes the angular momentum at touchdown.
We propose a new method to modify our approximations to
take into account the total effect of gravity on the angular
momentum during stance by a constant average value com-
puted between touchdown and liftoff as

p̂θ :=
1
tlo

∫ tlo

0
pθ (η)dη . (46)
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Once computed, we could replace all occurrences ofpθ in
the derivations of Section 3.1 with ˆpθ , yielding an analytic
correction scheme to compensate for gravitational effects.

Unfortunately, even with the solutions of (33) and (37),
exact computation of this expression in closed-form is not
feasible. Consequently, we propose a new approximation to
the integrand in (45),τ(t) := ρ(t)sinθ(t) with an average
of its extreme values at touchdown and liftoff as

τ(t)≈ τ̂(t) := (τ(0)+ τ(tlo))/2 . (47)

It hence becomes possible to compute an approximate ad-
justment for the angular momentum of (46) as

p̂θ = pθ (0)+
tlo
4
(ρ(0)sinθ(0)+ρ(tlo)sinθ(tlo)) (48)

We use this adjusted angular momentum in the “gravity-
corrected” performance results presented in Section 4.2. Note
that computation of (48) requires an initial estimate of sys-
tem states at liftoff. We use the uncompensated map for
this purpose, with the correction incorporated as a second
step. This also gives an “iterative” character to our correc-
tion method similar to the approach adopted in [36].

Our experiments also showed that a final, energy based
correction to the stance map significantly increases the accu-
racy of the resulting approximations. In previous work [14],
this correction was based on the fact that the system un-
der study was conservative. In our case, however, damping
losses need to be taken into account if the predicted liftoff
states are to be corrected. Fortunately, we can use our ap-
proximations to estimate damping losses as

Ec :=
∫ tl

0
c ρ̇2(t)dt

=
1
2

M2ω̂2
0( ξ ( cos(2φ +φ2) + 1−e−2ξ ω̂0tl

−cos(2ωdtl +2φ +φ2)e
−2ξ ω̂0tl )) , (49)

which can then be used to compute a corrected liftoff veloc-
ity and an associated angular velocity as

v̄l =
√

2(Etd −Elo −Ec) , (50)

ˆ̇θlo = sgn(θ̇lo)

√

v̄2
l − ρ̇2

lo

ρlo
, (51)

with Etd := (v2
td + κ(ρtd − 1)2 + ρtd cosθtd)/2 andElo :=

(κ(ρlo −1)2+ρlo cosθlo)/2.

4 Characterization of Predictive Performance

4.1 Simulation Environment and Performance Criteria

In the following sections, we investigate thesingle-stride
predictive performance of our approximations to the apex

return map under a wide range of initial conditions and con-
trol inputs, using normalized percentage errors in different
state components. In particular, errors in the apex position
and liftoff velocity predictions are respectively defined as

PEap := 100
|| [ya,za]− [ŷa, ẑa] ||2

|| [ya,za] ||2
, (52)

PElov := 100
|| ([ρ̇lo, θ̇lo]− [ ˆ̇ρlo,

ˆ̇θlo] ||2
|| [ρ̇lo, θ̇lo] ||2

, (53)

where[ŷa, ẑa] and[ ˆ̇ρlo,
ˆ̇θlo] denote apex and liftoff states pre-

dicted by one of three approximations described earlier, while
[ya,za] and [ρ̇lo, θ̇lo] are obtained by numerical integration
of the SLIP model for a single stride. We use the velocity
at liftoff rather than the apex to ensure that normalizationis
meaningful even for non-symmetric gaits with possibly zero
apex velocities. Our simulations cover a total of four differ-
ent dimensions of initial states and control inputs: the apex
height (za), the apex velocity ( ˙ya), the spring constant (κ)
and the “relative touchdown angle”, which we define as

θtd,rel := θtd −θtd,n , (54)

whereθtd,n denotes the “neutral” touchdown angle that re-
sults in a symmetric SLIP trajectory for the lossless model,
defined as the fixed point of the apex return map withXa =
a
af[θtd]

