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On Balancing Event and Area Coverage in Mobile

Sensor Networks

Hancheng Min

Abstract

In practice, the mobile sensor networks have two important tasks: firstly,

sensors should be able to locate themselves close to where major events are

happening so that event tracking becomes possible; secondly, the sensor net-

works should also maintain a good area coverage over the environment in order

to detect new events. Because these two tasks are usually conflicting with each

other, a coverage control policy should be able to balance the event and area

coverage of the environment. However, most existing work is to achieve either

optimal event coverage or optimal area coverage over the environment. In this

thesis, a Voronoi-based coverage control with task assignment is introduced:

each sensor is allowed to switch between event and area coverage depending on

the intensity of events within its Voronoi cell, and both continuous-time and

discrete-time control for sensor positions are discussed.

1 Introduction

In practice, the mobile sensor networks have two important tasks: firstly, when some

major events are happening in the environment, sensors should be able to locate

themselves close to those events so that event tracking becomes possible; Secondly,

sensors should also maintain a good area coverage over the environment in order to

detect new events. Because these two tasks are usually conflicting with each other:

the networks do not have a good area coverage if most sensors are located close to

certain events, a coverage control policy should be able to balance the event and area

coverage. However, most existing work is to achieve either optimal event coverage or

optimal area coverage over the environment, but not both at the same time.
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The Voronoi-based approach consists an important part of event-driven coverage con-

trol for mobile sensor networks [1], and its extension to sensors with limited range [2],

anisotropic [3] and directional [4,5] sensing footprint are discussed over the past years.

Moreover, more practical problems such as collision avoidance in networks with disk-

shape sensors [6] are drawing attentions. The optimal sensor deployment for such

event-driven coverage control locates most sensors in the network near the event cen-

ters. When the events in the environment are concentrated at certain locations, then

one would expect high density of sensors around such locations. On the other hand,

to achieve optimal area coverage, sensors should be almost evenly distributed over

the environment. For sensors with limited sensing range, the overlap between sens-

ing footprints is minimized [7]. Such result is extended to sensors with directional

sensing footprint [8], and area coverage in heterogeneous sensor networks [9] is also

discussed. However, while both event and area coverage are extensively studied by

many researchers, less attention is drawn to find an optimal sensor deployment that

is favorable for both event tracking and area surveillance purposes.

To balance the event coverage and area coverage for the networks, it is natural to

assign di↵erent task to each sensor, such that some sensors are specified to opti-

mize event coverage around their neighborhood and others tend to maximize the area

coverage. There is few work discussed Voronoi-based coverage control with di↵erent

believes of event density among sensors [10,11], such a di↵erence introduces additional

computation on every Voronoi boundary, and makes it di�cult to find a discrete-time

update law for sensor positions.

1.1 Contribution of the Thesis

This thesis is inspired by the work on coverage control for Pan/Tilt/Zoom camera [5],

on which I collaborated with Omur Arslan at Kod*Lab, University of Pennsylvania.

2



Because of the natural requirements for camera networks to spare sensing resources

on events while maintaining the area coverage, Omur provided the research direction

to extend the event coverage control for cameras to balancing the event and area

coverage in the environment. However, it is di�cult to find a straightforward task

assignment scheme given the conic Voronoi partition of the workspace in [5], therefore

we start from investigating task assignment for homogeneous mobile sensor networks

with isotropic sensing footprint. I kept close collaboration with Omur when writing

the review section for the event coverage control for mobile sensor networks: to proof

the convergence of the discrete-time control for event coverage, Omur suggested to

use techniques in MM-algorithm [13], which is also quite e↵ective for proving useful

results in other sections. The main contribution of the thesis is introducing task as-

signment scheme to the existing event coverage control, providing the continuous-time

position control for sensors, and constructing a modified objective to allow discrete-

time control, while existing work for similar problem settings [10,11] only considered

continuous-time control.

1.2 Organization of the Thesis

In this thesis, we at first review the case where sensors have the same task to optimize

the event coverage of the environment, and provide both continuous-time and discrete-

time control that are convergent to a locally optimal configuration. Then we extend

the result to the case where sensors are assigned di↵erent tasks to either optimize

event or area coverage, a continuous-time control following the gradient field of the

objective function is proposed. Also, since iteratively updating sensor positions in

this case is di�cult, a discrete-time update law that optimizing an slightly modified

objective is given. Lastly, the results for numerical simulation are given to show the

e↵ectiveness of task assignment in balancing event and area coverage.
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2 Coverage Control Based on Gaussian Sensing

Quality Model

2.1 Problem Statement

Throughout the thesis, we consider the homogeneous case where all sensors have

the same sensing capability, and we assume that there is a shared belief of event

distribution measuring the importance of each location in the environment among

the sensors. Suppose the workspace W is a convex space in Rn. A normalized event

distribution �e(x) : Rn
! R�0

1 is given, i.e.
R
W �e(x)dx = 1. Then we assume

there are m mobile sensors labeled i = 1, 2, . . . ,m with position pi 2 W , and denote

p := {p1, · · · , pm} to be a sensor configuration. Given a specific position for sensor i,

the sensor’s sensing quality is defined as a measure on Rn with density:

qi(x | pi) = exp

✓
�
kx� pik

2

2�2

◆
(2.1)

where � is a fixed parameter characterizing the strength of sensing quality decaying

along the radial direction.

