

JOINT EXPLOITATION OF LOCAL METRICS AND GEOMETRY IN SAMPLING-BASED

PLANNING

Vincent Scott Pacelli

A THESIS

in

Robotics

Presented to the Faculties of the University of Pennsylvania in Partial
Fulfillment of the Requirements for the Degree of Master of Science in Engineering

2017

Daniel E. Koditschek
Supervisor of Thesis

Camillo J. Taylor
Program Director

Contents

1 Introduction 3

1.1 Contributions . 4

1.2 Organization . 5

2 Relevant Work 6

2.1 Sampling-Based Motion Planning . 6

2.2 Incorporating Geometric Information in Sampling-Based Planning . . 8

2.3 Incorporating Dynamics in Sampling-Based Planning 9

3 Background: Steering and Metrics in Sampling-Based Planning 12

3.1 Generic Sampling-Based Planning Algorithm Components 12

3.2 Linear-Quadratic Regulator Based Metric and Steering 13

3.2.1 LQR Formulation . 14

3.2.2 The Use of LQRs in Sampling-Based Planning 15

3.3 A Metric from Beliefspace Planning 17

3.4 Rapidly-Exploring Random Tree Algorithm 18

4 Generalized Local Freespaces 21

4.1 Local Freespace Construction with Generalized Metrics 21

4.2 Properties of Generalized Local Freespaces 24

4.3 Generalized Local Freespaces with Ellipsoidal Constraints 27

1

4.4 Examples Using Metrics from Literature 28

4.4.1 Incorporating System Dynamics via the LQR Metric 28

4.4.2 Incorporating Uncertainty via the Beliefspace Metric 30

5 Adaptive Steering Using Generalized Local Freespaces 36

5.1 Generalized Local Freespace Steering 36

5.2 Numerical Demonstrations in Sampling-Based Planners 38

6 Conclusion 45

6.1 Future Directions . 46

2

Chapter 1

Introduction

Recent advances in robotics have allowed autonomous systems to be deployed in

a diverse range of new settings from automobiles [1], to warehouses [2], to automated

delivery systems [3]. All of these systems require motion planning algorithms capable

of e�ciently producing safe trajectories in high-dimensional spaces to operate safely in

their dynamic environments. Motion planning is a fundamental challenge in robotics

and has received a large amount of attention over the past few decades. One class

of planner that has been very successful in recent years is sampling-based motion

planners. These probabilistic algorithms attempt to approximate the connectivity of

the underlying configuration space of the robot by developing a graph of randomly

sampled configurations whose edges correspond with the connectivity of the samples

in the underlying configuration space. Part of the success of these algorithms is that

they are able to function e�ciently even when obstacles in the robot workspace are

not easily representable in terms of robot states. Their appeal also stems from their

capability to handle dynamical constraints and motion uncertainty.

A key feature of sampling-based planners is their ability to incorporate informa-

tion about the underlying dynamical system through the use of metrics that reflect

properties of the underlying dynamical system. If made available, the algorithm will

3

naturally exploit the system dynamics to rapidly explore the space. Typically, the

best metric for a given dynamical system is one that reflects the true distance (or other

notion of “cost”) that must be traversed in order to reach a given state. However,

computing such a metric is often equivalent to solving the path-planning problem

itself, so a tractable – and often locally applicable – approximation is used instead.

Moreover, these metrics only reflect the system dynamics and not features of the

workspace in which the robot operates. This thesis will show how locally informative

metrics related to the robot’s dynamical model can be combined with local workspace

geometry to produce a sampling-based planner better captures the connectivity of the

configuration space under a fixed number of samples.

1.1 Contributions

This thesis addresses how the local geometry of the workspace around a system

state can be combined with local metrics describing system dynamics to improve the

connectivity of the graph produced by a sampling-based planner over a fixed number

of configurations. This development is achieved through generalization of the concept

of the local freespace introduced in [4] to inner products other than the Euclidean

inner product. This new structure allows for naturally combining the local freespace

construction with a locally applicable metric.

The combination of the local freespace with two specific metrics is explored in

this work. The first metric is the quadratic cost-to-go function definined by a linear-

quadratic regulator, which captures the local behavior of the dynamical system. The

second metric is the Mahalanobis distance for a beliefstate in a beliefspace planner.

Beliefspace planners reason over distributions of states, called beliefstates, to include

modeled uncertainty in the planning process. The Mahalanobis distances metric for a

given beliefstate can be exploited to include notions of risk in local freespace construc-

4

tion. Numerical simulations are provided to demonstrate the improved connectivity

of the graph generated by a sampling-based planner using these concepts.

1.2 Organization

The remainder of this thesis is organized as follows. In Chapter 2, related work

in sampling-based motion planning is summarized. Chapter 3 provides a brief de-

velopment of a generic sampling-based planner along with some specific steering and

distance functions from literature. Chapter 4 defines the notion of the generalized local

freespaces and demonstrates applicability to kinodynamic path planning and belief-

space planning. In Chapter 5, a steering procedure that uses the generalized local

freespace to exploit local information is defined. Numerical simulations demonstrat-

ing the e↵ectiveness of this procedure in sampling-based planners are also provided.

Finally, in Chapter 6, results are summarized and potential extensions are stated.

5

Chapter 2

Relevant Work

2.1 Sampling-Based Motion Planning

Due to their success, sampling-based motion planners and their variants have been

widely studied. While many variants have been considered by researchers, they tend

to fall into one of two classes: Probabilistic Road Maps (PRMs) [5] and rapidly-

exploring random trees (RRTs) [6]. Both styles of planner have seen successful appli-

cation to a wide number of areas including, deformable robotics [7], multi-agent UAV

systems [8], spacecraft [9], and manipulators and other high-dimensional systems [10].

Both of these algorithms are probabilistically complete, i.e. they will find a solution

trajectory with a probability of one as the number samples goes to infinity [11]. A for-

mal descriptions of an RRT style planner is given Chapter 3 for reference throughout

the paper.

The goal of a PRM algorithm is to produce a roadmap, i.e. a graph of configura-

tions with edges representing known safe connections, that can be queried repeatedly

using e�cient graph-search algorithms when the robot needs to reach a di↵erent re-

gion of the workspace. This is done by first sampling some number of configurations

from the configuration space and treating these as vertices. Then, a graph is built

6

by checking pairwise whether one vertex can be reached from another and adding an

edge to the graph if so. Originally, the check for reachability was posed as a simple

line-of-sight check, but many alternatives have been considered and are discussed in

Section 2.2.

Since their output is intended for repeated use, these algorithms are typically not

run online, and variants, for example [12], often introduce computationally expensive

procedures (in [12], Monte-Carlo sampling) to produce trajectories with additional

properties that can be e�ciently queried online. Since a roadmap can be slow to

produce, they are most e↵ective in highly structured environments with fixed obstacles

like a warehouse or factory.

In contrast, the RRT family of algorithms emphasizes building a single trajectory

that navigates the robot towards a goal. Often, in highly dynamic environments,

RRT-style algorithms are repeatedly run in an closed-loop online to account for mov-

ing obstacles and tracking error [1]. As such, special attention has been paid to

the application of RRT planning to systems with complicated dynamics in both the

extension [13–15] and sampling step [16].

The RRT works by sequentially sampling random configurations, identifying the

nearest configuration currently in the tree, and checking if the robot can be moved

a fixed distance toward the sample (or to the sample directly if it is close enough)

without colliding with the environmental clutter. It is important to note that, the

RRT algorithm is not optimal in the presence of a cost function [11]. However,

there does exist a popular variant known as RRT* that does guarantee optimality by

locally rewiring the graph locally around new vertices as they are added to enforce

optimality [11].

7

2.2 Incorporating Geometric Information in Sampling-

Based Planning

A fundamental challenge faced by sampling-based planners is the “narrow corri-

dor” problem. While probabilistic completeness of the RRT and PRM algorithms

guarantees that with enough samples a path will be found to the goal, common

pathological environments exist that require prohibitively large numbers of samples

to identify such a trajectory. One such instance is when the environment features

long, narrow corridors [17, 18]. This problem is partially explained by the fact that

uniform sampling strategies combined with straight-line local planning, as originally

posed for both the RRT and PRM algorithms, have a distinct Voronoi bias [13]. Thus,

sampling in this manner will explore large, open regions of the workspace faster than

small, narrow ones. A wide body of literature has been dedicated to overcoming

this challenge by incorporating geometric information into either the sampling step

or steering step of the algorithm. This section will briefly review methods for doing

both.