(Xa) for a given initial apex stateXa.
The ranges considered for these dimensions were cho-

sen to be consistent with biomechanics literature as well as
existing legged robots. In particular, experiments on humans
(with 80kg mass and 1m leg length on average) running at
different speeds (in the range 2.5-6.5m/s) reveal leg stiff-
nesses in the range [10, 50] kN/m [5]. In the robotic do-
main, the RHex hexapod has an approximate mass of 10kg,
leg length of 0.25 m and compliant legs with stiffness of
around 2000N/m for each leg [30]. Motivated by these ob-
servations, Table 2 shows ranges of initial conditions and
control inputs we use for our simulations, with thedamp-
ing ratio, defined asζ := c/(2

√
κ), parameterizing differing

amounts of damping for the results of subsequent sections.

Table 2 Ranges of initial conditions and control inputs for simulation
experiments in dimensionless units

za ẏa θtd,rel κ ζ
[1.15, 1.75] [0, 2.5] [-0.15, 0.25] [25, 200] [0, 0.4]

For each of our simulations, we check whether the tra-
jectories satisfy two conditions to ensure that we can support
meaningful comparisons to existing studies. Firstly, stance
trajectories that either never leave the ground (˙zlo < 0) or
prevent foot protraction (za < 1), are excluded. Second, we
restrict the maximum allowable leg compression to 25% of
the rest length, excluding trajectories that violate this con-
dition. In each case, we define and compute “ground truth”
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as the numerical integration of SLIP dynamics for a single
stride within MATLAB using a variable time-step, fourth or-
der Runge-Kutta integrator. We then compute estimates of
the apex states based on Geyer’s and Schwind’s approxima-
tion methods and our proposed method and compare esti-
mation performances using the error criteria defined above.
For the Schwind approximations, we use the 10th iterate
(after which further iterations yield no improvements) to
make sure we obtain the best possible performance for their
method. Note that a characterization of performance over
a single step is also an accurate indicator of performance
across multiple steps since prediction errors accumulate ad-
ditively if apex states remain in the range of validity for as-
sumptions underlying each method.

4.2 Performance for Non-symmetric, Lossless Steps

In this section, we compare the predictive performance of
our gravity correction scheme, described in Section 3.3, with
Geyer’s and Schwind’s analytic approximations. In order to
isolate performance gains resulting from the gravity correc-
tion method alone, we use a lossless plant model withc= 0
for the results of this section. As we will show in the next
section, the presence of damping represents a major devi-
ation from the assumptions of Geyer’s and Schwind’s ap-
proximations and makes it the dominant factor in all error
measures. Consequently, a fair evaluation of our gravity cor-
rection scheme is only possible in the absence of damping.
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Fig. 5 Percentage prediction errors in apex position (ba), liftoff ve-
locity (ḃlo), apex height (za) and liftoff position (qlo) for the proposed
method, Schwind’s iterative approximations [36] and Geyer’sapproxi-
mations [14] in the absence of damping, but with non-symmetric steps.
mean errors across 192655 valid simulations while the vertical bars
represent associated standard deviations.

Fig. 5 illustrates mean and standard deviations of per-
centage prediction errors for all three approximation meth-
ods for 192655 valid simulations out of a total of 257040
using different initial conditions and control parametersin
the ranges shown in Table 2. Corresponding numerical val-
ues are listed in the left three columns of Table 3, with most

informative entries highlighted in bold font. These averaged
results show that the proposed gravity corrections result in
significant increase in the performance of the approxima-
tions, particularly in their prediction of velocity components.
This is relatively natural since gravity primarily influences
angular momentum and hence the liftoff velocity.
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Fig. 6 Percentage prediction errors for all three methods for liftoff ve-
locity (left) and apex position (right) as a function of the relative touch-
down angleθtd,rel . Each data point represents the mean of all valid
simulations with the corresponding relative touchdown angle.Standard
deviation bars are only shown for the proposed method for clarity.

