
Integration of Local Geometry and Metric Information in
Sampling-Based Motion Planning

Vincent Pacelli1 and Omur Arslan2 and Daniel E. Koditschek2

Abstract— The efficiency of sampling-based motion planning
algorithms is dependent on how well a steering procedure is
capable of capturing both system dynamics and configuration
space geometry to connect sample configurations. This paper
considers how metrics describing local system dynamics may
be combined with convex subsets of the free space to describe
the local behavior of a steering function for sampling-based
planners. Subsequently, a framework for using these subsets to
extend the steering procedure to incorporate this information
is introduced. To demonstrate our framework, three specific
metrics are considered: the LQR cost-to-go function, a Gram
matrix derived from system linearization, and the Mahalanobis
distance of a linear-Gaussian system. Finally, numerical tests
are conducted for a second-order linear system, a kinematic
unicycle, and a linear-Gaussian system to demonstrate that
our framework increases the connectivity of sampling-based
planners and allows them to better explore the free space.

I. INTRODUCTION

Sampling-based planners, e.g. probabilistic roadmaps
(PRM) [1] and rapidly-exploring random trees (RRTs) [2],
have enjoyed wide success in motion planning literature
with application in a diverse range of systems including
automobiles [3], manipulators [4], and multi-agent aerial
systems [5]. The popularity of these algorithms is a con-
sequence of the fact that they are often probabilistically
complete even when the configuration space of a robot is
difficult to represent [2], [6]. However, the rate at which these
algorithms explore the free space depends on how well their
distance metrics—and the steering procedure they attempt to
describe—capture the true distance between configurations
[7]. Unfortunately, determining the shortest path between
configurations with respect to both dynamical and free space
constraints is often as difficult to compute as solving the
original path planning problem. As such, dynamical and
free space information are typically incorporated in separate
algorithmic steps. In this paper, we instead consider a frame-
work for supplementing steering procedures in sampling-
based planners to account for local properties of both the
configuration space and underlying dynamical system.

A. Motivation and Related Work

Traditionally, system dynamics is often incorporated into
a sampling-based planner by using a steering policy that

This work was supported in part by AFRL grant FA865015D1845
(subcontract 669737-1).

1Vincent Pacelli is with the Department of Mechanical and
Aerospace Engineering, Princeton University, Princeton, NJ 08544. E-mail:
vpacelli@princeton.edu

2Omur Arslan and Daniel E. Koditschek are with the Department of Elec-
trical and Systems Engineering, University of Pennsylvania, Philadelphia,
PA 19104, USA. E-mail: {omur,kod}@seas.upenn.edu

Fig. 1: (Left) An example of the generalized local workspace
LW(x;S, 1) (yellow) and free space LF(x;S, 1) (green) constructed
about x = [6.7 4.5]T (black circle) using the metric defined by S =
[0.0680 0.0854; 0.0854 0.1655]. The boundary of ellipsoid E(x;S, 1)
is shown in black. The workspace obstacles are shown in gray while the
metric projection computed using ‖ · ‖S onto each obstacle is shown
in red. (Right) The generalized local workspace / free space, workspace
obstacles, and metric projections under the transformation h(x) = S− 1

2 x.
The transformed generalized local free space is equivalent to the Euclidean
local free space computed with respect to the transformed obstacles.

also provides a notion of cost-to-go between states to use
as a metric. Two examples include, linear-quadratic regula-
tors [8]–[10] and control Lyapunov functions [11]. Another
approach taken in [12], [13], is to develop a statistical
model of a cost-to-go function, when not available explicitly
from a steering function, using example trajectories produced
offline. Such a cost-to-go function allows the motion planner
to estimate the geodesic distance between states and to
determine which state to expand at each iteration.

However, these metrics do not incorporate any information
about the free space geometry and do not offer any guidance
on how to steer a dynamical system to reflect it. Instead,
geometric information about configuration space obstacles is
primarily exploited in a global manner through modification
of the distribution used in the sampling step. For example,
in [14], the sample distribution was modified by replacing
samples in collision near the boundary of the free space with
nearby collision-free ones. Similarly, in [15], [16] sampling
was biased to occur more often in regions with a high ratio
of samples in and out of collision. Finally, [17] considers
midpoints between configurations that are deemed to not
be connected, thereby biasing the sample distribution in
obstacle dense regions. Overall, these global approaches are
not able to incorporate any local dynamical information and,
therefore, offer no guidance for local steering.

In contrast to these biased sampling approaches, a steering
procedure was considered in [18] that was defined in terms
of the Euclidean local free space to exploit local geometric
aspects of the free space. The local free space for a con-

figuration is a polytope defined by the set of maximum-
margin separating hyperplanes between the configuration
and each obstacle, and is a convex approximation of the
free space surrounding the configuration [19], [20]. The
planning algorithm then attempts to steer the system toward
the projected goal—the Euclidean projection of a sample
goal configuration onto the local free space—effectively
incorporating local geometry into the steering procedure.
However, when system dynamics are present, defining the
local free space in terms of the Euclidean distance is no
longer suitable because the shortest path length to the free
space boundary from a configuration will often be greater
than the Euclidean distance between the configuration and
the point of collision. This work is motivated by this fact
and attempts to combine local dynamics with local geometry,
through the local free space, in order to design effective
steering motion for dynamical systems.