Consider any partition P := {P1, P2, . . . , Pm} of W 2, and each Pi is assigned to

sensor i to be observed. Then the total sensing score [5] over the workspace can be

defined as follow:

HP :=
mX

i=1

Z

Pi

�e(x)qi(x | pi)dx (2.2)

1R�0 := {x 2 R | x > 0}, is the positive reals
2
a partition of W should satisfy that 1)Pi 6= ;, 8i; 2)P �

i \ P �
j , 8i 6= j, where P �

i is the interior of

Pi; 3)
Sm

i=1 Pi = W
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observe that for a fixed sensor configuration p, HP is bounded above by:

HP 

Z

W
max

i

�e(x)qi(x | pi)dx (2.3)

Based on this observation, we define the Voronoi partition V := {V1, V2, . . . , Vm} of

W as:

Vi(p) : = {x 2 W | qi(x | pi) � qj(x | pj), 8j 6= i}

= {x 2 W | kx� pik
2
 kx� pjk

2
, 8j 6= i} (2.4)

It can be shown that Vi is convex has non-zero Lebesgue measure in Rn for all i if any

two sensors are not located at same position [12]. In the rest of the thesis we only

consider the proper configuration such that pi 6= pj, 8i 6= j to ensure the Voronoi

partition of the workspace is well defined. The upper bound in (2.3) can be written

as Z

W
max

i

�e(x)qi(x | pi)dx =
mX

i=1

Z

Vi

�e(x)qi(x | pi)dx := HV (2.5)

the equation above indicates that to maximize the overall sensing score HP for any

proper sensor configuration, the optimal partition of the workspace is the Voronoi

partition V(p). As the each sensor update its position, the network should always

keep the Voronoi partition of the workspace, therefore we have the following objective:

max
p2Wm

HV(p) =
mX

i=1

Z

Vi

�e(x)qi(x | pi)dx (2.6)

In Section 2.2, we provide a continuous-time control law that follows the gradi-

ent of HV such that it converges to a locally optimal configuration. In Section

2.3, a MM(Minorization-Maximization) algorithm [13] based discrete-time ”move-
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to-centroid” control is introduced, and it can be shown that HV is non-decreasing

after each step thus it eventually converges to a locally optimal sensor configuration.

2.2 Continuous-Time Coverage Control

To ensure thatHV(p) is monotonically increasing over time until it converges, a simple

but e↵ective continuous-time coverage control law is to let ṗi follow the gradient of

HV(p) with respect to pi. To compute the gradient of HV(p), recall the Leibniz’s

rule:

Lemma 2.1 (Leibniz’s Rule [14]). Let ⌦(p) be a region whose boundary depends

on p smoothly, and the unit outward normal vector n(p) is uniquely defined almost

everywhere on the boundary @⌦. Let f(x, p) be a smooth function of p, and define

I =

Z

⌦(p)

f(x, p)dx

if we denote @x

@p
be the gradient of boundary point x 2 @⌦ with respect to p, then

@I

@p
=

Z

⌦(p)

@f(x, p)

@p
dx+

Z

@⌦(p)

f(x, p)nT(x)
@x

@p
dx

Firstly, for a given partition P = {Pi, 1  i  m} of workspace W , let its mass

and centroidal position with respect to the event distribution defined as follow:

Me(Pi, pi) : =

Z

Pi

�e(x) exp

✓
�
kx� pik

2

2�2

◆
dx (2.7a)

pe(Pi, pi) : =
1

Me(Pi, pi)

Z

Pi

�e(x) exp

✓
�
kx� pik

2

2�2

◆
xdx (2.7b)

notice that Me(Pi, pi) > 0 as long as Pi has non-zero Lebesgue measure in Rn because

the event density and sensing quality is positive for any point in the workspace. Also,
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to simplify the expression, let Me,i := Me(Vi(p), pi) and pe,i := pe(Vi(p), pi). Once we

have such centroidal notion, it can be shown that the gradient of the coverage objec-

tive function with respect to sensor i’s position pi is always directed to the centroidal

position of its respective Voronoi cell:

Theorem 2.2. Given the centroidal definition (2.7), the gradient of HV(p) with re-

spect to sensor configuration variables are given by:

@HV

@pi
=

Me,i

�2
(pe,i � pi)

T (2.8)

Proof. Denote the outward normal vector of Vi at boundary point x 2 @Vi as ni(x).

Notice that such normal vector is well defined except for some measure zero set where

the Voronoi boundaries intersect with each other, then by Leibniz’s rule, we have:

@HV

@pi
=

Z

Vi

�e(x)
@qi(x | pi)

@pi
dx+

Z

@Vi

�e(x)qi(x | pi)n
T
i

@x

@pi
dx

+
X

j 6=i

Z

@Vi\@Vj

�e(x)qj(x | pj)n
T
j

@x

@pi
dx

=

Z

Vi

�e(x)
@qi(x | pi)

@pi
dx

+
X

j 6=i

Z

@Vi\@Vj

✓
�e(x)qi(x | pi)n

T
i

@x

@pi
+ �e(x)qj(x | pj)n

T
j

@x

@pi

◆
dx

+

Z

@Vi\@W
�e(x)qi(x | pi)n

T
i

@x

@pi
dx

(2.9)

For any j such that @Vi \ @Vj 6= ;, by the definition of Voronoi cell (2.4), we have

qi(x | pi) = qj(x | pj) for points on the boundary @Vi \ @Vj ; on the other hand,

since ni(x), nj(x) are defined to be the outward normal vector of Vi, Vj respectively,
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we have ni(x) = �nj(x). Therefore we conclude that:

�e(x)qi(x | pi)n
T
i

@x

@pi
+ �e(x)qj(x | pj)n

T
j

@x

@pi
= 0, 8x 2 @Vi \ @Vj (2.10)

in addition, because the workspace boundary does not change as sensors move, we

have:

n
T
i

@x

@pi
= 0, 8x 2 @Vi \ @W (2.11)

substitute (2.10) and (2.11) into (2.9), the integrals on the Voronoi boundary @Vi\@Vj

for 8j 6= i and on the workspace boundary @Vi \ @W vanishes , we get

@HV

@pi
=

Z

Vi

�e(x)
@qi(x | pi)

@pi
dx

=

Z

Vi

�e(x)qi(x | pi)
x� pi

�2
dx

=
Me,i

�2
(pe,i � pi)

T (2.12a)

Theorem 2.2 shows that the gradient field of HV(p) leads each sensor to move

towards its respective Voronoi centroidal position, and when each sensor’s position

coincides with its Voronoi centroidal position, such sensor configuration is a critical

point for HV(p):

Corollary 2.3. HV(p) is locally optimal if and only if, the following holds:

pi = pe,i (2.13)

Once we compute the gradient of HV(p) with respect to each sensor position, the
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continuous-time ”move-to-centroid” control law is given by:

ṗi =
Kp

�2
(pe,i � pi), 1  i  m (2.14)

where Kp > 0 is a fixed control parameter. The convergence under such control law

is guaranteed by the following theorem:

Theorem 2.4. Under the continuous-time ”move-to-centroid” control law (2.14),

HV(p) is non-decreasing and converges to a locally optimal point.

Proof. when ṗi is given by (2.14), the time-derivative of HV(p) is:

ḢV(p) = Kp

mX

i=1

Me,i kpe,i � pik
2
� 0

therefore HV(p) is non-decreasing over time. Notice that HV(p) is bounded above by

some constant over p 2 W
m, then by LaSalle’s Invariant Principle [15], the sensor

configuration p converges to some critical points where ḢV(p) = 0.

2.3 Discrete-Time Coverage Control

In this section, we denote p[k] := {p1[k], · · · , pm[k]} to be the current sensor config-

uration, p[k + 1] := {p1[k + 1], · · · , pm[k + 1]} to be the next sensor configuration

under some discrete-time control law. Let V [k] := V(p[k]) = {V1[k], · · · , Vm[k]} be

the Voronoi partition of W by current sensor configuration. Since the gradient field

of HV(p) always directs each sensor to its Voronoi centroidal position, intuitively one

should apply the following discrete-time ”move-to-centroid” control:

pi[k + 1] = pi[k] + �[pe(Vi[k], pi[k])� pi[k]] (2.15)
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where 0 < �  1 is a fixed step size. By setting � = 1, each sensor moves to its Voronoi

centroidal position directly, while � < 1 indicates a more conservative move towards

the centroidal position. To show that under such discrete-time ”move-to-centroid”

control (2.15), HV increases after each iteration i.e. HV[k+1](p[k + 1]) � HV[k](p[k]),

we firstly give the definition of minorization functions :

Definition 2.5. Given a function f(✓) : ⇥ ! R, a family of functions g(✓ | ✓m) :

⇥ ! R parameterized by ✓m is said to minorize f(✓) over ⇥ if 8✓m 2 ⇥:

f(✓) � g(✓ | ✓m), 8✓ 2 ⇥

f(✓m) = g(✓m | ✓m)
(2.16)

such g(✓ | ✓m) are the minorization functions of f(✓).

The minorization functions are powerful tools to solve many optimization prob-

lems [13]: given g(✓ | ✓m) minorize f(✓) at ✓m, if one can find a non-decreasing step for

g(✓ | ✓m), i.e. 9✓m s.t. g(✓m | ✓m) � g(✓m | ✓m), then ✓m ! ✓m is also a non-decreasing

step for f(✓) by the inequalities: f(✓m) � g(✓m | ✓m) � g(✓m | ✓m) = f(✓m). As the

result, one can maximize f(✓) by maximizing g(✓ | ✓m) or finding a non-decreasing

step for g(✓ | ✓m).

2.3.1 Minorization functions for HV

The discrete-time ”move-to-centroid” control (2.15) implicitly defines the minoriza-

tion function of HV at current sensor configuration p[k]:

Hk(p) =
mX

i=1

Z

Vi[k]

�e(x)qi(x | pi)dx (2.17)

Lemma 2.6. Hk(p) minorize HV(p) at p[k] for all p 2 W
m
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Proof. For p 2 W
m

Hk(p) =

Z

W
�e(x)

"
mX

i=1

qi(x | pi)1x2Vi[k]

#
dx



Z

W
�e(x) max

1im

qi(x | pi)dx

= HV(p)

and it’s obvious that Hk(p[k]) = HV(p[k])

Notice that Hk(p) can be decoupled into optimization problems for each sensor i:

max
pi2W

Hki(pi) =

Z

Vi[k]

�e(x)qi(x | pi)dx

once we find pi[k + 1] such that Hki(pi[k + 1]) � Hki(pi[k]) for each sensor i, we

can make sure HV is non-deceasing. Now we only need to show that (2.15) is a

non-decreasing step for Hki(pi).