Many methods have been considered to construct a sampling distribution that

reflects the workspace geometry. In [17], the freespace was “dilated” to allow pen-

etration of a PRM partially into obstacle regions. After constructing a PRM with

uniform sampling in this modified environment, vertices of the graph that lay within

obstacles were removed and replaced with vertices sampled from the neighborhood

of the o↵ending vertex. In [19], uniform sampling was replaced with sampling from a

mixture of Gaussian distributions centered on obstacles, therefore biasing the planner

toward cluttered regions of the space. A similar method was used in [20, 21], where

regions containing high quantities of samples both in and out of collision are favored

during sampling. Finally, in [22], if there is no line-of-sight between two vertices,

the midpoint between the vertices is also tested and added to the graph if it lies in

8

the freespace. This modification e↵ectively biases sampling to be heavier in obstacle

dense regions.

Many researchers have also studied more flexible ways to determine whether a

connection should be made between two states than a simple line-of-sight test – thus

incorporating geometry into the local planning step. For example, [23] combined

PRM and RRT planning by spawning RRTs from vertices in the PRM that have few

connections to other vertices. The vertices from the RRT were then added to the

PRM after a stopping condition was reached. A similar approach was used in [24],

except RRTs were used to connect all vertices in the PRM, resulting in fewer necessary

PRM vertices. Other researchers have considered using searched-based local planners

to connect configurations. In [25, 26], the configuration space is discretized and a

local A* search is performed in an attempt to find a connection to a nearby node.

In [27] the result of an initial any-angle search of the configuration space was used to

bias the expansion of an RRT toward the goal while maintaining dynamic feasibility.

Finally, in [4,28,29], a local subset of the freespace was built around each configuration

out of maximum-margin separating hyperplanes between the configuration and each

obstacle. This structure reflects the local geometry of the workspace, and steering

was done by adding the closest point within the constructed polytope to sampled

configuration to the graph.

2.3 Incorporating Dynamics in Sampling-Based Plan-

ning

Much attention has been paid to incorporating dynamical constraints into sampling-

based planning algorithms. Typically, kinodynamic sampling-based planners di↵er

from purely kinematic planners in that the local steering procedure must satisfy dif-

ferential constraints and the local metric used to identify nearby tree vertices reflects

9

(or attempts to approximate) the true cost-to-go between states. In [13], the proba-

bilistic completeness of a kinodynamic RRT planner was proved for finite input spaces.

This algorithm was refined in [30] to be both asymptotically optimal and complete

for continuous input spaces provided that the system is locally controllable. However,

merely selecting a control input that drives the system closest to a new sample will

not always produce a complete planning algorithm [31].

Many steering procedures have been proposed for sampling-based kinodynamic

planning. For common systems, domain knowledge can often be exploited to develop

useful, e�cient local planners. For example, in [30], local planning strategies that

guarantee completeness were introduced for continuous-time double integrator and

kinematic cart dynamics. Similarly, various closed-loop control policy for local steer-

ing of non-holonomic kinematic carts have been proposed [32, 33]. Other local plan-

ning policies have been proposed for more general classes of dynamical systems using

linearizations of the system dynamics around the state being extended [15, 16, 34].

This methodology assumes that designing good local control inputs for the non-linear

system is challenging, but that sampling is computationally cheap and that, in the

limit of infinite samples, linearizing about each state will accurately capture the non-

linear system dynamics.

Similarly, various distance metrics for nonlinear systems have been studied. For

non-holonomic kinematic carts [35] learns a distance metric through statistically ap-

proximating the cost-to-go between states connected via the control procedure in [32]

using large quantities of samples generated o✏ine. Meanwhile, [33] uses the Lyapunov

function created by its local control strategy to estimate the cost-to-go of the kart.

In [36], a similar learning approach is applied but to general nonlinear systems systems

where samples are generated using an o✏ine iterative finite-horizon optimal control

policy. The approach used by [16] for create a metric for nonlinear systems is to use

the cost-to-go function for an infinite-horizon linear-quadratic regulator designed for

10

a system linearized at one of the states in question.

Finally, sampling-based planning algorithms have been used to address problems

in beliefspace planning, where noise is included as part of the dynamical model.

One common approach is to apply an iterative optimization procedure to incorporate

uncertainty into to a nominal path through the workspace computed via a sampling-

based algorithm [37,38]. However, this iterative procedure will only produce trajecto-

ries that lie in the same homotopy class as the nominal trajectory, which may limit the

robustness of the final solution. In [39], the RRT* algorithm was directly extended

to directly account for uncertainty during the sampling-based planning procedure by

ensuring sets approximating the uncertainty of the system remain collision free as

the space is explored. Others have included uncertainty in the planning procedure

by using Monte-Carlo methods to estimate the probability of successfully reaching a

new state [12, 40].

11

Chapter 3

Background: Steering and Metrics

in Sampling-Based Planning

This section outlines the structure of a sampling-based planning algorithm. A brief

development of some existing local metrics and steering procedures from literature is

also included.

3.1 Generic Sampling-Based Planning Algorithm

Components

The following functions are the fundamental building blocks of an RRT-style

sampling-based planning algorithm [13].

• Sample(X) draws an independent and identically distributed random sample

from the closed, compact set X ⇢ Rn. In this thesis, the distribution will always

be uniform, but other distributions such as those mentioned in Section 2.2 may

be used.

• Dist(x1, x2) computes the distance between x1 and x2 using some metric. The

Euclidean distance metric kx1 � x2k2 is a standard choice.

12

• NearestNeighbor(x[N], x) where x[N] = {x1, . . . , xN

} returns the closest mem-

ber of the finite set X ⇢ Rn to the state x 2 Rn with respect to Dist. That is,

NearestNeighbor(x[N], x) = argmin
i2{1,...,N} Dist(xi

, x).

• Steer(x0, xg

) = (u0, . . . , uK

) returns the control inputs (u0, . . . , uK

) that defines

a finite trajectory (x0, u0), . . . , (xK

, u

K

) that attempts to drive the system from

x0 to x

g

using a local control policy for a dynamical system x

k+1 = f(x
k

, u

k

).

Probabilistic completeness of the overall planner depends heavily on the imple-

mentation of this function [31] and how “close” the local controller can bring

the system to x

g

. The control inputs (u0, . . . , uK

) are returned.

• CollisionFree(x[K],F) =
V

K

k=2 ({↵xk�1 + (1� ↵)x
k

| ↵ 2 [0, 1]} ⇢ F) returns

true if, for all i = 2, . . . , N , the line segment joining x

k�1 and x

k

is in F.

The metric selected for Dist is ideally one that describes the distance between two

states subject to any existing dynamical and workspace constraints. Identifying such

a metric is generally as hard as solving the path planning problem, so approximations

are commonly used [16,35,36, 41].

3.2 Linear-Quadratic Regulator Based Metric and

Steering

A linear-quadratic regulator (LQR) can be used to define both a locally applicable

metric and control policy for use in a sampling-based algorithm. This section reviews

some basic results from the LQR literature. The formulation of the LQR problem

and its solution is derived from [42]. The section concludes with a demonstration of

how the LQR can be used to define both a local steering procedure and metric.

13

3.2.1 LQR Formulation

For a linear time-invariant system, the LQR problem is concerned with finding

a feedback control law u

k

that optimally stabilizes the system over an infinite time

horizon function with respect to the cost function

J(u1, . . . , uK

) =
K

X

k=1

x

T
k

Qx

k

+ u

T
k

Ru

k

(3.1)

and subject to the system dynamics

x

k+1 = Ax

k

+Bu

k

x

k

2 Rn (3.2)

Here, Q 2 Sn

++, R 2 Sm

++ define penalties on the state and input error respectively.

Throughout this paper, Sn

++ is used as the set of positive-definite matrices.

The optimal feedback law is computed through a dynamic programming approach.

For a fixed horizon K, the optimal sequence of actions u1, . . . , uK

, the Principle of

Optimality states that the optimal action at each timestep can be found by recursively

solving for the optimal action backwards starting with u

K

. This process produces the

recursive definition of the cost-to-go metric. At timestep k, the cost-to-go is given by

x

T
k

P

k

x

k

where

P

k

= A

T
P

k+1A+Q� A

T
P

k+1B(BT
P

k+1B +R)
�1
B

T
P

k+1A (3.3)

As k !1, the equation in (3.3) converges to a steady-state if the system is control-

lable [42, 43], producing the discrete algebraic Riccati equation (DARE)

P = A

T
PA+Q� A

T
PB(BT

PB +R)
�1
B

T
PA (3.4)

where P 2 Sn

++. DAREs are well-studied and can be solved e�ciently using nu-

14

merical methods, e.g. [44]. For later use in algorithm descriptions, the function

DARE(A, B, Q, R) is defined to return the matrix P 2 Sn

++ that is the solution

of (3.4).