B. Contributions and Organization

The contributions of this paper are threefold. First, we
propose a natural generalization of the definition of the local
free space used in [18]–[20]. Specifically, we relax the inner
product used in the definition of the local free space to
any inner product defined by a positive-definite matrix. The
specified inner product also induces a metric which is used
to incorporate local information. A simple framework is then
established that uses the generalized local free space to create
steering procedures that reflect both the local behavior of the
dynamical system and the local geometry of the free space.
Furthermore, we provide two example metrics from the
literature that describe the behavior of the dynamical system
locally: the cost-to-go function from an infinite-horizon LQR
policy [8] and the Mahalanobis distance for a linear-Gaussian
system [21]–[23]. We also introduce a novel metric based
on the Gram matrix formed by the linearized dynamics of
an autonomous system. Additionally, in the case of the Ma-
halanobis distance metric, we demonstrate that the steering
procedure provides bounds on the probability of collision
while following the planned trajectory. Finally, these steering
procedures are demonstrated to improve the connectivity of
a sampling-based planner for unicycle and linear-Gaussian
systems in numerical examples when compared to using the
local control policy directly without the local free space.

The rest of this paper is organized as follows. In Section II,
we provide an overview of the RRT algorithm, which is used
as the sampling-based motion planner in our numerical sim-
ulations in Section V. In Section III, we formally introduce
a new notion of generalized local free space and state its
properties. Then, in Section IV we present example metrics
for describing the local behaviour of dynamical systems.

II. BACKGROUND:
RAPIDLY-EXPLORING RANDOM TREES

The rapidly-exploring random tree (RRT) algorithm is
a common sampling-based planner. It can be applied re-
gardless of whether the robot is modeled as a discrete-
time system xt+1 = f(xt, ut) or a continuous-time system

ẋ(t) = f(x(t),u(t)) and is defined in terms of the following
functions

1) x = Sample(C) randomly samples independent, iden-
tically distributed configurations from the compact set
C. While sampling may be biased toward certain re-
gions of interest, e.g. [14]–[17], all examples presented
in this paper are based on uniform sampling.

2) d = Dist(x1, x2) returns an estimate of the geodesic
distance between configurations x1 and x2. Since com-
puting the exact geodesic distance between configura-
tions can be challenging, this function often encodes
some notion of an approximate “cost-to-go” value
related to how a chosen local controller steers the
system from x1 to x2 [8], [10], [11]. It is not required
that Dist be a proper metric because, when dynamical
constraints are considered, the geodesic distance from
x1 to x2 is not necessarily the same as from x2 to x1.

3) x? = NearestNeighbor(x,X) produces the clos-
est member of the finite set X to x, i.e. if X =
{x1, . . . , xm}, then x?= min

i=1,...,m
Dist(x, xi) is returned.

4) T = Steer(x1, x2) computes a finite-time segment of
the trajectory that results from applying a local control
policy on the system from x1 toward x2. It is not
required that the trajectory segment terminates at x2.
The set of states, denoted as T, traversed by the system
over the finite-time horizon is returned. The final state
in the trajectory segment is denoted by T(end).

5) CollisionFree(T,C) determines whether or not
the trajectory T, produced by Steer, is collision-
free with regard to the free space C. How “collision-
free” is defined depends on the robot model under
consideration. In the three examples considered in
this paper, specific definitions of this function will
be provided. If T is collision-free, then the function
returns true otherwise it returns false.

Algorithm 1 describes how to construct an RRT over
the robot’s configuration space C, which is assumed to be
compact. The algorithm approximates the connectivity of
the free space C by growing a tree, represented as graph
G = (X,E), over a finite number of iterations K ∈ N+.
At each step, a new configuration is sampled from the free
space and an attempt is made to connect it to the tree via
the closest member of X as measured by Dist. If Steer
produces a trajectory, T, that is collision-free, then the final
configuration of the trajectory, T(end), is added to the tree.

The probabilistic completeness of this algorithm largely
depends on the chosen Steer procedure for the underlying
system dynamics. Some situations where the algorithm is
not complete are examined in [24]. In [2], the algorithm is
demonstrated to be complete when Steer samples from a
finite set of control actions. In an unconstrained kinematic
setting, a basic condition for completeness is presented in [1].
In [6], a sufficient condition of weak local controllability is
established for general nonlinear systems. Informally, weak
local controllability means that the steering procedure is able
to connect configurations that are close together. The steering

Algorithm 1: Rapidly-Exploring Random Tree (RRT) [2]
Input: x0 ∈ C,K ∈ N+

Output: G = (V,E)
1 V← {x0},E← ∅;
2 for i = 1, . . . ,K do
3 xrand ← Sample(F);
4 xnear ← NearestNeighbor(xrand, V);
5 T ← Steer(xnear, xrand);
6 if CollisionFree(T,F) then
7 V← V ∪ {T(end)};
8 E← E ∪

{(
xnear,T(end)

)}
;

9 end
10 end

procedure we introduce in Section III maintains this local
controllability property as our framework only modifies a
given steering policy when the goal configuration is far away.