More importantly, however, we expect performance gains
resulting from the gravity correction scheme to be much
more pronounced for non-symmetric steps. This is also con-
firmed by our simulations, illustrated in Fig. 6 with plots of
mean and standard deviations of liftoff velocity and apex po-
sition errors as a function of the relative touchdown angle.
Note that by definition, trajectories obtained withθtd,rel = 0
are symmetric. For such steps, our approximation becomes
equivalent to Geyer’s method as is also evident from the co-
incident plots in the figure. In contrast, positive and negative
values ofθtd,rel result in decelerating and accelerating steps,
respectively. In both of these ranges, the gravity correction
method we propose outperforms existing alternatives, yield-
ing very accurate analytic approximations that can be ef-
fectively used for applications such as locomotion on rough
terrain that require frequent use of non-symmetric steps.

4.3 Predictive Performance in the Presence of Damping

As noted in the previous section, the presence of damping
challenges the energy conservation assumption that under-
lies both Geyer’s and Schwind’s approximations. The right
side of Table 3 illustrates percentage prediction errors for
all three methods in the presence of non-negligible damp-
ing. As is evident from these error figures, existing analytic
approximations for the SLIP model have deteriorated pre-
dictive performance (with errors exceeding 50%), while the
proposed method remains equally accurate with errors un-
der 2%. There is even a slight increase in accuracy for our
method compared to its performance for the lossless case,
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Table 3 Percentageprediction errors for Geyer’s, Schwind’s and our methods in apex position (ba), liftoff velocity (ḃlo), apex height (za), liftoff
position (qlo), apex energy (Ea) and stance time (ts). Simulations without and with damping are respectively reported on the left and right sides of
the table. In each case, the performance of each method is summarized by the mean, standard deviation and maximum values for their percentage
prediction errors across all simulations covering the ranges in Table 2. Most informative entries are highlighted with bold font.

SLIP Model Without Damping SLIP Model With Damping
Geyer’s Method Schwind’s Method Proposed Method Geyer’s Method Schwind’s Method Proposed Method
µ ±σ max µ ±σ max µ ±σ max µ ±σ max µ ±σ max µ ±σ max

ba 2.70±2.74 27.3 7.72±6.52 51.8 1.07±1.37 18.4 53.3±33.0 221 54.7±33.6 205 0.75±1.27 24.2
ḃlo 3.34±3.66 41.3 7.18±4.59 24.5 1.29±1.58 26.3 53.2±41.0 280 57.7±39.1 280 1.40±2.27 46.4
za 0.91±1.04 15.3 7.43±8.42 58.6 0.73±0.98 7.56 40.6±26.7 213 49.0±30.3 206 0.42±0.68 7.55
blo 0.71±0.90 10.9 6.58±4.39 22.7 0.42±0.57 3.71 5.70±4.70 44.1 4.36±2.48 23.0 0.32±0.49 3.87
Ea 0.00±0.00 0.00 0.00±0.00 0.00 0.00±0.00 0.00 32.7±20.5 189 32.7±20.5 189 0.23±0.38 5.20
ts 0.35±0.47 4.36 18.9±0.30 20.3 0.38±0.48 4.28 12.6±8.08 48.5 9.86±4.84 24.7 0.38±0.52 6.03

which can be attributed to shorter stance times arising from
damped radial trajectories.
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Fig. 7 Percentage prediction errors in liftoff velocity (left) and apex
position (right) for all three methods as a function of increasing damp-
ing ratio. Error axes are plotted in logarithmic scale to simultaneously
show the predictive performances of Schwind’s and Geyer’s approxi-
mations with the proposed method, which yields mean errors that are
two orders of magnitude better than its alternatives.