Once found, P defines a quadratic cost-to-go function V (x
k

) = x

T
k

Px

k

. Moreover,

P defines the infinite-time optimal stabalizing feedback control law u

k

= Fx

k

where

F = �(BT
PB +R)

�1
B

T
PA.1 Proof of stability of this controller comes from the

fact that V (x) can be treated as a Lyapunov function for the system

x

k+1 = (A+BF)x
k

(3.5)

The function V is clearly positive-definite. The negative-definiteness of V (x
k+1) �

V (x
k

) = x

T
k

((A+BF)TP (A + BF) � P)x
k

is guaranteed by the fact that (3.4) can

be factored into the form

(A+BF)TP (A+BF)� P = �(Q+ F

T
RF) (3.6)

and the positive-definiteness of Q+ F

T
RF .

3.2.2 The Use of LQRs in Sampling-Based Planning

The LQR has two applications to sampling-based planning for time-invariant lin-

ear systems: defining a metric via the cost-to-go function V (x) and steering policy [16]

via the feedback law. In addition, these methods are applicable to general dynamical

systems through linearization because both steering and nearest-neighbor computa-

tion are local procedures about the linearized state – especially when the statespace

has been densely sampled.

The LQR distance function, LQRDist is given in Algorithm 1. For two states

1For general linear systems, it is assumed that the system is observable so that the feedback
controller can be applied.

15

x1, x2 2 Rn, the system is first linearized about x1 and a nominal control input.2

The DARE (3.4) is then solved for P . Then, using the following notation for the

Mahalanobis distance [45]

kxk
S

=
p
x

T
S

�1
x S 2 Sn

++ (3.7)

we define the LQR metric to be kx1 � x2k
P

�1 . This metric is the square root of the

cost, as defined by (3.1), to travel from x1 to x2 according for the linear system under

the LQR control policy.

Input: x1, x2

1 A @f(x1,u0)
@x

, B @f(x1,u0)
@u

;
2 P DARE(A, B, Q, R);
3 return kx1 � x2k

P

�1

Algorithm 1: Definition of LQRDist (x1, x2)

The steering policy LQRSteer is given in Algorithm 2. Let x0, xg

2 Rn be system

states. The function will attempt to plan a trajectory from x0 to x

g

subject to the

dynamical constraint x

k+1 = f(x
k

, u

k

). To do so, the system is linearized about x0

and an input u0. In [16], the zero input was used for u0, which corresponds to not

favoring any particular action.

It is assumed that, for any state in the ✏-ball B
✏

(x0), linearization about this

state will produce the same A and B matrices and that (A,B) is controllable. The

procedure will terminate if this ball is left because the linearization is no longer

consistent with the nonlinear dynamics. Additionally, since the LQR policy will only

cause the system to approach x

g

asymptotically (i.e. kx
k

� x

g

k2 ! 0 as k ! 1),

LQRSteer is terminated after K 2 N iterations. Finally, the control inputs computed

according to this feedback law are returned.

The system is linearized about x0 and not x

g

because, if x0 is far from x

g

, lin-

2In [16], the zero input is used, but the choice may be di↵erent if the context suggests a natural
choice.

16

earization about x
g

may not be consistent with the local behavior of the dynamical

system in the neighborhood of x0.

Input: x0, xg

1 A @f(x0,0)
@x

, B @f(x0,0)
@u

;
2 P DARE(A,B,Q,R);

3 F �(BT
PB +R)

�1
B

T
PA;

4 for k = 0, . . . , K � 1 do
5 u

k

 F (u1, . . . , u

K

);
6 x

k+1 Ax

k

+Bu

k

;
7 if x

k+1 62 B
✏

(x0) then
8 return (u0, . . . , uk�1)
9 end

10 end
11 return (u0, . . . , u

K�1)

Algorithm 2: Definition of LQRSteer(x0, x

g

)

3.3 A Metric from Beliefspace Planning

A second motion-planning setting that provides a natural metric is beliefspace

planning – a generalization of traditional motion planning to include modeled proba-

bilistic uncertainty. Instead of planning over the set of states, the algorithm plans over

the set of distributions of states [39,46]. In general, representing arbitrary continuous

state distributions is computationally intractable. However, for linear systems under

Gaussian noise, i.e.

x

k+1 = Ax

k

+Bu

k

+ w

k

w

k

⇠ N(0,W) (3.8)

y

k

= Cx

k

+ v

k

v

k

⇠ N(0, V)

17

with x0 ⇠ N(0,W0), the distribution of the state will always be Gaussian with a

mean and covariance given by the Kalman dynamics

x̄

k+1 = Ax̄

k

+Bu

k

(3.9)

⌃
k+1|k = A⌃

k

A

T +W

⌃
k+1 = ⌃

k+1|k � ⌃
k+1|kC

T(C⌃
k+1|kC

T + V)
�1
C⌃

k+1|k

The Kalman dynamics provide an optimal filtering strategy for any quadratic error

function, including mean-squared error [47]. Together, (x̄
k

,⌃
k

) define a Gaussian

distribution that encapsulates the uncertainty about the state that is present only

when measurements y0, . . . , yk are available. Together, we will refer to (x̄
k

,⌃
k

) as

the belief b
k

and and treat x
k

as the corresponding Guassian random variable x

k

⇠

N(x̄
k

,⌃
k

) in this setting.

In this domain, k · k⌃k
, the Mahalanobis distance [45] at time k, which will be

referred to as the beliefspace metric, forms a natural metric for use in planning. This

metric weights the di↵erences between states in directions with a higher variances

less than those with lower variances. This metric is used by beliefspace planners to

incorporate uncertainty with respect to both the dynamical model and obstacles into

the planning process in order to bias the system to move in directions with more

certainty [48, 49]. In addition, the LQR metric discussed in the previous section

is still applicable in this setting because the LQR control policy is still optimal in

expectation with respect to (3.1) under the noise model in (3.8) [12].

3.4 Rapidly-Exploring Random Tree Algorithm

A generic version of the RRT algorithm [13] is now presented. Let Rn be the

statespace of a robot and assume it is decomposed into two disjoint regions: an

18

obstacle set O and a freespace F = Rn \ O. It is assumed that F is a compact set.

The RRT algorithm is then given in Algorithm 3.

1 V {x0},E ;;
2 for i = 1, . . . , N do
3 x

rand

 Sample(F);
4 x0 NearestNeighbor(V, x

rand

);
5 (u0, . . . , uK�1) Steer(x

near

, x

rand

) ; /* Note: x

k

= x

near

*/

6 for k = 0, . . . , K � 1 do
7 x

k+1 f(x
k

, u

k

)
8 end
9 if CollisionFree({x0, . . . , xK

}, F) then
10 V V [{x

new

};
11 E {(x0, xK

)};
12 end

13 end

Algorithm 3: Rapidly-Exploring Random Tree Algorithm

In [13], this algorithm was proved probabilistically complete when the input space

is discretized. In that setting, Steer selects the input from a finite set of inputs

that minimizes Dist(x
near

, x

rand

). In [30], an asymptotically optimal version of Algo-

rithm 3 was introduced for continuous input spaces. This version of the algorithm was

proved probabilistically complete if the the dynamical system is features a relaxed

definition of local controllability. In addition, [30] provides examples of weak locally

controllable steering procedures for linear systems and di↵erential drive systems. In

general, however, the RRT algorithm is not complete. See [31] for a counterexample.

The rest of this thesis is focused on how local metrics, such as the LQR metric

and beliefspace metric, can be combined with local geometric information during the

steering process. Existing steering procedures for dynamical systems, e.g. [15, 16, 32,

33,48], often use local metrics to determine local actions, but do not consider any local

geometric information. Through generalization of the concept of the local freespace

introduced in [4], a local subset of F can be constructed that simultaneously reflects

a local metric and local geometric information. This subset is then used to define a

19

local steering procedure for the dynamical system.

20

Chapter 4

Generalized Local Freespaces

This chapter generalizes the concept of the local freespace introduced in [4,28,29]

by relaxing the choice of the Euclidean inner product to a more general class of inner

products. This abstraction provides a way to organically incorporate local information

about the underlying dynamical system into the local freespace by altering the metric

used in its construction. A topological interpretation of this generalization in terms

of an a�ne change of coordinates is also provided. The chapter also gives example

generalized local freespaces using the LQR and beliefspace metrics.

4.1 Local Freespace Construction with General-

ized Metrics

In [4, 28, 29], the concept of the local freespace as a way to incorporate the local

geometry of the robot environment into the steering procedure for a kinematic robot

was introduced. This steering procedure was then demonstrated empirically to be

very e↵ective at exploring narrow passages of the configuration space.