The emphasis of this paper is how a given Steer
function can be modified to simultanously incorporate both
local geometric and dynamical information. It will then be
demonstrated experimentally that the new steering procedure
will increase the connectivity of the RRT algorithm. The
framework we introduce will also be applicable to other
sampling-based algorithms, such as the probabilistically op-
timal RRT* and the PRM (through the formulation in [18])
algorithms, that do not make additional assumptions on the
properties of the Steer procedure.

III. GENERALIZED LOCAL FREE SPACE STEERING

We now discuss how the concept of the local free space
can be generalized from the definitions used in [18]–[20]
to incorporate additional local information measured by a
metric and discuss how this new construct can be used to
define a Steer procedure that reflects both this metric and
local workspace geometry.

A. Generalized Local Free Space

Consider a compact configuration space C ⊂ Rn pop-
ulated with a finite family of closed, convex obstacles
O1, . . . ,OM ⊂ Rn, i.e. C = Rn\

⋃M
i=1 Oi.

1 For a robot
configuration x ∈ C, with a spherical safety zone of radius
r > 0 around it, the Euclidean local work space [19], [20]
is defined as

LW(x; r) :=
{

x′
∣∣∣ nT

i

(
x′ − (mi + rni)

)
≤ 0, ∀i

}
, (1)

si = ΠOi(x), mi =
x + si

2
, ni =

si − x

2‖si − x‖2
,

where ΠA(x) = arg miny∈A ‖x−y‖2 is the metric projection
of x onto the closed convex set A. The set LW(x; r)
is a polytope contained in C whose faces are defined by
the maximum-margin separating hyperplane between each

1It is a common practice to represent obstacles as a union of convex
polytopes because the surface features that define the closest point between
convex polytopes persist under small perturbations and so the closest point
between convex polytopes can be computed incrementally [25].

Fig. 2: (Upper Left) The generalized local workspace and
free space for a point robot at x = [5.7, 2.5]T with
S = [0.1367, −0.0963; −0.0963, 0.0968]. (Right) Level sets of
the metric centered at x (green dot) in the configuration space. The
boundary of each halfspace constraint lies tangent to a level set. Due to
the alignment of these level sets, the projection of x onto the obstacles
produces points within the narrow passage in the lower right. This behavior,
in conjunction with the rotation of each constraint to align with the level
sets of ‖ · ‖S, causes the generalized local free space to extend more into
the passage than its Euclidean counterpart (Bottom).3

obstacle and the open ball B(x; r) centered at x with radius
r. Additionally, the Euclidean local free space LF(x; r) is
defined to be the set of configurations in LW(x; r) at least a
distance of r away from the free space boundary [19], [20]:

LF(x; r) := LW(x; r)\
(
∂LW(x; r)⊕B(0; r)

)
, (2)

=
{

x′
∣∣∣ ni

T
(
x′−

(
mi−rni

))
≤ 0, ∀i

}
, (3)

where ∂A is the boundary of A and ⊕ is the Minkowski sum.
A natural property of LF(x; r) is that for x′ ∈ LF(x; r),
B(x′; r) is collision-free, i.e. B(x′; r) ⊂ C [19], [20].

Since (si−x) is normal to a face of LF(x; r), this halfspace
primarily limits motion from x in the direction that produces
the shortest path to collision with Oi as measured by ‖ · ‖2.
However, when the system is subject to dynamical con-
straints, the closest point on an obstacle to x in terms of the
geodesic distance may not be the same as the closest point
on the obstacle as measured by ‖·‖2. This fact motivates the
consideration of a wider class of metrics for construction of
LW(x; r) and LF(x; r) than the Euclidean distance. To this
end, we define the generalized local work space to be

LW(x; S, r) :=
{

x′
∣∣∣− ni

TS−1
(
x′−(mi+rni)

)
≤0, ∀i

}
, (4)

si = ΠOi
(x; S), mi =

x + si
2

, ni =
si − x

2‖si − x‖S
,

where S ∈ Sn++ (the set of positive-definite matrices),
ΠOi

(x; S) = arg miny∈A ‖x− y‖S, and ‖x‖S =
√

xTS−1x.
This definition replaces the Euclidean inner product yTx and
norm with the inner product yTS−1x and its induced norm.

Similarly, we define the generalized local free space to be

LF(x; S, r) := LW(x; r)\
(
∂LW(x; S, r)⊕ E(0; S, r)

)
, (5)

=
{

x′
∣∣∣− ni

TS−1
(
x′−(mi−rni)

)
≤0 ∀i

}
, (6)

where E(x; S, r) =
{

x′
∣∣‖x′ − x‖S < r

}
. Note that

LF(x; S, 0) = LW(x; S, 0).
There are multiple ways to interpret these generalizations.

Under this construction, each halfspace constraint limits
the robot’s motion from x most in directions that might
produce a collision for the robot, with a ellipsoidal safety
zone E(x; S, r), most quickly with its defining obstacle as
measured by ‖ · ‖S. Alternatively, these generalizations may
be interpreted as a change of coordinates via an affine
transformation as summarized in the following lemma.
Lemma 1. For obstacle sets O1, . . . ,OM , the general-
ized local workspace h (LF(x; S, r)) about x is equal to
LF(h(x); r), where h(x) = S−

1
2 x + g, g ∈ Rn, and

LF(h(x); r) is computed in a transformed environment
whose obstacles are h(O1), . . . , h(OM), the image of each
obstacle through h, as illustrated in Figure 1.2

Proof. Since S ∈ Sn++, a positive-definite choice of S−
1
2

exists and is given by U
(
diag(1√

σ1
, . . . , 1√

σn
)
)
UT where

U
(
diag(σ1, . . . , σn)

)
UT is the singular-value decomposi-

tion of S. Next, some consequences of the linearity of S−
1
2

are the identities

ΠA(x; S) = h−1
(
Πh(A)(h(x))

)
, (7)

h(x)− h(x′) = S−
1
2 (x− x′), (8)

h(x) + h(y)

2
= h

(
x + x′

2

)
. (9)

Plugging each of these into the definition of LF(h(x); r)
computed with respect to obstacles h(O1), . . . , h(OM) will
produce h(LF(x; S, r)).