Fig. 7 illustrates the dependence of prediction errors for
all three methods on the dimensionless damping ratioζ :=
c/(2

√
κ), plotted in logarithmic scale so that the trends of

all three methods are simultaneously visible. For even small
amounts of damping withζ = 0.1, the proposed approxi-
mations perform almost two orders of magnitude better than
best available alternatives in the literature. As noted above,
there is even a slight increase in the prediction performance
for the apex position as the amount of damping increases as
a result of shorter stance times that bring trajectories closer
to satisfying assumptions underlying the derivations of Sec-
tion 3.1.

Another important performance measure for our approx-
imations would have been the accuracy of its prediction for
local linearizations of the return map, often used to analyze
stability properties of both open-loop and feedback control
strategies. Some of our preliminary investigations show that
our approximations also remain accurate in this regard. How-
ever, we leave the treatment of this topic outside the scope
of the present paper since an adequate coverage would sub-
stantially lengthen the presentation.

5 Application: Gait Control of Monopedal Running

5.1 Deadbeat Controller for Regulating Apex States

A natural application of an analytically formulated apex re-
turn map for the spring-mass hopper is the design of a dead-
beat controller to regulate and stabilize the progression of
its apex states. The control problem hence consists of find-
ing appropriate control inputsu := [θtd,ρtd,ρlo] to satisfy

X∗
a = a

af(Xa,u) , (55)

whereXa andX∗
a denote the current and desired apex states,

respectively and leg spring constants are chosen to be con-
stant withκc = κd = κ .

Inversion of the associated map, however, still involves
three coupled variables. We start by observing that we are
primarily interested in sustained, steady-state locomotion so
the cyclic variableya can comfortably be eliminated from
the domain of the controller, leaving only the apex height
za and the apex speed ˙ya as variables of interest. However,
the solution of the resulting equation is not as simple and
requires an iterative procedure.

Initially, we assume that no damping is present in the
system and solve the energy balance equation

κ(ρtd −1)2−κ(ρlo −1)2 = E(z∗a, ẏ
∗
a)−E(za, ẏa) (56)

for the control inputsρtd andρlo, noting that eitherρtd = 1
or ρlo = 1 (i.e. equal to the leg rest length in dimension-
less units) when the desired energy differential is negative
or positive, respectively. Once these control inputs are de-
termined, (55) reduces to a one dimensional equation, whose
solution can be formulated as a minimization problem with

θtd = argmin
−π
2 <θ <−π

2

(ẏ∗a− (π ˙̄ya
◦ a

af(Xa,θ ,ρtd,ρlo) ))
2 , (57)

whose numerical solution is feasible due to its one dimen-
sional and monotonic nature. Having computed estimates of
all control inputs for a lossless system, we can now estimate
damping losses using (49) and solve the complete energy
balance equation

κ(ρtd −1)2−κ(ρlo −1)2 = E(z∗a, ẏ
∗
a)−E(za, ẏa)+Ec (58)
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to yield better estimates of the control inputsρtd and ρlo

as before. Using these new estimates, we can obtain a new
solution for the touchdown angle through (57), which now
takes into account damping losses as well. This results in an
effective one stride deadbeat controller for the regulation of
apex height and horizontal speed. Note that equations (58)
and (57) can be iteratively applied to obtain increasingly ac-
curate solutions for the control inputs.

5.2 Steady-State Tracking Performance

In order to show that our analytic approximations provide
a good basis for the design of high performance gait con-
trollers, we compare the steady-state tracking performance
of the controller described in Section 5.1 to similar designs
based on Geyer’s and Schwind’s approximations. Controllers
based on Schwind’s approximations are rather simple with
no consideration of damping and have been previously pre-
sented in the literature [9, 29, 32]. Deadbeat control based
on Geyer’s approximations closely parallels the descriptions
of Section 5.1 except the iterative treatment of damping.
We omit detailed derivations for controllers associated with
these two methods for space considerations.