2.3.2 Non-decreasing step for Hki

Firstly notice thatHki(pi) = Me(Vi[k], pi). Since for sensor i such thatMe(Vi[k], pi[k]) =

0, under (2.15) we have pi[k + 1] = pe(Vi[k], pi[k]) = pi[k], then Hki(pi[k + 1]) =

Hki(pi[k]) = 0 holds trivially. Therefore, we only consider the case whereMe(Vi[k], pi[k]) 6=

0. Define a family of comparison functions as:

fki(pi) = log


Me(Vi[k], pi)

Me(Vi[k], pi[k])

�
= log

" R
Vi[k]

�e(x)qi(x | pi)dxR
Vi[k]

�e(x)qi(x | pi[k])dx

#
(2.18)

fki(pi) are called comparison functions to Me(Vi[k], pi) because we have the following:

Lemma 2.7. Given pi[k] the current sensor configuration, and pi[k + 1] the next
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sensor configuration, the following holds:

Me(Vi[k], pi[k + 1]) � Me(Vi[k], pi[k]) i↵ fki(pi[k + 1]) � fki(pi[k]) = 0

Proof. because the function log(x) is monotonically increasing.

Now we make sure Me(Vi[k], pi) is non-decreasing by finding a non-decreasing step

for fki(pi). Define the minorization functions for fki(pi) as:

gki(pi) =
1

Me(Vi[k], pi[k])

Z

Vi[k]

�e(x)qi(x | pi[k])

✓
kx� pi[k]k2

2�2
�

kx� pik
2

2�2

◆
dx

(2.19)

To be able to show that gki(pi) are minorization functions of fki(pi), we firstly recall

the Jensen’s inequality:

Lemma 2.8 (Jensen’s Inequality). Suppose µ is a probability measure on (Rn
,B),

and f : Rn
! R is µ-measurable. If ' is a convex function on R, then following

inequality holds:

'[Eµ(f(x))]  Eµ(' � f(x)) (2.20)

and if µ is with density function pµ(x), the inequality can be written as:

'

Z

Rn

f(x)pµ(x)dx

�


Z

Rn

'(f(x))pµ(x)dx (2.21)

Conversely, if ' is a concave function, the reverse of (2.20) holds:

'[Eµ(f(x))] � Eµ(' � f(x)) (2.22)

then we show that gki(pi) have following properties:

Proposition 2.9. gki(pi) minorize fki(pi) at pi[k].
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Proof. Observe that �e(x)qi(x|pi[k])
Me(Vi[k],pi[k])

is a probability density function supported on Vi[k].

Since log(x) is a concave function, by Jensen’s inequality:

fki(pi) = log

Z

Vi[k]

�e(x)qi(x | pi[k])

Me(Vi[k], pi[k])
·

qi(x | pi)

qi(x | pi[k])
dx

�

�

Z

Vi[k]

�e(x)qi(x | pi[k])

Me(Vi[k], pi[k])
· log


qi(x | pi)

qi(x | pi[k])

�
dx

= gki(pi)

(2.23)

also, gki(pi[k]) = fki(pi[k]) = 0, which finishes the proof.

Proposition 2.10. gki(pi) is a concave function of pi, and centroidal definitions in

(2.7), we have

pe(Vi[k], pi[k]) = argmax
pi

gki(pi) (2.24)

Proof. Let In be the n ⇥ n identity matrix, then the gradient and Hessian of gki(pi)

with respect to pi are given by:

@gki(pi)

@pi
=

1

Me(Vi[k], pi[k])

Z

Vi[k]

�e(x)qi(x | pi[k])
x� pi

�2
dx (2.25a)

@
2
gki(pi)

@p
2
i

= �
In

�2
(2.25b)

Since @
2
gki(pi)
@p

2
i

is negative definite, gki(pi) is a concave function of pi; on the other

hand, it’s easy to check that @gki(pi)
@pi

���
pe(Vi[k],pi[k])

= 0, then pe(Vi[k], pi[k]) is a global

maxima of gki(pi).

By proposition 2.9, we know that gki(pi) evaluated at any point on the line segment

between pe(Vi[k], pi[k]) and pi[k] is greater than gki(pi[k]) by its concavity:

Corollary 2.11. Given pi[k + 1] = pi[k] + �[pe(Vi[k], pi[k]) � pi[k]], 0 < �  1, we

have:

gki(pi[k + 1]) � gki(pi[k])

13



Now we can proof that every time the sensor positions are updated according to

(2.15), the objective value HV is non-decreasing:

Theorem 2.12. Under the discrete-time ”move-to-centroid” control (2.15), HV is

non-decreasing at each step.

Proof. For all i, given the next position pi[k + 1] for each sensor by (2.15), by Corol-

lary 2.11, gki(pi[k + 1]) � gki(pi[k]) holds. Because gki(pi) minorize fki(pi) at pi[k],

we have fki(pi[k + 1]) � gki(pi[k + 1]) � gki(pi[k]) = fki(pi[k]), which indicates

Me(Vi[k], pi[k+1]) � Me(Vi[k], pi[k]). Then Hk(p[k+1]) =
P

m

i=1 Me(Vi[k], pi[k+1]) �
P

m

i=1 Me(Vi[k], pi[k]) = Hk(p[k]). Lastly, because Hk(p) minorize HV(p) at p[k], we

have HV(p[k + 1]) � Hk(p[k + 1]) � Hk(p[k]) = HV(p[k])

Such discrete-time ”move-to-centroid” control law can be applied in a distributed

fashion: each sensor only needs to communicate with its Voronoi neighbors in order

to compute its Voronoi centroidal position, thus it is e↵ective for distributed mobile

sensor networks.