A consequence of this perspective is that properties proved
for LF(x; r) that are preserved under an affine transforma-
tion of the space can typically be extended to LF(x; S, r).
One example is that LF(x; S, r) defines a safe zone, at any
collision free x ∈ C, for a robot with a ellipsoidal safety
constraint E(x; S, r) ⊂ C.
Theorem 2. Let x ∈ Rn. Then, E(x; S, r) ⊂ C if and only
if LF(x; S, r) 6= ∅.

Proof. The forward direction follows from the fact that if
E(x; S, r) ⊂ C, then E(x; S, r) ∩ Oi = ∅ ∀i and therefore
a separating hyperplane exists between E(x; S, r) and each
Oi due to the convexity of both objects [26]. The reverse
direction is a consequence of the fact that a LF(x; S, r)
being nonempty means there exists a separating hyperplane
between E(x; S, r) and each obstacle Oi and therefore
E(x; S, r) ∩ Oi = ∅, which implies E(x; S, r) ⊂ C.

2In general S
1
2 is not a unique matrix and, for S ∈ Sn++, not

all choices of S
1
2 may be symmetric. One choice of S

1
2 is S

1
2 =

U
(
diag(

√
σ1, . . . ,

√
σn)

)
UT where U

(
diag(σ1, . . . , σn)

)
UT is the

singular-value decomposition of S.

Finally, the following proposition highlights the fact that
LF(x; S, r) only contains configurations that do not violate
the ellipsoidal safety constraint.

Proposition 3. For any x′ ∈ LF(x; S, r), E(x′; S, r) ⊂W.

Proof. This statement is true due to the facts that LF(x; S, r)
for obstacles O1, . . . ,OM is equivalent to LW(x; S, 0)
for obstacles E(0; S, r) ⊕ O1, . . . ,E(0; S, r) ⊕ OM , that
LW(x; S, 0) = LF(x; S, 0), and that LW(x; S, 0) ⊂W.

B. Steering Using Local Free Space
We are now ready to state the chief focus of this work.

Namely, a simple framework for incorporating local informa-
tion provided by a quadratic metric and the local geometric
structure of the configuration space into a generic steering
function. For a given steering procedure Steer(x1, x2), we
define the new steering procedure

GLFSteer(x1, x2) = Steer
(
x1,ΠLF(x1;S,r)(x2)

)
, (10)

where S defines a locally informative metric. This new
procedure uses the given Steer procedure to drive the
system toward the projection of x2 onto the local free space
computed about x1 instead of x2 directly. As is demonstrated
in Figure 2, the halfspace constraints defining LF(x; S, r)
are rotated to align with the level sets of ‖ · ‖S. As a
result, projecting x2 onto LF(x; S, r) naturally encourages
steering of the system in directions of low cost as measured
by ‖ · ‖S. Moreover, because the halfspace constraints are
designed to limit motion in the direction of the shortest path
of collision of each obstacle as measured by ‖ · ‖S, the
projection favors expansion into areas that do not as readily
produce collisions.

IV. EXAMPLE LOCAL METRICS

In this section, we present three choices of S to use in con-
struction of the generalized local free space: the LQR cost-to-
go function, a metric derived from the linearized dynamics of
a nonlinear system, and the Mahalanobis measuring uncer-
tainty in the context of linear-Gaussian dynamical system.
We briefly remark that the Euclidean local free space and
Euclidean local workspace are equivalent to their generalized
counterparts when S = I.

A. LQR Cost-to-Go Metric
In [8], [9] , the LQR cost-to-go function was used to define

a local metric, Dist. This metric is shown to be effective
because it accurately encapsulates the geodesic distance for a
linear system and, through linearization, can locally estimate
the geodesic distance of a nonlinear dynamical system when
the infinite-horizon LQR control policy is used for steering.

Specifically, consider a robot modeled by a continuous-
time linear system of the form

ẋ(t) = Ax(t) + Bu(t), (11)

the control policy u(x) that minimizes the cost functional

J(x(t)) =

∫ ∞
t0

x(t)
T
Qx(t) + u(t)

T
Ru(t), (12)

over the time horizon t ∈ [t0,∞) with Q,R ∈ Sn++ can be
computed exactly. This policy has the form u(x) = −Kx
where K = R−1BS and S is the solution to the continuous
algebraic Riccati equation (CARE) [27]

ATS + SA− SBR−1BT + Q = 0 (13)

When (11) is controllable [28], the CARE may be solved
efficiently through numerical methods [27]. The function
V (x) = xTSx is the LQR cost-to-go function and describes
the value of J(x(t)) computed for the system in (11) with
initial condition x0. It also serves as a Lyapunov function
for the closed-loop system.