In order to obtain a comprehensive picture for the perfor-
mance of all three controllers, we ran simulations with the
SLIP models with different spring constantsκ ∈ [25,200]
and damping coefficientsζ ∈ [0,0.4], with a wide range of
apex state goals inz∗a ∈ [1.3,1.6] and ẏ∗a ∈ [0.5,2.25]. For
each goal, simulations were started from a range of different
initial condition around the goal withza ∈ [z∗a − 0.15,z∗a +
0.15] and ẏa ∈ [ẏ∗a − 0.25, ẏ∗a + 0.25]. In each case, simula-
tions were run using each one of three controllers for eight
steps, at the end of which convergence to steady-state was
confirmed with a tolerance of 10−4 and the difference from
the desired goal was measured. In particular, we are inter-
ested in the percentage error in non-cyclic components of
the apex state, defined as

SSEa := 100
|| [za, ẏa]− [z∗a, ẏ

∗
a] ||2

|| [z∗a, ẏ∗a] ||2
. (59)

Note that this error measure incorporates both the apex height
and speed in dimensionless coordinates, and avoids normal-
ization problems associated with a vanishing apex velocity.

Fig. 8 illustrates mean percentage tracking errors in the
apex state at steady-state,SSEa, for all three methods as a
function of the damping ratio. The gait controller design
based on our approximations significantly improves on the
performance of other methods, with average steady-state er-
rors consistently below 4%. Note that deadbeat control based
on Geyer’s approximations has identical performance to ours
in the absence of damping since steady-state locomotion
consists of symmetric steps for the lossless SLIP [35]. Nev-
ertheless, increasing amounts of damping result in substan-
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Fig. 8 Percentage steady-state errors in the norm of the non-
dimensional apex state vector for all three methods as a functionof
the damping ratioζ . Each data point represents the mean of all valid
simulations with the corresponding damping ratio. Standard deviation
bars are only shown for the proposed method for clarity.

tial deterioration of controllers based on both Geyer’s and
Schwind’s methods since the resulting energy losses domi-
nate the associated prediction errors.

6 Conclusion

In this paper, we introduced a simple yet accurate new an-
alytical approximation to the stance trajectories of a dissi-
pative Spring-Loaded Inverted Pendulum model with linear
leg compliance. Conservative versions of this model were
shown to be very successful in describing center of mass
motions of running animals with widely different sizes and
morphologies. However, existing literature on this model
almost universally excludes dissipative effects, and exclu-
sively focuses on symmetric steps that occur during loco-
motion at steady state. These two limitations substantially
impair their applicability in the design and control of legged
robots on rough terrain, where damping is inevitable and sig-
nificant, and non-symmetric steps are frequent.

We have presented extensive simulation results, cover-
ing a large range of operating conditions and parameter set-
tings within a dimensionless formulation to show that our
approximate map can provide extremely accurate estimates
for the trajectories of the dissipative SLIP model, with errors
that are consistently below 2% for all but the most extreme
conditions. Not only does our method far outperform avail-
able alternatives in the literature in the presence of damping
(with up to two orders of magnitude improvement in pre-
dictive accuracy), but it also shows improved performance
on the lossless SLIP model for non-symmetric steps thanks
to a novel gravity correction method also introduced in this
paper. Overall, the methods we present in this paper provide
the currently most accurate closed-form approximations to
the otherwise non-integrable trajectories of the dissipative
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SLIP model, whose importance in both the modeling and
control of legged locomotion has long been established.

In addition to our systematic characterization of the pre-
dictive performance of our approximations, we have also
demonstrated their utility in the context of a gait controller
for the dissipative SLIP model. The simple analytic form of
our approximations provide a very straightforward way in
which a deadbeat stride controller can be formulated, natu-
rally taking damping induced energy losses into account and
hence substantially improving on the performance of similar
control strategies in the literature. Once again, through asys-
tematic set of simulations, we show that the resulting feed-
back controller is capable of regulating gait parameters of
steady-state running with tracking errors consistently below
4%, almost an order of magnitude better than other methods
for a dissipative SLIP model.
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