3 Coverage Control with Task Assignment

Beside an event distribution with density �e(x) on the workspace, one can define

an area distribution with density �a(x) as a uniform measure on W , i.e. �a(x) ⌘

�R
W dx

��1
. Suppose now for each sensor, we define a task variable si 2 [0, 1], and

its belief of activity distribution is defined to be a convex combination of the event

distribution and the area distribution; the density of this activity distribution is:

�i(x) = si�e(x) + (1� si)�a(x) (3.1)
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under such construction, sensor i has a sensing score of �i(x)qi(x | pi) over the

workspace, intuitively, the objective function to be maximized should be:

Ĥ(p, s) =

Z

W
max

i

[�i(x)qi(x | pi)]dx (3.2)

such objective function suggests that each point should assigned to the sensor that

has the highest sensing score on that point. It requires each sensor to communicate

with all the sensors in the network to achieve such assignment, which is impractical

for most cases given the distributed nature of the mobile sensor networks. Therefore

we should keep the Voronoi partition of the workspace. Notice that given the Voronoi

cell definition in (2.4), Ĥ is lower bounded by:

Ĥ(p, s) =

Z

W
max

i

[�i(x)qi(x | pi)]dx �

mX

i=1

Z

Vi

�i(x)qi(x | pi)dx := ĤV (3.3)

thus we would like to have the following objective:

max
p 2 Wm

s 2 [0, 1]m

ĤV(p, s) =
mX

i=1

Z

Vi

[si�e(x) + (1� si)�a(x)]qi(x | pi)dx (3.4)

Similar to the case without task assignment, we provide a continuous-time control

law that follows the gradient of ĤV such that it converges to a locally optimal con-

figuration, and now the gradient is with additional terms due to the di↵erent activity

distribution on each side of the Voronoi boundary. In Section 3.2, we argue that it is

di�cult to find a discrete-time control due to the additional terms on the boundary,

and we provide a discrete control law for an alternative objective function instead.
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3.1 Continuous-Time Coverage Control

We firstly take the gradient of ĤV with respect to pi and,si. Since now the boundary

terms cannot be canceled with each other, for each Voronoi boundary @Vi, we need to

compute its outward normal vector ni(x) and the infinitesimal area changes nT
i
(x) @x

@pi

with respect to pi :

Lemma 3.1. Given sensor i, j s.t. @Vi \ @Vj 6= ;, for any point x 2 @Vi \ @Vj where

ni(x), nj(x) is well defined, we have the following:

ni(x) = �nj(x) =
pj � pi

kpj � pik
(3.5a)

n
T
i
(x)

@x

@pi
=

(x� pi)T

kpj � pik
(3.5b)

Proof. On @Vi \ @Vj, we have:

kx� pik
2
� kx� pjk

2 = 0 (3.6)

To get the normal vector n(x), suppose x is moving with rate ẋ, take time-derivative

of (3.6), we have:

(pj � pi)
T
ẋ = 0

the equation above indicates that to stay at the boundary, ẋ should be perpendicular

to (pj � pi)
T; on the other hand, ẋ should be the tangent direction of the boundary.

Then
⇣

pj�pi

kpj�pik

⌘T

is a normal vector of @Vi \ @Vj; also,
⇣

pj�pi

kpj�pik

⌘T

is pointing outward

Vi because it’s a increasing direction for kx � pik
2
� kx � pjk

2. Therefore one have

(3.5a).
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Now we take the gradient of (3.6) with respect to pi:

(pj � pi)
T @x

@pi
= (x� pi)

T

dividing both side by kpj � pik, we get (3.5b).

Similarly, given any partition P = {Pi, 1  i  m} and sensor configuration p,

we also define the centroidal notion for the area distribution:

Ma(Pi, pi) : =

Z

Pi

�a(x) exp

✓
�
kx� pik

2

2�2

◆
dx (3.7a)

pa(Pi, pi) : =
1

Ma(Pi, pi)

Z

Pi

�a(x) exp

✓
�
kx� pik

2

2�2

◆
xdx (3.7b)

also, we let Ma,i := Ma(Vi(p), pi) and pa,i := pa(Vi(p), pi).

Additionally, for a Voronoi partition V and corresponding sensor configuration p, we

can define the outward mass, inward mass, outward centroidal position and inward

centroidal position for each Voronoi boundary @Vi as:

µ
+
i
: =

mX

j=1

Z

@Vi\@Vj

�i(x) exp

✓
�
kx� pik

2

2�2

◆
1

kpj � pik
dx (3.8a)

µ
�
i
: =

mX

j=1

Z

@Vi\@Vj

�j(x) exp

✓
�
kx� pik

2

2�2

◆
1

kpj � pik
dx (3.8b)

p
+
i
: =

1

µ
+
i

mX

j=1

Z

@Vi\@Vj

�i(x) exp

✓
�
kx� pik

2

2�2

◆
x

kpj � pik
dx (3.8c)

p
�
i
: =

1

µ
�
i

mX

j=1

Z

@Vi\@Vj

�j(x) exp

✓
�
kx� pik

2

2�2

◆
x

kpj � pik
dx (3.8d)

Theorem 3.2. Given the centroidal definitions (2.7), (3.7) and (3.8), the gradient
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of ĤV with respect to sensor configuration variables are given by:

@ĤV

@pi
= si

Me,i

�2
(pe,i � pi)

T + (1� si)
Ma,i

�2
(pa,i � pi)