The infinite-horizon LQR can be used to define a steering
procedure Steer(x1, x2) by integrating (11), with initial
condition x1 and control policy u(t) = −K(x(t) − xd)
over a finite time interval. When this steering policy is used,
V (x2−x1) = ‖x2−x1‖S−1 defines a natural choice of local
metric due to its quadratic form and direct relationship to
the local control policy used to steer the system.

B. Gram Metric Constructed via System Linearization

A limitation of the LQR cost-to-go as a local metric is
that common robot models, such as the unicycle dynamical
system described in Section V, are not controllable when
linearized. As a result, the CARE in (13) may not have
a solution [27]. Therefore, we propose an alternative local
metric based on the Gram matrix of the linearization of a
dynamical system.

Let the dynamics for a point robot be modeled by the gen-
eral nonlinear system ẋ(t) = f(x(t),u(t)) and assume that
the feedback policy u(x) provided. Then, the autonomous
system ẋ(t) = f(x(t)) = f(x(t),u(t)) may be linearized at
a state x0 to produce the linear system

ẋ(t) ≈ ∂f(x0)

∂x︸ ︷︷ ︸
A

x(t) + f(x0)− ∂f(x0)

∂x
x0︸ ︷︷ ︸

b

(14)

= Ax(t) + b (15)

where ∂f(x0)
∂x is the Jacobian of f(x) evaluated at x0. The

matrix A is often full rank and, when it is, Ax(t)+b is of the
form of h(x) in Lemma 1. This structure suggests the choice
of S = (ATA)

−1. The affine term is dropped because the
purpose of ‖ · ‖S is to quantify how the dynamical system is
evolving locally whereas the affine term represents a global
property (with respect to this particular linearization) and
does not vary with x.

However, the choice of S = (ATA)
−1 induces a metric

which behaves like similarity measure while our convention
requires S to induce a dissimilarity measure. Specifically,
the metric will increase rapidly in directions that the system
evolves in locally. However, we would like ΠA(x; S) to
return the point in A closest to x in terms of the geodesic
distance. Therefore, we instead choose the metric defined by
the Gram matrix S = ATA, which will interpret points in
the direction the system is evolving as closer than those in
the orthogonal directions.

C. Mahalanobis Metric over Belief Space
Another common setting in motion planning literature is

the belief space. In belief space planning, the algorithm
reasons over distributions of states defined by a stochastic
process instead of individual trajectories. For arbitrary dy-
namical systems with a continuous state space, these distri-
butions are not tractably representable. A notable exception
is the linear-Gaussian system [21], [23], [29], [30]

xt+1 = Axt + But + wt, wt ∼ N(0,Wt),

yt = Cxt + vt, vt ∼ N(0,Vt),
(16)

with x0 ∼ N(x̄0,Σ0), where N(x̄,Σ) is the multivariate
Gaussian distribution with mean x̄ and covariance Σ. Due
to the linear dynamics and measurement model, at any time
step t, the distribution of the system is N(x̄t,Σt) where

x̄t+1 = Ax̄t + But, Σt+1|t = AΣtA
T + Wt (17)

Σt+1 = Σt+1|t−Σt+1|tC
T(CΣt+1|tC

T+Vt)
−1

CΣt+1|t

is derived from the Kalman dynamics [31]. Here, Σt+1|t
represents the dynamical uncertainty prior to the arrival of
the measurement yt while Σt is the uncertainty of the system
after processing yt. The belief state of the system at time step
t is defined to be bt = (x̄t,Σt).

In this setting, the planner’s goal is to produce a fi-
nite trajectory (x̄1,Σ1), . . . , (x̄T ,ΣT) such that xt|t−1 ∼
N(x̄t,Σt|t−1) is collision-free with some probability δ, i.e.,

Pr{xt|t−1 6∈ Oi} ≥ δ, ∀ i = 1, . . . ,M. (18)

For example, in [21], a belief space variant of the RRT
algorithm is presented. An alternative approach is used
in [30], where a trajectory is computed for a noiseless
system using an RRT, and then modified afterward using an
iterative optimization procedure to incorporate belief space
constraints such as probability of collision.

Due to the computational difficulty of integrating the
multivariate Gaussian distribution over obstacle sets, conser-
vative approximations are typically used to guarantee (18).
A common approximation is to ensure that the confidence
region [32] lies entirely within the configuration space [21],
[23]. A confidence region of a distribution with mean x̄t and
covariance Σt is of the form

Eδ(bt) =
{

x
∣∣∣ (x− x̄t)

T
(γΣt)

−1
(x− x̄t) ≤ 1

}
, (19)

where γ = χ−1n (δ) and χn(·) is the cumulative distribution
function of the chi-squared distribution with n degrees of
freedom and is constructed such that Pr{xt ∈ Eδ(bt)} = δ.

A natural choice of S in this context is γΣt|t−1. When S
represents a covariance, ‖ · ‖S is typically referred to as the
Mahalanobis distance. This choice of S confers two benefits.
First, ‖ · ‖Σt|t−1

is weighted to increase in directions of high
variance—and therefore high uncertainty—thereby favoring
motion in directions in which motion is more certain. Second,
the local free space can be used to enforce the chance of
collision constraint (18) via the following proposition
Proposition 4. For any belief state bt = (x̄t,Σt), if x̄t+1 ∈
LF(x̄t; Σt+1|t,

√
γ) then Pr{xt+1 6∈ Oi} ≥ δ for all i.