Formally, consider a setting where O1, . . . ,OM

⇢ Rn are open convex sets of states

that represent obstacles. Together, they define the freespace F = Rn \ (
S

M

i=1 Oi

),

21

which is assumed to be compact. Additionally, the metric projection of x onto some

set A is defined to be ⇧A(x) = argmin
y2A kx� yk2. The Euclidean local freespace is

given in the following definition1

Definition 4.1.1 (Euclidean Local Freespace [4]). The Euclidean local freespace

is defined as the closed polytope

LF(x) = { x0 2 F | kx0 � xk kx� s

i

k, s
i

= ⇧Oi(x), i = 1, . . . ,M } (4.1)

=

⇢

x

0
�

�

�

�

(s
i

� x)T
✓

x

0 � x+ s

i

2

◆

 0, s
i

= ⇧Oi(x), i = 1, . . . ,M

�

For a given state x, LF(x) is a polytope containing x whose boundary is given by

the maximum-margin separating hyperplanes between x and s

i

, the projection of x

onto the ith obstacle. Figure 4.1 contains an example of the local freespace defined

in (4.1). When the obstacle O
i

is a polytope, ⇧Oi(x) is easily computed by solving a

convex linearly-constrained quadratic program [50]. These may be solved numerically

via e�cient algorithms such as interior point [50] and active set [51] methods.

The local freespace constructed in Definition 4.1.1 can be generalized by allowing

for a wider class of inner products to be used in the definition of the Euclidean local

freespace. Specifically, for vectors x, y 2 Rn, the inner product is generalized from x

T
y

to x

T
S

�1
y for some S 2 Sn

++. This inner product induces the Mahalanobis distance

as a norm: kxk
S

=
p
x

T
S

�1
x. For a given S, we define the metric projection using

k · k
S

to be ⇧A(x;S) = argmin
y2A kx � yk

S

. Then, the definition of the Euclidean

local freespace is generalized as follows:

Definition 4.1.2 (Generalized Local Freespace). For a matrix S 2 Sn

++, the gener-

1The definition given in [4] includes a constraint used to represent the robot radius. Here, the
robot is assumed to be a point robot. A similar constraint is treated in Section 4.3.

22

Figure 4.1: An example of the Euclidean local freespace. The robot workspace is
[0, 10] ⇥ [0, 10]. Obstacles are dark gray polytopes. The Euclidean local freespace is
shown in gold about the state [5 2]T (black circle). Blue squares designate the closest
point in each obstacle set to the state under the Euclidean metric.

23

alized local freespace is defined as the closed polytope

LF(x;S) = { x0 2 F | kx0 � xk
S

 kx� s

i

k
S

, s

i

= ⇧Oi(x;S), i = 1, . . . ,M } (4.2)

=

⇢

x

0
�

�

�

�

(s
i

� x)TS�1

✓

x

0 � x+ s

i

2

◆

 0, s
i

= ⇧Oi(x;S), i = 1, . . . ,M

�

The metric defined by k·k
S

weights di↵erences between states in directions defined

by the eigenvectors of S depending on the value of the corresponding eigenvalue. Since

the inner product is taken with respect to S

�1, directions with smaller eigenvalues

contribute more to the value of k · k
S

than directions with larger eigenvalues.

Each hyperplane defining LF(x;S) can be interpreted as limiting motion from x

in directions that produce a collision with the corresponding obstacle in the shortest

distance under the metric k · k
S

. This observation comes from the fact that, for a

given x and O
i

, s
i

is the closest point in the sense of k · k
S

in O
i

to x by construction.

4.2 Properties of Generalized Local Freespaces

While the generalized local freespace is most easily presented in terms of a mod-

ification the the inner product used in the local freespace definition, analysis can be

easier by interpretation LF(x;S) as the local freespace computed under a change of

coordinate, i.e. an invertible a�ne transformation.

Theorem 4.2.1. For obstacle sets O1, . . . ,OM

, the generalized local freespace h (LF(x;S))

about x is equal to LF(h(x)), where h(x) = S

� 1
2
x + g, g 2 Rn, and LF(h(x)) is

computed with respect to the obstacles h(O1), . . . , h(OM

), the image of each obstacle

through h.

Proof. By taking the square root of S�1, we can define a coordinate change that

underwhich the Euclidean distance metric is used. First, note that because S

�1 is

24

symmetric, S� 1
2 is as well. Then

⇧S

A(x) = argmin
x

02A
kx� x

0k
S

(4.3)

= argmin
x

02A

q

(x� x

0)TS�1(x� x

0) (4.4)

= argmin
x

02A

r

⇣

S

� 1
2 (x� x

0)
⌘T ⇣

S

� 1
2 (x� x

0)
⌘

(4.5)

= argmin
x

02A
kS� 1

2
x� S

� 1
2
x

0k2 (4.6)

= argmin
x

02A
kS� 1

2
x+ g � S

� 1
2
x

0 � gk2 (4.7)

= h

�1

✓

arg min
x

02h(A)
kh(x)� x

0k2
◆

(4.8)

= h

�1
�

⇧
h(A)(h(x))

�

(4.9)

Then, since for all a, b,

h(x)� h(x0) = S

� 1
2
x+ g � S

� 1
2
x

0 � g (4.10)

= S

� 1
2 (x� x

0) (4.11)

and

h(x) + h(y)

2
=

S

� 1
2 (x+ x

0)

2
+ g (4.12)

= h

✓

x+ x

0

2

◆

(4.13)

The following relationship between LF(x), LF(x;S), and h is established.

25

LF(h(x)) =

⇢

h(x0)

�

�

�

�

(h(s
i

)� h(x))T
✓

h(x0)� h(x) + h(s
i

)

2

◆

 0, h(s
i

) = ⇧
h(Oi)(h(x))

�

(4.14)

=

⇢

h(x0)

�

�

�

�

S

� 1
2 (s

i

� x)
T
S

� 1
2

✓

x

0 � x+ s

i

2

◆

 0, s
i

= ⇧Oi(x;S)

�

(4.15)

=

⇢

h(x0)

�

�

�

�

(s
i

� x)TS�1

✓

x

0 � x+ s

i

2

◆

 0, s
i

= ⇧Oi(x;S)

�

(4.16)

= h (LF(x;S)) (4.17)

A consequence of this proof is that any property of LF(x) that is preserved under

an a�ne transformation, such as convexity and the linearity of the set constraints,

also applies to LF(x;S). We also see that if x is in the freespace, then so is any

member of LF(x;S):

Proposition 4.2.2. For any x 2 F, the generalized local freespace LF(x;S) is a

nonempty subset of F.

Proof. Let h be the invertible a�ne transform h(x) = S

� 1
2
x + g. Then LF(h(x))

computed with respect to h(O1), . . . , h(ON

) lies in the freespace defined by the ob-

stacle sets h(O1), . . . , h(OM

) [4]. By (4.14), applying h

�1 to these objects produces

LF(x;S) defined for O1, . . . ,OM

. Since h is bijective, no member of LF(h(x)) will

be mapped to any obstacle set O
i

, that is LF(x;S) \ O
i

= ; for i = 1, . . . ,M and

therefore LF(x;S) lies in the freespace defined with respect to O1, . . . ,OM

.

26

4.3 Generalized Local Freespaces with Ellipsoidal

Constraints

Finally, we consider a definition of the generalized local freespace with ellipsoidal

constraints as measured by k · k
S

. Specifically, if the robot occupies the set of states

E(x;S) = { y | kx0 � xk
S

 1 } (4.18)

=
n

x

0
�

�

�

(x0 � x)TS�1(x0 � x) 1
o

(4.19)

then we would like E(x;S) to not intersect any obstacle for any x in the local freespace

construction we define. Here, the local metric describes some kind of risk to the robot

and states in E(x;S) contain at most a fixed amount of risk. Toward this end, we

make the following definition:

Definition 4.3.1 (Contracted Local Freespace). For S 2 Sn

++, the contracted local

freespace LF
C

(x;S) is the local freespace LF(x;S) computed with respect to obstacle

sets O1 � E(0;S), . . . ,O
M

� E(0;S).

The explicit form of the contracted local freespace in terms of obstacles O1, . . . ,OM

is given as

LF
C

(x;S) =

⇢

x

0
�

�

�

�

(s
i

� x)TS�1

✓

x

0 �
✓

m

i

� m

i

� x

2km
i

� xk
S

◆◆

 0

�

(4.20)

where m

i

= x+si
2 , s

i

= ⇧S

Oi
(x). This formulation translates each defining hyperplane

of LF(x;S) by one half unit under the metric k · k
S

toward x. This concept is

adapted from [52] where it was originally proposed for disk-shaped robots. The

version presented here generalizes it to use the inner product defined by S

�1. This

abstraction still maintains the property that the robot is collision-free at any state in

LF
C

(x;S) and that LF
C

(x;S) is nonempty for any collision-free robot:

27

Proposition 4.3.1. Let x 2 Rn. Then, E(x;S) ⇢ F if and only if LF
C

(x;S) 6= ;.