T

+ µ
+
i
(p+

i
� pi)

T
� µ

�
i
(p�

i
� pi)

T (3.9a)

@ĤV

@si
= Me,i �Ma,i (3.9b)

Proof. When taking derivative of ĤV with respect to pi, similar to the proof of The-

orem 2.2, by Leibniz’s rule, we have:

@ĤV

@pi
= si

Z

Vi

�e(x)
@qi(x | pi)

@pi
dx+ (1� si)

Z

Vi

�a(x)
@qi(x | pi)

@pi
dx

+
X

j 6=i

Z

@Vi\@Vj

✓
�i(x)qi(x | pi)n

T
i

@x

@pi
+ �j(x)qj(x | pj)n

T
j

@x

@pi

◆
dx

+

Z

@Vi\@W
�e(x)qi(x | pi)n

T
i

@x

@pi
dx

(3.10)

by Lemma 3.1, for x 2 @Vi \ @Vj, 8j 6= i, we have:

�i(x)qi(x | pi)n
T
i

@x

@pi
+ �j(x)qj(x | pj)n

T
j

@x

@pi
= [�i(x)� �j(x)]qi(x | pi)

(x� pi)T

kpj � pik

(3.11)

again, because the workspace boundary does not change as sensors move, we have:

n
T
i

@x

@pi
= 0, 8x 2 @Vi \ @W (3.12)

substitute (3.11) and (3.12) into (3.10), rewrite it with centroidal definitions, then we

get (3.9a).

When taking derivative of ĤV with respect to si, we get:

@ĤV

@si
=

Z

Vi

�e(x)qi(x | pi)dx�

Z

Vi

�a(x)qi(x | pi)dx = Me,i �Ma,i
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Notice that in (3.9a), the gradient field of ĤV with respect to pi is a weighted

composition of four ”forces” acting on pi: moving towards centroidal position of

event, centroidal position of area, outward centroidal position of the boundary, and

moving away from inward centroidal position of the boundary. We can combine these

”forces” with the following centroidal definitions:

M̂i = si
Me,i

�2
+ (1� si)

Ma,i

�2
+ µ

+
i
+ µ

�
i

(3.13a)

p̂i =
1

M̂i


si
Me,i

�2
pe,i + (1� si)

Ma,i

�2
pa,i + µ

+
i
p
+
i
+ µ

�
i
(2pi � p

�
i
)

�
(3.13b)

then @ĤV
@pi

can be rewritten as:

@ĤV

@pi
= M̂i(p̂i � pi)

T (3.14)

Therefore the continuous-time control law can still act as moving pi towards a com-

bined centroidal position, we would like to have the following control input:

ṗi = Kp(p̂i � pi)
T (3.15a)

ṡi = Kssi(Me,i �Ma,i)1Me,iMa,i

+Ks(1� si)(Me,i �Ma,i)1Me,i>Ma,i (3.15b)

where 1A is defined to be an indicator function i.e. 1A = 1 if A is true, and 1A = 0

otherwise. Having such control law (3.15b) for si ensures that si takes value in [0, 1].

It is obvious that si will eventually be close to either 1 or 0, and its transient state

does not have much e↵ect on the final sensor configuration of the network. The

convergence of such control system is guaranteed by:
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Theorem 3.3. Under the continuous-time control law (3.15), ĤV(p, s) is non-decreasing

and converges to a locally optimal point.

Proof. when ṗi, ṡi is given by (3.15), the time-derivative of ĤV(p, s) is:

d

dt
ĤV(p, s) =

mX

i=1

KpM̂ikp̂i�pik
2+Ks(Me,i�Ma,i)

2[si1Me,iMa,i+(1�si)1Me,i>Ma,i ] � 0

therefore ĤV(p, s) is non-decreasing overtime. Again, ĤV(p, s) is bounded above by

some constant over p 2 W
m
, s 2 [0, 1]m, then by LaSalle’s Invariant Principle [15],

the sensor configuration p and task assignment s converges to some critical points

where d

dt
ĤV(p, s) = 0.

3.2 Discrete-Time Coverage Control with An Alternative Ob-

jective

It is hard to find a discrete-time control law for (3.4), particularly for the position

pi: one can easily see that finding minorization functions for ĤV(p, s) with respect

to sensor configuration p by fixing current Voronoi partition, as in 2.3.1, can not be

applied here. For each sensor to search for a non-decreasing step for ĤV , it should

be able to estimate the changes in activity distribution due to the Voronoi boundary

changes, which requires a pre-knowledge of the movement of its neighbors, therefore

maximizing ĤV can not be decoupled into sub-problems for each sensor. Thus we

would like to introduce an slightly modified objective function that allows such de-

coupling.