Proof. The results follows from the definition of the con-
fidence interval, and Proposition 3 and the facts that
LF(x̄t; Σt|t+1,

√
γ) is a generalized local free space, and

that Eδ
(
(xt,Σt+1|t)

)
= E(x̄t+1,Σt|t+1).

If the steering procedure is chosen such that Proposition 4
holds, then the chance-of-collision constraint in (18) is
actively enforced during planning.

V. NUMERICAL SIMULATIONS

We now demonstrate the efficacy of the framework pro-
posed in Section III through a series of numerical simulations
of the RRT algorithm described in Section II using each of
the metrics described in Section IV.

A. Double Integrator System

We first consider the cont.-time double integrator system[
ṗ(t)
p̈(t)

]
︸ ︷︷ ︸

ẋ(t)

=

[
0 I
0 0

] [
p(t)
ṗ(t)

]
︸ ︷︷ ︸

x(t)

+

[
0
I

]
u(t), (20)

which is a common benchmark in motion-planning literature
[6], [10]. Here, configuration space constraints are only
checked with regard to the position variables p(t) and
not velocity variables ṗ(t), i.e. CheckCollision(T,C)
returns true if and only if p(t) ∈ C for all t in the finite
time horizon. To highlight the impact of the different steering
functions, Dist(x1, x2) = ‖x1 − x2‖2 is used for all trials.
As suggested in Section IV-A, the function Steer(x1, x2)
integrates (20) over a finite-time horizon using the infinite-
horizon LQR control policy to steer from x1 to x2. In addi-
tion, the steering policy will also terminate before the end of
the time horizon if the trajectory leaves the ball B(x1, rmax)
(for a choice of rmax) and returns the trajectory segment
computed up to that point. This condition regularizes the
length of trajectory computed at each step and improves
the performance of the planner because long trajectories are
likely to intersect obstacles in cluttered environments.

Simulation parameters and results are presented in Fig-
ure 3. The matrix Q was chosen so that level sets of the
LQR cost-to-go function were ellipsoidal and not spherical
for this demonstration. The original steering procedure by
itself is only able to explore roughly half of the space
before the planner terminates with |V| = 465 vertices. The
steering based on the Euclidean local free space offers some
improvement and allows the planner to explore roughly a
third of the space and terminates with |V| = 668 vertices. .
Finally, The generalized local free space steering, using both
the LQR cost-to-go metric and linearization Gram matrix,
allow the system to fully explore the space. The former
spends more iterations exploring the lower right quadrant and
terminates with |V| = 688 vertices while the latter focuses
on the upper left quadrant.

B. Kinematic Unicycle System

A second commonly use example in the literature is the
kinematic unicycle system [11], [21], [33] with nonlinear
dynamics

ẋ(t)=

v(t) cos θ
v(t) sin θ
ω(t)

︸ ︷︷ ︸
f(x(t),u(t))

, x(t)=

x(t)
y(t)
θ(t)

 , u(t)=

[
v(t)
ω(t)

]
. (21)

The robot is assumed to be a point robot. This system is
underactuated and therefore not controllable when linearized.
As a result, the infinite-horizon LQR steering policy and
cost-to-go metric cannot be used for this system. The same
definitions for Dist and CollisionFree are used in this
setting as in the previous example. Steering is done by sam-
pling a point xd = [xd yd]

T in the workspace (as opposed
to a full configuration, which includes an orientation) and
applying the following feedback control policy [19]

u(x,d) =

[
(x− xd) cos(θ) + (y − yd) sin(θ)

atan
(
−(x−xd) sin(θ)+(y−yd) cos(θ)
(x−xd) cos(θ)+(y−yd) sin(θ)

)] (22)

for a finite time horizon. We here use the same regularization
method to limit the length of a steering trajectory as in the
previous example.

The parameters and the results for experiments using this
model are shown in Figure 4. The original steering procedure
by itself is unable to explore the right half of the environment
before terminating with |V| = 285 vertices. The use of the
Euclidean local free space managed to increase the number
of vertices to |V| = 681, but is still not able to traverse
the narrow passage in the middle of the workspace. Finally,
while the use of the metric linearization Gram matrix only
increased the number of vertices in the final graph to |V| =
718, the planner is able to traverse the central passage and
fully explore the space.

C. Linear-Gaussian System

Finally, we consider the linear-Gaussian system

xt+1 = xt + ut + wt, wt ∼ N(0,Wt),

yt = xt + vt, vt ∼ N(0,Vt),
(23)

in a light-dark domain [8], [30], [34] . In this scenario, the
covariance of the process noise Wt is set to a fixed value
W and the measurement covariance Vt is a function of xt.
Specifically, we consider a measurement covariance function
V(x) = σ(x)I, where

σ(x) = 0.005 min

(∥∥∥∥x−
[
1
9

] ∥∥∥∥2
2

,

∥∥∥∥x−
[
9
1

] ∥∥∥∥2
2

)
. (24)