Proof. The forward direction follows from the definition in conjunction with Propo-

sition 4.2.2. If E(x;S) ⇢ F, then it must be the case that x lies in the freespace for

the obstacle set O1�E(0;S), . . . ,O
M

�E(0;S) and therefore LF(x;S) is a nonempty

subset of the freespace computed with respect to that obstacle set. For the reverse

direction, the fact that LF
C

(x;S) is non-empty implies that there is a separating

hyperplane between E(0;S) and each obstacle set O
i

because both E(0;S) and O
i

are

convex. Therefore E(0;S) ⇢ F.

Additionally, any ellipse centered at a member of LF
C

(x;S) will lie in the freespace:

Proposition 4.3.2. For any x

0 2 LF
C

(x;S), E(x0;S) ⇢ F.

Proof. Follows directly from the fact that LF
C

(x;S) is LF(x;S) in the workspace

whose obstacles are O1 � E(0;S), . . . ,O
M

� E(0;S).

4.4 Examples Using Metrics from Literature

In this section, the LQR metric described in Section 3.2.2 and beliefspace metric

described in Section 3.3 are used to illustrate the concepts defined in this chapter.

4.4.1 Incorporating System Dynamics via the LQR Metric

To illustrate how the LQR metric modifies the local freespace construct, we will

show how LQR metrics for di↵erent linearizations of a kinematic di↵erential drive

robot system impact the local freespace. The continuous-time dynamics of this system

28

are

˙2

6

6

6

6

4

x(t)

y(t)

✓(t)

3

7

7

7

7

5

=

2

6

6

6

6

4

v(t) cos(✓(t)) 0

v(t) sin(✓(t)) 0

!

3

7

7

7

7

5

(4.21)

where v(t) and !(t) are control inputs. We consider a discrete-time approximation of

this system

2

6

6

6

6

4

x

k+1

y

k+1

✓

k+1

3

7

7

7

7

5

| {z }

zk+1

=

2

6

6

6

6

4

x

k

y

k

✓

k

3

7

7

7

7

5

+�t

2

6

6

6

6

4

cos(✓) 0

sin(✓) 0

0 1

3

7

7

7

7

5

2

6

4

v

k

!

k

3

7

5

| {z }

fdd(zk,uk)

u

k

=

2

6

4

v

k

!

k

3

7

5

(4.22)

A positive value of ! rotates the vehicle counterclockwise. The variable z

k

is used

to represent the state to distinguish from x

k

and y

k

, which are the position of the

robot in the workspace. At a particular state z = [x y ✓]T and input u = [v !]T, the

linearization is defined by the matrices

A =
@f

dd

(z, u)

@z

=

2

6

6

6

6

4

1 0 0

0 1 0

0 0 1

3

7

7

7

7

5

, B =
@f

dd

(z, u)

@u

=

2

6

6

6

6

4

�t cos(✓) 0

�t sin(✓) 0

0 �t

3

7

7

7

7

5

(4.23)

However, since the original model in (4.22) is under-actuated, the linearized system

in (4.23) is not controllable. Therefore, we instead consider the reduced dimension

system

2

6

4

x

k+1

y

k+1

3

7

5

=

2

6

4

x

k

y

k

3

7

5

+

2

6

4

�t cos(✓) �

�t sin(✓) �

3

7

5

u

k

(4.24)

29

The parameter � allows for coupling between the linear and rotational velocities and

makes the system controllable. It is kept small in comparison to the terms inherited

from (4.23) to limit the influence of this artificial coupling on the behavior of the

system. When �t is on the order of 1, a value of � = 10�5 is used.

In each subfigure of Figure 4.2, a di↵erent local freespace is constructed. The

robot is assumed to be a point robot and a collision occurs with a configuration space

obstacle if [x y]T lies within a workspace obstacle. In Figure 4.2a, the Euclidean local

freespace is constructed. Geometrically, this local freespace definition does not favor

motion in any direction around the obstacle. In Figure 4.2b and Figure 4.2c, the

metric used is the LQR metric k · k
P

�1 , where P is the solution to the DARE (3.4)

for the linearized about one of the shown state and control input with LQR penalty

matrices Q,R = I. These local freespaces incorporate the dynamical information

provided by the linearization about the respective states by favoring movement in a

direction around the obstacle corresponding to the used value of ✓. In Figure 4.2b,

the local freespace allows more freedom along the y-axis because the chosen value of

✓ aligns the robot more along that axis. Similarly, the example in Figure 4.2c allows

more freedom to move around the obstacle in the x-direction because the robot is

aligned more along the x-axis.

Additionally, in each example, the contour of the metric used to compute each local

freespace is shown. Di↵erent linearizations produce di↵erent values of P , which, in

turn, induce di↵erent metrics with ellipsoidal contours. In Figure 4.2b, the alignment

of the contours is rotated clockwise from the alignment in Figure 4.2c, which is what

causes the di↵erent local freespace structures.

4.4.2 Incorporating Uncertainty via the Beliefspace Metric

The beliefspace metric in conjunction with the contracted local freespace provides

a natural way to combine uncertainty with the local geometry. A common requirement

30

(a)

(b)

(c)

Figure 4.2: Three local freespaces of a di↵erential drive robot under di↵erent met-
rics. The robot workspace is [0, 10] ⇥ [0, 10]. The local freespace is shown as the
gold polytope, while an obstacle is shown as a dark gray polytope. In (a), the Eu-
clidean metric is used, while (b) and (c) use LQR metrics for the system in (4.22)
linearized about the respective states [1 1 ⇡

4 + 0.01]T, [1 1 ⇡

4 � 0.01]T, same control

input [0.01 0]T, and �t = 1. The robot location in the workspace is black circle while
the closest point on each obstacle under the metric is shown as a blue square. In
addition, the contour of each metric is shown projected onto the workspace (robot
position is the red circle). 31

of a beliefspace planner [37,39,46] is to ensure that, for each beliefstate b
k

= (x
k

,⌃
k

)

along a solution trajectory

Pr{x
k

2 F} =
N

X

i=1

Pr{x
k

62 O
i

} � � x

k

⇠ N(x̄
k

,⌃
k

) (4.25)

That is, no collision occurs with at least some probability �. However, computing

Pr{x
k

2 O
i

} is challenging to do numerically due to having to integrate a Gaussian

distribution over each obstacle. A standard approximate approach is to simply en-

sure that the confidence region defined by b

k

lies entirely within F [39, 53, 54]. The

confidence region [55] of a beliefstate b

k

is an ellipsoid

E
�

(b
k

) =
n

x

�

�

�

(x� x̄

k

)T(�⌃
k

)�1(x� x̄

k

) 1
o

� = �

�1
n

(�) (4.26)

where �
n

(·) is the cumulative distribution function (CDF) of chi-squared distribution

with n degrees of freedom [55]. The confidence region is constructed such that Pr{x
k

2

E
�

(b
k

)} = �. If E
�

(b
k

) \
⇣

S

M

i=1 Oi

⌘

= ;, then (4.25) is satisfied.

The quadratic form in the definition of the confidence region of b
k

suggests choos-

ing k · k
�⌃ as a metric for local freespace construction. This metric is a scaled version

of the beliefspace metric from Section 3.3. This choice of metric guarantees by con-

struction that any point lying within LF
C

(x̄; �⌃
k

) will satisfy (4.25), as summarized

in the following proposition

Proposition 4.4.1. For the beliefstate b = (x̄,⌃) and � 2 R+, let x̄ 2 F and

LF
C

(x̄, �⌃) be non-empty. Then, for any belief (ȳ,⌃) with ȳ 2 LF
C

(x̄, �⌃), it is the

case that Pr{y 2 F} =
P

N

i=1 Pr{y 62 O
i

} � � for � = �

�1
n

(�) and y ⇠ N(0,⌃).

Proof. Proposition 4.3.2 implies that E(ȳ; �⌃) ⇢ F for any ȳ 2 LF
C

(x̄; �⌃). Since

Pr{y 2 E(ȳ, �⌃)} = �, it is such that Pr{y 2 F} � � for y ⇠ N(ȳ,⌃).

Some example contracted local freespaces are presented in Figure 4.4 using � = 0.5.

32

As a point of comparison, a local freespace is constructed using the Euclidean metric

in Figure 4.3. Each subfigure of Figure 4.4 uses a di↵erent covariance ⌃, and the

boundary of the confidence region about the state (black dot) is drawn as a black

ellipsoid. Each subfigure also shows (on the right), the workspace and local freespace

under the transformation h from Section 4.2 for that example’s ⌃. In Figure 4.4a,

the confidence region is aligned along the x-axis and can easily fit through the gap

between the obstacles. Note that, under h, this confidence region becomes spherical.

The local freespace reflects this by funneling local motion in the positive x-direction

through the gap. In contrast, in Figure 4.4b, the confidence region cannot maneuver

through the gap as easily due to its origin along the y-axis. The local freespace

adapts by allowing for more motion in the y-axis as a result. Finally, in Figure 4.4c,

the confidence region has a diagonal orientation. This example best demonstrates how

the contracted local freespace moves di↵erent faces of the local freespace depending on

their orientation with respect to the state uncertainty. Directions with more certainty

are shrunk more than those with less uncertainty.