Because the problem comes with the di�culties for each sensor to ”predict” the

changes on each Voronoi boundary solely by its movement, we’d like to force each

sensor to have same activity distribution near the Voronoi boundary. Firstly let’s
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define the neighboring set of each sensor:

Definition 3.4. The neighboring set of sensor i is defined to be a ball centered

at pi with radii di: Ui(pi) := {x 2 Rn
| kx � pik < di}; Let their union to be

U(p) :=
S

m

i=1 Ui(pi)

Definition 3.5. A conflict-free configuration is defined to be the sensor config-

uration that is in the following set:

F := {p 2 W
m
| Ui(pi) \ Uj(pj) = ;, 8i 6= j}

We assume sensors have neighboring set with same fixed radii i.e. di = d, 8i, the

following result can be extended to more general case where di is dynamically con-

trolled. For each sensor, it sense its own belief of activity distribution �i only within

its neighboring set, and the conflict-free configuration ensures that its neighboring

set does not overlap with those of other sensors. Outside the neighboring sets, we’d

like to let all sensors sense a shared activity distribution �m, with density function:

�m(x) = max{�a(x),�e(x)} (3.16)

choosing this shared distribution as the point-wise maximum of event and area dis-

tribution is conservative because it has least risk of losing track of points with high

density outside the neighborhood sets. Given such construction, we have an alterna-

tive objective function H̄V :

H̄V(p, s) :=
mX

i=1

Z

Vi

[1x/2Ui(pi)�m(x) + 1x2Ui(pi)�i(x)]qi(x | pi)dx (3.17)

where �i(x) is still a convex combination of �e(x) and �a(x), as defined in (3.1). Once

we constrain the sensor configuration within the conflict-free configuration set, the
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following holds:

Lemma 3.6. Assume di = d, 8i, then for a conflict-free configuration p 2 F , H̄V

can be rewritten as:

H̄V(p, s) =

Z

W/U(p)

�m(x)max
i

qi(x | pi)dx+
mX

i=1

Z

Ui(pi)

�i(x)qi(x | pi)dx (3.18)

Proof. For all point x 2 Ui(pi), we know that x 2 Vi(p), otherwise we would have

x 2 Uj(pj) \ Ui(pi) for some j, which contradicts that p 2 F . Therefore we have

Ui(pi) ✓ Vi(p), 8i. Also, notice that Ui(pi) are disjoint, then

H̄V(p, s) =
mX

i=1

Z

Vi(p)/Ui(pi)

�m(x)qi(x | pi)dx+
mX

i=1

Z

Vi(p)

1x2Ui(pi)�i(x)qi(x | pi)dx

=

Z

W/U(p)

�m(x)max
i

qi(x | pi)dx+
mX

i=1

Z

Ui(pi)

�i(x)qi(x | pi)dx

based on such observation, our objective would be:

max
p 2 F

s 2 [0, 1]m

H̄V(p, s) =

Z

W/U(p)

�m(x)max
i

qi(x | pi)dx+
mX

i=1

Z

Ui(pi)

�i(x)qi(x | pi)dx

(3.19)

Given current state p[k] 2 F , s[k] 2 [0, 1] , and Voronoi partition V [k], we introduce

discrete-time update laws for pi, si that ensure H̄V is non-decreasing at each iteration.

22



3.2.1 Conditions on update laws for si

Assume sensor configuration p[k] fixed, any update law for task assignment s that

satisfies the following conditions for all i will make sure H̄V is non-decreasing:

si[k]  si[k + 1]  1, if Me(Ui(pi[k]), pi[k]) � Ma(Ui(pi[k]), pi[k])

0  si[k + 1]  si[k], otherwise
(3.20)

Proposition 3.7. Given si[k + 1] satisfying (3.20) for all 1  i  m, then:

H̄V(p[k], s[k + 1]) � H̄V(p[k], s[k])

Proof.

H̄V(p[k], s[k + 1])� H̄V(p[k], s[k])

=
mX

i=1

Z

Ui(pi[k])

(si[k + 1]� si[k])[�e(x)� �a(x)]qi(x | pi[k])dx

=(si[k + 1]� si[k])[Me(Ui(pi[k]), pi[k])�Me(Ui(pi[k]), pi[k])] � 0

The intuition of such result is that the coverage objective becomes the maxi-

mization of a convex combination of Me(Ui(pi[k]), pi[k]) and Me(Ui(pi[k]), pi[k]) by

controlling the weights, any si[k + 1] that gives more weight on the higher mass will

increase the objective function.

3.2.2 Conditions on update laws for pi

Assume task assignment s[k] fixed. Given current state p[k], V [k], we’d like to define

the conflict-free set of each sensor:
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Definition 3.8. Given Voronoi partition V [k], the conflict-free set of sensor i is

defined to be:

Fi[k] := {pi 2 Vi[k] | Ui(pi) ✓ Vi[k]} (3.21)

Here we provide several useful results about this set:

Lemma 3.9. Given the definition of conflict-free set of sensor i, if p[k] 2 F , then

we have the following properties:

1. Fi[k] in non-empty for all sensor i;

2. Fi[k] is a convex set for all sensor i;

3. F1[k]⇥ F2[k]⇥ · · ·⇥ Fm[k] ✓ F .

Proof. 1. if p[k] 2 F , we know that for all i, Ui(pi[k]) ✓ Vi[k], then pi[k] 2 Fi[k]

for all i;

2. Firstly notice that Vi[k] is a convex set because it is an intersection of half-

spaces: Vi[k] =
S

j
{x 2 W | kx� pik  kx� pjk}.

Then we assume pi1, pi2 2 Fi[k], for pi3 = �pi1+(1��)pi2, � 2 [0, 1], given any

point x 2 Ui(pi3), one can verify that x = �(pi1+x�pi3)+(1��)(pi2+x�pi3).