Again, Dist(x1, x2) = ‖x1 − x2‖2. The function
CollisionFree(T,F) is defined to be the following for
the finite trajectory of states T = {x̄1, . . . , x̄p}

p∧
i=2

(
Line(x̄i−1, x̄i)⊕ Eδ

(
(0,Σi|i−1)

)
⊂W

)
(25)

where Line(x1, x2) = {αx1 + (1 − α)x2 | α ∈ [0, 1]} and
Σi|i−1 is defined in (17). This procedure verifies that the
chance-of-collision constraint holds at any intermediate point

(a) (b) (c) (d)
Fig. 3: RRTs produced using different steering procedures for the double integrator system. Parameters used are: K = 1000, rmax = 1,Q =
diag(2, 1, 1, 1),R = I, x0 = [1 1 0 0]T. States were sampled from the domain [0, 10] × [0, 10] × [−1, 1] × [−1, 1]. From left to right, the steering
procedures used were: (a) the unaltered Steer procedure, (b) GLFSteer using the Euclidean metric, (c) GLFSteer using the LQR cost-to-go metric,
and (d) GLFSteer using the linearized dynamics Gram matrix.3

(a) (b) (c)
Fig. 4: RRTs (blue) produced using different steering procedures for the kinematic unicycle system. Parameters used were: x0 = [1 1 0]T,K =
1500, rmax = 1. From left to right, the steering procedures used were: (a) the unaltered Steer procedure, (b) GLFSteer using the Euclidean metric,
and (c) GLFSteer using the linearized dynamics Gram matrix.3

between xi−1 and xi with respect to the process covariance
of the system so that it cannot “skip” over obstacles.

The Steer(xt, x) is computed by solving the linearly
constrained convex quadratic optimization problem

minimize
u

(xt+1 − x)
T

(xt+1 − x) + uTu (26)

subject to xt+1 = xt + u, xt+1 ∈ LF(xt,Σt+1|t)

If this program is feasible, it guarantees the chance-of-
collision constraint defined by CollisionFree is upheld.
When it is infeasible, then it is treated as a collision. In a
similar manner to the previous examples, if ‖u‖2 > rmax,
its magnitude is reduced such that ‖u‖2 = rmax.

The simulation parameters and results for this example are
summarized in Figure 5. When steering without a local free
space, the planner is unable to leave the upper-left quadrant
and terminates with only |V| = 65 vertices. Meanwhile,
when the generalized local free space computed using the
process covariance Σt|t−1 is used, the planner explores all
quadrants and terminates with |V| = 301 vertices.

VI. CONCLUSION

In this paper, we introduced a framework for incorporating
local dynamical and geometric information into steering
procedures for sampling-based planners. Our methodology

generalizes the concept of the local free space used in [18]–
[20] to allow the specification of different inner products.
These inner products induce norms that locally represent in-
formative metrics about the dynamical nature of the system.
Furthermore, we discuss three examples of such metric—
the LQR cost-to-go function, a novel metric derived from
the Gram matrix of a linearized autonomous system, and the
Mahalanobis distance for a linear-Gaussian system. Finally,
the efficacy of the steering framework is demonstrated in
numerical examples in different dynamical settings.

We conclude with some potential extensions of this work.
A key assumption of this paper is that obstacle sets are
explicitly representable in terms of robot states so that the
maximum-margin separating hyperplane between a config-
uration and obstacle may be computed. However, these
representations are not possible for a number of robots, such
as manipulators. One future direction is to explore how the
ideas presented here can be adapted to such a setting.

A second extension in the same vein is to determine
how a local metric can be approximated when it is not
a quadratic form. Many cost-to-go functions for nonlinear
systems are not available as simple quadratic functions [11],

3Please see the accompanying video for an animated demonstration.

(a) (b) (c) (d)
Fig. 5: RRTs (red) produced using different steering procedures for the linear-Gaussian system in a light-dark domain. Parameters used are: x0 =
[1 1 0 0]T,K = 1000, rmax = 1,Q = I,R = I, γ = 0.95. Figure (a) was steered using the unaltered Steer procedure while Figure (c) was steered
using GLFSteer with the Mahalanobis distance metric. Figures (b) and (d) show the confidence region of each vertex as well. Regions of the workspace
with low measurement covariances are white while dark regions represent states with high measurement covariances.3

[33]. Determining how more general metrics may be used
to construct local free spaces will create steering procedures
that are even more capable of exploiting local information.

REFERENCES

[1] L. E. Kavraki, M. N. Kolountzakis, and J. C. Latombe, “Analysis
of probabilistic roadmaps for path planning,” IEEE Transactions on
Robotics and Automation, vol. 14, no. 1, pp. 166–171, 1998.

[2] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, 2001.

[3] P. Cheng, Z. Shen, and S. La Valle, “RRT-based trajectory design
for autonomous automobiles and spacecraft,” Archives of Control
Sciences, vol. 11, no. 3/4, pp. 167–194, 2001.

[4] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. J. Kuffner,
“Manipulation planning with workspace goal regions,” in IEEE Int.
Conf. on Robotics and Automation, 2009, pp. 618–624.

[5] M. Kothari, I. Postlethwaite, and D.-W. Gu, “Multi-UAV path planning
in obstacle rich environments using rapidly-exploring random trees,”
in IEEE Conf. Decision and Control, 2009, pp. 3069–3074.