33

Figure 4.3: An example local freespace constructed about [6 5]T (black circle).
Blue squares represent the closest point on each obstacle used to construct the local
freespace.

34

(a)

(b)

(c)

Figure 4.4: Three examples of local freespaces computed about the same point
(black circle) using belief metrics defined by di↵erent covariances. The hatched region
is the contracted freespace corresponding to the local freespace shown in the gold
region. The confidence region corresponding to � = 0.5 is shown in each figure as
an ellipse. The figures on the left is the original workspace, where the figures on the
left are the workspace under the transformation h. The blue squares are the nearest
point in each obstacle set under the norm used to define each local freespace.

35

Chapter 5

Adaptive Steering Using

Generalized Local Freespaces

This chapter describes how the generalized local freespace can be used to define

a local steering algorithm for general nonlinear systems. The steering algorithm

assumes that sampling is a cheap part of the sampling-based planning algorithm and

therefore su�cient samples will be drawn to make the dynamical linearizations used

a good local approximation. E�cacy of the steering procedure is given in terms of

numerical simulations at the end of the chapter.

5.1 Generalized Local Freespace Steering

The generalized local freespace concepts introduced in Chapter 4 provide local

convex decompositions of the environment that merges information about the un-

derlying dynamical process, such as local behavior and uncertainty, with the local

geometry. Since the generalized local freespace is convex and exploits local informa-

tion, a sensible steering policy is given by a constrained LQR program.

The new steering procedure, GLFSteer, definition is given in Algorithm 4. The

algorithm designs a local trajectory over a finite horizon K 2 N that drives the state

36

x0 toward another x
near

. To do so, the system is linearized about x
near

and a nominal

control input u0. Then, the following convex linearly constrained quadratic program

is solved:

minimize
u0,...,uK�1

K�1
X

k=0

(x
k

� x

near

)TQ(x
k

� x

near

) + u

T
k

Ru

k

(5.1)

subject to x

k+1 = Ax

k

+Bu

k

x

k

2 LF(x0, Sk

)

where S0 is provided to the algorithm and S

k+1 = T (S
k

) for some function T : Sn

++ !

Sn

++. This optimization can be solved e�ciently numerically as it is a convex linearly

constrained quadratic program [50, 51]. The generalized local freespace constraint

simultaneously incorporates the local metric and geometric structure into the steer-

ing procedure. If obstacles are very far away from x0, then GLFSteer will behave

similarly to LQRSteer.1 When obstacles are near x0, the local freespace constraint

limits the motion of the robot in a way that simultaneously reflects the local metric

and geometry. We allow the metric to evolve over the finite horizon in some way that

is known to the algorithm modeled by notated by the transform T . (e.g. projecting

the covariance of the system forward to use an accurate beliefspace metric at each

time step). In order to preserve the convexity of the program, all local freespace

constraints are computed with respect to x0.

Input: x0, x

g

1 A @f(x0,u0)
@x

, B @f(x0,u0)
@u

;
2 (u1, . . . , uK�1) CLQR (A, B, Q, R, S0, T,K) ; /* Solve (5.1) */

3 return (u1, . . . , uK�1)

Algorithm 4: Definition of GLFSteer (x
near

, x

rand

)

1The path will not be exactly the same because LQRSteer solves an infinite horizon version of
the problem.

37

5.2 Numerical Demonstrations in Sampling-Based

Planners

This section demonstrates the results of some numerical simulations of the RRT

algorithm (Algorithm 3) using the steering procedure GLFSteer (Algorithm 4) with

di↵erent metrics. A comparison trial using LQRSteer (Algorithm 2) will be also be

shown. In each experiment, both trials will use the same LQRDist function and only

the steering function will di↵er. All examples use a horizon K = 4.

First, a simple kinematic setting is considered, namely

x

k+1 = x

k

+ u

k

(5.2)

where x

k

, u

k

2 R2. This model is very common in sampling-based motion planning

due to the simple local control laws needed to steer the system [4, 39]. The robot

is modeled as a point robot in a workspace whose boundary is [0, 10] ⇥ [0, 10]. In

Figure 5.1, the LQR cost function is defined with matrices Q = diag(2, 1) and R = I.

The steering procedures under consideration are di↵erent from the straight steering

procedure considered in [4] because the LQR cost in conjunction with a horizonK > 1

will not always produce a straight connection between vertices. Both simulations in

this example were run with N = 1000 iterations and the trees were grown from an

initial state x0 = [1 1]T. Since LQRSteer does not incorporate any geometric informa-

tion during planning, many of these trajectories lie in collision with obstacles and are

not added to the graph of the tree. Meanwhile, trajectories produced by GLFSteer.

The final number of vertices in the tree is |V| = 470. In contrast, GLFSteer adapts to

the environment through use of the local freespace and is capable of navigating the

narrow channel between the obstacles. Since (5.1) is always feasible for this system

due to the lack of constraints on u

k

and the first-order nature of the dynamics, a

38

vertex is added to the tree at each iteration. Therefore, the final number of vertices

in the RRT tree is |V| = 1001 (including the initial state) using GLFSteer.

The results of a similar experiment with the same dynamical system are shown

in Figure 5.2. The LQR weights Q,R remain unchanged. Again, LQRSteer performs

poorly, resulting in few connections made during planning. After N = 500 iterations,

the number of vertices in the tree of the RRT planner is |V| = 213. Meanwhile, the

GLFSteer steering procedure is, again, more successful at navigating the environment

and leaves the RRT with |V| = 1001 vertices. In both examples, the local freespaces

used during planning were constructed using the LQR metric.

Unlike the steering procedure in [4], GLFSteer is not limited to the dynamics of

the form in (5.2). Consider a second-order linear model

x

k+1 = Ax

k

+Bu

k

A =

2

6

4

I I

0 I

3

7

5

B =

2

6

4

0

I

3

7

5

(5.3)

which is another common form of linear model used in motion planning [15, 46]. In

Figure 5.3 provides the results of an experiment using this model. Each state can be

decomposed into a positional and velocity component – i.e. for x

k

= [q
k

q̇

k

]T, q
k

is

the position of the robot and q̇

k

is its velocity. In the example, q
k

, q̇

k

2 R2. Collisions

with workspace obstacles are only checked with respect to q

k

. When sampling states,

q̇

k

is drawn from [�0.1, 0.1]⇥ [�0.1, 0.1] uniformly.

For a second-order system, (5.1) is not strictly feasible because an input u
k

will

impact position q

k+1 but has no influence over q
k

. Therefore, a large enough q̇

k

will

ensure that q

k+1 is outside of the local freespace regardless of u
k

. If GLFSteer is

not able to produce a trajectory, the planner treats it as a collision and no action

is taken that cycle. Despite the lack of feasibility guarantee, the RRT still contains

more vertices at the end of this experiment using GLFSteer than the LQRSteer.

After N = 500 iterations, the RRT features |V| = 455 vertices using GLFSteer while

39

LQRSteer leaves the RRT with |V| = 122 vertices. Again, the coverage of the tree,

as shown in Figure 5.3, is much greater using GLFSteer. The local freespaces were

computed using the LQR metric.

Next, the kinematic di↵erential drive system given in (4.22) is considered. The

results of the trial are summarized in Figure 5.5. In order to design local LQR control

policies for steering and distance computation for this under-actuated system, the

reduced dimension linearization given in (4.24) is used. In this scenario, the LQR

costs matrices are were Q,R = I and the model parameters are �t = 0.2, � = 10�5.

Both planners were run for N = 500 iterations. Due to the fact that the steering

policy was designed for a reduced dimension approximation of the system dynamics,

the planner is limited in how it can explore the space. Nevertheless, the GLFSteer

procedure was capable to explore the cluttered region at the center of the workspace

more successfully than LQRSteer. Using LQRSteer, only |V| = 414 vertices remained

in the tree while |V| = 500 vertices were added using GLFSteer.

Finally, a beliefspace example is considered in Figure 5.5. The setting is similar

to the first example except with additive Gaussian process and observation noise, i.e.

x

k+1 = x

k

+ u

k

+ w

k

w

k

⇠ N(0,W) (5.4)

y

k

= x

k

+ v

k

v

k

⇠ N(0, V)

where W = diag(0.01, 0.02) and

V =

2

6

4

0.0098 0.0153

0.0153 0.0447

3

7

5

(5.5)

The initial belief was b0 =
⇣

[3 8]T, diag(0.001, 0.001)
⌘

and � = 0.95 was the enforced

probability of safety. The vertices in the RRT are beliefs as opposed to merely dynam-

ical states, and covariances are propagated between vertices by applying the Kalman

40

update (3.9) along the trajectory. For the beliefspace setting, CollisionFree is

replaced with the function

BeliefFree(x̄[K],F) =
K

^

k=2

�

E
�

({↵x̄
k�1 + (1� ↵)x̄

k

,⌃
k|k�1) | ↵ 2 [0, 1]} ⇢ F

�

(5.6)

which checks if the confidence ellipse corresponding to the Kalman process update

⌃
k|k�1 is collision-free along each line segment joining consecutive pairs of trajectory

states. The process covariance matrix ⌃
k|k�1 is used as opposed to ⌃

k

or ⌃
k�1 because

it encodes the uncertainty about the system during the state transition before z

k

is

observed. The metric used for GLFSteer is the beliefspace metric using the process co-

variance for the beliefstate. Specifically, given an initial belief b0 = (x̄0,⌃0), each state

x̄

k

along the trajectory planned by GLFSteer is required to lie within LF
C

(x̄0,⌃k|k�1).

This constraint ensures that any satisfying trajectory will be collision free according

to BeliefFree.

The results of the simulation are summarized in Figure 5.5. Over the aloted N =

1000 iterations, LQRSteer was only able to progress into two out of the four chambers

in the environment and produced a tree with |V| = 231 vertices. In comparison, the

RRT reaches all the chambers when using GLFSteer and contains |V| = 1001 vertices.

41

(a) LQRSteer (b) GLFSteer

Figure 5.1: First simulation environment using the model in(5.2). Obstacles are
shown in gray. Circles are graph vertices in the RRT. The red circle (lower left) is
the initial state.

(a) LQRSteer (b) GLFSteer

Figure 5.2: Second simulation environment again using the model in(5.2).

42

(a) LQRSteer (b) GLFSteer

Figure 5.3: Third simulation environment using the linear dynamical model in (5.3)

(a) LQRSteer (b) GLFSteer

Figure 5.4: Forth simulation environment using the kinematic kart model in (4.22)

43

(a) LQRSteer (b) GLFSteer

(c) LQRSteer (d) GLFSteer

Figure 5.5: Fifth simulation environment depcting the beliefspace system given in
(5.4). The top row contains the RRT output while the bottom row also contains the
confidence region of each vertex.

44

Chapter 6

Conclusion

This thesis proposed the generalized local freespace, a novel structure that at-

tempts to combine information about workspace geometry and the behavior of an

underlying dynamical system. To do so, it abstracts the choice of inner product from

the Euclidean one used in the local freespace structure from [4, 28, 29]. The choice

of inner product corresponds to the specification of a new metric used during for

constructing the local freespace. It was also demonstrated that the generalized local

freespace is equivalent to computing the Euclidean local freespace in the workspace

under an a�ne transformation. Finally, the idea of the contracted local freespace was

proposed as a way to incorporate risk, as measured by the selected metric, into the lo-

cal freespace. Two motivating metrics from sampling-based planning literature were

provided as motivating examples: the LQR cost-to-go function and the Mahalanobis

distance. The LQR cost-to-go captures local information about the dynamical sys-

tem, while the Mahalanobis distance provides a measure of risk for linear-Gaussian

systems at a certain timestep.

The generalized local freespace was then used to design a steering function for a

sampling-based planner. The steering procedure solves a finite-horizon, constrained

linear-quadratic regulation problem whose state constraints stem from a generalized

45

local freespace about the initial state. The e�cacy of this local steering procedure

was demonstrated for a number of dynamical settings, including a second-order lin-

ear system, a kinematic di↵erential drive system, and a linear-Gaussian beliefspace

system. In each case, the generalized local freespace steering procedure increased the

connectivity of the graph produced by the sampling-based planner compared to an

example LQR-based steering procedure from the literature.

6.1 Future Directions

To conclude, we present some possible extensions and applications of the general-

ized local freespace for future work.

First, a critical assumption in the construction of the generalized local freespace

is that the configuration space obstacles are in a form that it is easy to compute

the metric projection of a configuration onto. In this work, all configuration space

obstacles were convex polytopes that were available to the algorithm in closed form,

thus allowing for computation of the metric projection via an e�cient convex pro-

gram. However, sampling-based planners are often deployed in settings where such

representations are not readily available, such as manipulators [10,56]. In these envi-

ronments, it is often e�cient to test when the robot is in collision, despite representing

explicit obstacles sets being intractable. How the generalized local freespace can be

adapted to such systems is one possible next step.

A similar direction is how other metrics may be incorporated into the generalized

local freespace. Often, locally informative functions, such as robustness to a logical

specification [57], are not available in closed-form and must be approximated through

(often e�cient) simulation. Determining how a local representation of such a metric

can be incorporated into local freespace construction is another potential direction.

Finally, a di↵erent vein of inquiry is how local freespaces can be used to define local

46

control policies for use online once planning is complete. A local freespace provides

a useful underapproximation of the safe region of the statespace surrounding the

trajectory. In addition, the local freespace constructed around subsequent trajectory

states overlap. Once can envision employing a combination of barrier and Lyapunov

functions [58] to funnel sets of states from the neighborhood of the origin toward the

goal by sequentially employing local controllers constructed for each local freespace.

47

Bibliography

[1] Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli, and J. P. How, “Motion planning for

urban driving using rrt,” in Intelligent Robots and Systems, 2008. IROS 2008.

IEEE/RSJ International Conference on. IEEE, 2008, pp. 1681–1686.

[2] R. D’Andrea, “Guest editorial: A revolution in the warehouse: A retrospec-

tive on kiva systems and the grand challenges ahead,” IEEE Transactions on

Automation Science and Engineering, vol. 9, no. 4, pp. 638–639, 2012.

[3] K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski, “Vehicle routing

problems for drone delivery,” IEEE Transactions on Systems, Man, and Cyber-

netics: Systems, vol. 47, no. 1, pp. 70–85, 2017.

[4] O. Arslan, V. Pacelli, and D. E. Koditschek, “Sensory steering for sampling-based

motion planning,” in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ

International Conference on. IEEE, In Press.

[5] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” IEEE

Trans. on Robot. Autom., vol. 12, no. 4, pp. 566–580, 1996.

[6] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path planning,”

Iowa State University, Tech. Rep., 1998.

48

[7] O. B. Bayazit, J.-M. Lien, and N. M. Amato, “Probabilistic roadmap motion

planning for deformable objects,” in Robotics and Automation, 2002. Proceed-

ings. ICRA’02. IEEE International Conference on, vol. 2. IEEE, 2002, pp.

2126–2133.

[8] M. Kothari, I. Postlethwaite, and D.-W. Gu, “Multi-uav path planning in ob-

stacle rich environments using rapidly-exploring random trees,” in Decision

and Control, 2009 held jointly with the 2009 28th Chinese Control Conference.

CDC/CCC 2009. Proceedings of the 48th IEEE Conference on. IEEE, 2009,

pp. 3069–3074.

[9] P. Cheng, Z. Shen, and S. La Valle, “Rrt-based trajectory design for autonomous

automobiles and spacecraft,” Archives of control sciences, vol. 11, no. 3/4, pp.

167–194, 2001.

[10] M. V. Weghe, D. Ferguson, and S. S. Srinivasa, “Randomized path planning for

redundant manipulators without inverse kinematics,” in Humanoid Robots, 2007

7th IEEE-RAS International Conference on. IEEE, 2007, pp. 477–482.

[11] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for optimal

motion planning,” Robotics Science and Systems VI, vol. 104, 2010.

[12] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “Firm: Sampling-

based feedback motion-planning under motion uncertainty and imperfect mea-

surements,” The International Journal of Robotics Research, vol. 33, no. 2, pp.

268–304, 2014.

[13] S. M. LaValle and J. J. Ku↵ner, “Randomized kinodynamic planning,” Int. J.

Robot. Res., vol. 20, no. 5, pp. 378–400, 2001.

49

[14] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “Lqr-trees:

Feedback motion planning via sums-of-squares verification,” The International

Journal of Robotics Research, vol. 29, no. 8, pp. 1038–1052, 2010.

[15] D. J. Webb and J. van den Berg, “Kinodynamic rrt*: Asymptotically optimal

motion planning for robots with linear dynamics,” in Robotics and Automation

(ICRA), 2013 IEEE International Conference on. IEEE, 2013, pp. 5054–5061.

[16] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez, “Lqr-rrt*:

Optimal sampling-based motion planning with automatically derived extension

heuristics,” in Robotics and Automation (ICRA), 2012 IEEE International Con-

ference on. IEEE, 2012, pp. 2537–2542.

[17] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin, “On finding

narrow passages with probabilistic roadmap planners,” in The Int. Workshop on

the Algorithmic Foundations of Robotics, 1998.

[18] S. R. Lindemann and S. M. LaValle, “Incrementally reducing dispersion by in-

creasing Voronoi bias in RRTs,” in IEEE International Conference on Robotics

and Automation, vol. 4, 2004, pp. 3251–3257.