[6] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” in IEEE Conference on
Decision and Control, 2010, pp. 7681–7687.

[7] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo,
“Choosing good distance metrics and local planners for probabilistic
roadmap methods,” in IEEE International Conference on Robotics and
Automation, vol. 1, 1998, pp. 630–637.

[8] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez,
“LQR-RRT*: Optimal sampling-based motion planning with automat-
ically derived extension heuristics,” in IEEE International Conference
on Robotics and Automation, 2012, pp. 2537–2542.

[9] E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic
for rapidly exploring state space,” in IEEE International Conference
on Robotics and Automation, 2010, pp. 5021–5028.

[10] D. J. Webb and J. van den Berg, “Kinodynamic RRT*: asymptotically
optimal motion planning for robots with linear dynamics,” in IEEE
Int. Conf. Robotics and Automation, 2013, pp. 5054–5061.

[11] J. J. Park and B. Kuipers, “Feedback motion planning via non-
holonomic RRT* for mobile robots,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2015, pp. 4035–4040.

[12] L. Palmieri and K. O. Arras, “Distance metric learning for RRT-based
motion planning with constant-time inference,” in IEEE International
Confeference on Robotics and Automation, 2015, pp. 637–643.

[13] M. Bharatheesha, W. Caarls, W. J. Wolfslag, and M. Wisse, “Distance
metric approximation for state-space RRTs using supervised learning,”
in IEEE/RSJ Int. Conf. on Intel. Robots and Systems, 2014, pp. 252–
257.

[14] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin,
“On finding narrow passages with probabilistic roadmap planners,” in
The Int. Workshop on the Algorithmic Foundations of Robotics, 1998.

[15] S. Rodriguez, S. Thomas, R. Pearce, and N. M. Amato, “Resampl: A
region-sensitive adaptive motion planner,” in Algorithmic Foundation
of Robotics VII. Springer, 2008, pp. 285–300.

[16] S. W. H. Wong and M. Jenkin, “Exploiting collision information in
probabilistic roadmap planning,” in IEEE International Conference on
Mechatronics, 2009, pp. 1–5.

[17] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling
narrow passages with probabilistic roadmap planners,” in IEEE Int.
Conf. Robot. Autom., vol. 3, 2003, pp. 4420–4426.

[18] O. Arslan, V. Pacelli, and D. E. Koditschek, “Sensory steering for
sampling-based motion planning,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, In Press.

[19] O. Arslan and D. E. Koditschek, “Exact robot navigation using
power diagrams,” in IEEE International Conference on Robotics and
Automation, 2016, pp. 1–8.

[20] ——, “Sensor-based reactive navigation in unknown convex sphere
worlds,” in The 12th International Workshop on the Algorithmic
Foundations of Robotics, 2016.

[21] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in IEEE International Conference on
Robotics and Automation, 2011, pp. 723–730.

[22] V. Indelman, L. Carlone, and F. Dellaert, “Planning in the continuous
domain: A generalized belief space approach for autonomous naviga-
tion in unknown environments,” The International Journal of Robotics
Research, vol. 34, no. 7, pp. 849–882, 2015.

[23] L. Blackmore and M. Ono, “Convex chance constrained predictive
control without sampling,” in AIAA Guidance, Navigation and Control
Conference, 2009, pp. 7–21.

[24] T. Kunz and M. Stilman, “Kinodynamic RRTs with fixed time step and
best-input extension are not probabilistically complete,” in Algorithmic
foundations of robotics XI. Springer, 2015, pp. 233–244.

[25] M. C. Lin and J. F. Canny, “A fast algorithm for incremental distance
calculation,” in IEEE Int. Conf. Robot. Autom., 1991, pp. 1008–1014.

[26] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[27] P. Lancaster and L. Rodman, Algebraic Riccati Equations. Clarendon
press, 1995.

[28] W. J. Rugh, Linear System Theory. Prentice Hall, 1996, vol. 2.
[29] M. P. Vitus and C. J. Tomlin, “Closed-loop belief space planning

for linear, Gaussian systems,” in IEEE International Conference on
Robotics and Automation, 2011, pp. 2152–2159.

[30] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under
uncertainty using iterative local optimization in belief space,” The
Inter. J. Robot. Res., vol. 31, no. 11, pp. 1263–1278, 2012.

[31] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal
Control. Springer Science & Business Media, 2012, vol. 1.

[32] J. Berger, “A robust generalized bayes estimator and confidence region
for a multivariate normal mean,” Ann. Stat., pp. 716–761, 1980.

[33] L. Palmieri and K. O. Arras, “A novel RRT extend function for efficient
and smooth mobile robot motion planning,” in IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, 2014, pp. 205–211.

[34] R. Platt Jr, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Be-
lief space planning assuming maximum likelihood observations,” in
Robotics: Science and Systems Conference, 2010.

	Introduction
	Motivation and Related Work
	Contributions and Organization

	Background:Rapidly-Exploring Random Trees
	Generalized Local Free Space Steering
	Generalized Local Free Space
	Steering Using Local Free Space

	Example Local Metrics
	LQR Cost-to-Go Metric
	Gram Metric Constructed via System Linearization
	Mahalanobis Metric over Belief Space

	Numerical Simulations
	Double Integrator System
	Kinematic Unicycle System
	Linear-Gaussian System

	Conclusion
	References