[19] V. Boor, M. H. Overmars, and A. F. van der Stappen, “The gaussian sampling

strategy for probabilistic roadmap planners,” in IEEE Int. Conf. Robot. Autom.,

vol. 2, 1999, pp. 1018–1023.

[20] S. Rodriguez, S. Thomas, R. Pearce, and N. M. Amato, “Resampl: A region-

sensitive adaptive motion planner,” in Algorithmic Foundation of Robotics VII.

Springer, 2008, pp. 285–300.

[21] S. W. H. Wong and M. Jenkin, “Exploiting collision information in probabilistic

roadmap planning,” in IEEE International Conference on Mechatronics, 2009,

pp. 1–5.

50

[22] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling narrow pas-

sages with probabilistic roadmap planners,” in IEEE Int. Conf. Robot. Autom.,

vol. 3, 2003, pp. 4420–4426.

[23] K. Shi, J. Denny, and N. M. Amato, “Spark PRM: Using RRTs within PRMs

to e�ciently explore narrow passages,” in IEEE International Conference on

Robotics and Automation, 2014, pp. 4659–4666.

[24] K. E. Bekris, B. Y. Chen, A. M. Ladd, E. Plaku, and L. E. Kavraki, “Multiple

query probabilistic roadmap planning using single query planning primitives,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1,

2003, pp. 656–661.

[25] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo, “OBPRM:

An obstacle-based PRM for 3D workspaces,” in Workshop on the Algorithmic

Foundations of Robotics, 1998, pp. 155–168.

[26] P. Isto, “Constructing probabilistic roadmaps with powerful local planning and

path optimization,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems, vol. 3, 2002, pp. 2323–2328.

[27] L. Palmieri, S. Koenig, and K. O. Arras, “Rrt-based nonholonomic motion plan-

ning using any-angle path biasing,” in Robotics and Automation (ICRA), 2016

IEEE International Conference on. IEEE, 2016, pp. 2775–2781.

[28] O. Arslan and D. E. Koditschek, “Exact robot navigation using power diagrams,”

in Robotics and Automation, 2016 IEEE International Conference on, 2016, pp.

1–8.

[29] ——, “Sensor-based reactive navigation in unknown convex sphere worlds,” in

The 12th International Workshop on the Algorithmic Foundations of Robotics,

2016.

51

[30] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning using in-

cremental sampling-based methods,” in Decision and Control (CDC), 2010 49th

IEEE Conference on. IEEE, 2010, pp. 7681–7687.

[31] T. Kunz and M. Stilman, “Kinodynamic rrts with fixed time step and best-

input extension are not probabilistically complete,” in Algorithmic foundations

of robotics XI. Springer, 2015, pp. 233–244.

[32] L. Palmieri and K. O. Arras, “A novel rrt extend function for e�cient and smooth

mobile robot motion planning,” in Intelligent Robots and Systems (IROS 2014),

2014 IEEE/RSJ International Conference on. IEEE, 2014, pp. 205–211.

[33] J. J. Park and B. Kuipers, “Feedback motion planning via non-holonomic rrt*

for mobile robots,” in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ

International Conference on. IEEE, 2015, pp. 4035–4040.

[34] E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic for rapidly

exploring state space,” in Robotics and Automation (ICRA), 2010 IEEE Inter-

national Conference on. IEEE, 2010, pp. 5021–5028.

[35] L. Palmieri and K. O. Arras, “Distance metric learning for rrt-based motion

planning with constant-time inference,” in Robotics and Automation (ICRA),

2015 IEEE International Conference on. IEEE, 2015, pp. 637–643.

[36] M. Bharatheesha, W. Caarls, W. J. Wolfslag, and M. Wisse, “Distance met-

ric approximation for state-space rrts using supervised learning,” in Intelligent

Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on.

IEEE, 2014, pp. 252–257.

[37] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under uncertainty

using iterative local optimization in belief space,” The International Journal of

Robotics Research, vol. 31, no. 11, pp. 1263–1278, 2012.

52

[38] V. Indelman, L. Carlone, and F. Dellaert, “Planning in the continuous domain:

A generalized belief space approach for autonomous navigation in unknown en-

vironments,” The International Journal of Robotics Research, vol. 34, no. 7, pp.

849–882, 2015.

[39] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion planning

under uncertainty,” in Robotics and Automation (ICRA), 2011 IEEE Interna-

tional Conference on. IEEE, 2011, pp. 723–730.

[40] N. A. Melchior and R. Simmons, “Particle rrt for path planning with uncer-

tainty,” in Robotics and Automation, 2007 IEEE International Conference on.

IEEE, 2007, pp. 1617–1624.

[41] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo, “Choosing

good distance metrics and local planners for probabilistic roadmap methods,” in

IEEE International Conference on Robotics and Automation, vol. 1, 1998, pp.

630–637.

[42] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear and hybrid

systems. Cambridge University Press, 2017.

[43] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John Wiley & Sons,

2012.

[44] T. Pappas, A. Laub, and N. Sandell, “On the numerical solution of the discrete-

time algebraic riccati equation,” IEEE Transactions on Automatic Control,

vol. 25, no. 4, pp. 631–641, 1980.

[45] S. Xiang, F. Nie, and C. Zhang, “Learning a mahalanobis distance metric for

data clustering and classification,” Pattern Recognition, vol. 41, no. 12, pp. 3600–

3612, 2008.

53

[46] M. P. Vitus and C. J. Tomlin, “Closed-loop belief space planning for linear,

gaussian systems,” in Robotics and Automation (ICRA), 2011 IEEE Interna-

tional Conference on. IEEE, 2011, pp. 2152–2159.

[47] M. S. Grewal and A. P. Andrews, “Kalman filtering: Theory and practice using

matlab,” 2001.

[48] P. Missiuro and N. Roy, “Adapting probabilistic roadmaps to handle uncertain

maps,” in Proceedings 2006 IEEE International Conference on Robotics and Au-

tomation, 2006. ICRA 2006.

[49] R. Platt, L. Kaelbling, T. Lozano-Perez, and R. Tedrake, “Simultaneous local-

ization and grasping using belief space planning,” in Robotics and Automation

(ICRA), IEEE International Conference on, Workshop on Manipulation Under

Uncertainty, 2011.

[50] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University

Press, 2004.

[51] J. Nocedal and S. J. Wright, Sequential quadratic programming. Springer, 2006.

[52] O. Arslan and D. Koditscheck, “Sensor-based reactive navigation in unknown

convex sphere worlds,” in submitted to) the 12th International Workshop on the

Algoritmic Foundations of Robotics (WAFR), 2016.

[53] L. Blackmore and M. Ono, “Convex chance constrained predictive control with-

out sampling,” in Proceedings of the AIAA Guidance, Navigation and Control

Conference, 2009, pp. 7–21.

[54] M. Ono and B. C. Williams, “Iterative risk allocation: A new approach to robust

model predictive control with a joint chance constraint,” in Decision and Control,

2008. CDC 2008. 47th IEEE Conference on. IEEE, 2008, pp. 3427–3432.

54

[55] J. Berger, “A robust generalized bayes estimator and confidence region for a

multivariate normal mean,” The Annals of Statistics, pp. 716–761, 1980.

[56] J. Cortés and T. Siméon, “Sampling-based motion planning under kinematic

loop-closure constraints,” in Algorithmic Foundations of Robotics VI. Springer,

2004, pp. 75–90.

[57] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications,”

in FATES/RV. Springer, 2006, pp. 178–192.

[58] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based

quadratic programs with application to adaptive cruise control,” in Decision

and Control (CDC), 2014 IEEE 53rd Annual Conference on. IEEE, 2014, pp.

6271–6278.

55

	Introduction
	Contributions
	Organization

	Relevant Work
	Sampling-Based Motion Planning
	Incorporating Geometric Information in Sampling-Based Planning
	Incorporating Dynamics in Sampling-Based Planning

	Background: Steering and Metrics in Sampling-Based Planning
	Generic Sampling-Based Planning Algorithm Components
	Linear-Quadratic Regulator Based Metric and Steering
	LQR Formulation
	The Use of LQRs in Sampling-Based Planning

	A Metric from Beliefspace Planning
	Rapidly-Exploring Random Tree Algorithm

	Generalized Local Freespaces
	Local Freespace Construction with Generalized Metrics
	Properties of Generalized Local Freespaces
	Generalized Local Freespaces with Ellipsoidal Constraints
	Examples Using Metrics from Literature
	Incorporating System Dynamics via the LQR Metric
	Incorporating Uncertainty via the Beliefspace Metric

	Adaptive Steering Using Generalized Local Freespaces
	Generalized Local Freespace Steering
	Numerical Demonstrations in Sampling-Based Planners

	Conclusion
	Future Directions