Since k(pi1+x�pi3)�pi1k = kx�pi3k < d, we have (pi1+x�pi3) 2 Ui(pi1) ✓ Vi[k]

and similarly (pi2 + x � pi3) 2 Ui(pi2) ✓ Vi[k]. x is a convex combination of

two points in Vi[k] then we have x 2 Vi[k] by convexity. Then we conclude that

Ui(pi3) ✓ Vi[k], i.e. pi3 2 Fi[k], thus Fi[k] is a convex set;

3. Notice that if Ui(pi) ✓ Vi[k] for some pi, then Ui(pi) ✓ V
�
i
[k], where V �

i
[k] is the

interior of Vi[k]. To show that, if 9x 2 Ui(pi) such that x 2 @Vi[k], then because

Ui(pi) is an open set, we have U✏(x) = {y | kx � yk < ✏} ✓ Ui(pi) for some ✏.

the hyperplane @Vi[k] would partition such open ball U✏(x) into two open set,
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one is strictly in Vi[k] and another is outside Vi[k], which leads to contradiction.

given Ui(pi) ✓ V
�
i
[k] for all i, and the fact that V �

i
[k] are disjoint sets, we have

Ui(pi) \ Uj(pj) = ;, 8i 6= j, therefore F1[k]⇥ F2[k]⇥ · · ·⇥ Fm[k] ✓ F .

Now by fixing the current Vornoi partition V [k], we can define the minorization

function for H̄V to be:

H̄k(p) :=
mX

i=1

Z

Vi[k]

[1x/2Ui(pi)�m(x) + 1x2Ui(pi)�i(x)]qi(x | pi)dx (3.22)

Lemma 3.10. H̄k(p, s[k]) minorize H̄V(p, s[k]) at p[k] for p 2 F1[k]⇥F2[k]⇥ · · ·⇥

Fm[k]

Proof. Given p 2 F1[k]⇥ F2[k]⇥ · · ·⇥ Fm[k],

H̄k(p, s[k]) =
mX

i=1

Z

Vi[k]

[1x/2Ui(pi)�m(x) + 1x2Ui(pi)�i(x)]qi(x | pi)dx

=

Z

W/U(p)

�m(x)

"
mX

i=1

1x2Vi[k]qi(x | pi)

#
dx+

mX

i=1

Z

Ui(pi)

�i(x)qi(x | pi)dx



Z

W/U(p)

�m(x)max
i

qi(x | pi)dx+
mX

i=1

Z

Ui(pi)

�i(x)qi(x | pi)dx

= H̄V(p, s[k])

Also, its easy to check that H̄k(p[k], s[k]) = H̄V(p[k], s[k]).

Notice that maximizing H̄k(p, s[k]) within p 2 F1[k] ⇥ F2[k] ⇥ · · · ⇥ Fm[k] is

equivalent to the following objective for each sensor i:

max
pi2Fi[k]

H̄ki(pi) =

Z

Vi[k]

[1x/2Ui(pi)�m(x) + 1x2Ui(pi)�i(x)]qi(x | pi)dx (3.23)
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the update law for pi can be any non-decreasing step for H̄ki(pi):

Proposition 3.11. if H̄ki(pi[k + 1]) � H̄ki(pi[k]), for all 1  i  m, then

H̄V(p[k + 1], s[k]) � H̄V(p[k], s[k])

Proof. Given H̄ki(pi[k + 1]) � H̄ki(pi[k]) for all i, we have H̄k(p[k + 1], s[k]) =
P

m

i=1 H̄ki(pi[k + 1]) �
P

m

i=1 H̄ki(pi[k]) = H̄k(p[k], s[k]). Because H̄k(p, s[k]) minorize

H̄V(p, s[k]) at p[k], we have H̄V(p[k+1], s[k]) � H̄k(p[k+1], s[k]) � H̄k(p[k], s[k]) =

H̄V(p[k], s[k]).

Unfortunately, we cannot find global maximum of (3.23) with the centroidal no-

tions. Each sensor should do line search to find a non-decreasing step, we discuss one

way to do the line search in Appendix.

4 Simulation Result

In this section, numerical simulation results are provided to demonstrate the locally

optimal sensor configurations under di↵erent settings, from which we see significant

improvement in balancing event and area coverage by introducing task assignment

for each sensor.

In the simulation settings, the workspace is a 10⇥10 square region. the sensor network

is composed of 8 sensors with identical Gaussian sensing quality model with parameter

� = 1. Under di↵erent event distributions, we compare the optimal sensor configu-

ration for the following three proposed coverage control approaches: 1)discrete-time

”move-to-centroid” control for event coverage only, with control parameter � = 1,

i.e. each sensor directly move to its Voronoi centroidal position at every iteration;

2)continuous-time control for coverage control with task assignment, with control pa-
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(a) (b) (c) (d)

Figure 1: Visualization of locally optimal sensor configuration for di↵erent cases: (a)initial sensor

configuration; (b)locally optimal sensor configuration under discrete-time ”move-to-centroid” control

without task assignment; (c)locally optimal sensor configuration under continuous-time ”move-to-

centroid” control with task assignment; (d)locally optimal sensor configuration under discrete-time

control for the alternative objective with task assignment. Sensors assigned to event coverage are

shown with black edges, and sensors assigned to area coverage are with white edges.

rameter Kp = 3, Ks = 200; 3)discrete-time control for coverage control for alternative

objective with task assignment, with neighborhood set radii d = 1, each sensor take

a non-decreasing step computed by line search as described in Appendix. Firstly, we

consider the cases where a single event happens in the workspace. The first row of

Figure.1 shows the case where sensors are initially located away from the event. The
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density function of the event is given by:

�e1(x) =
1

2⇡
exp

✓
�
1

2

��x� [7, 6]T
��2
◆

The simulation result shows significant di↵erence in optimal sensor configuration af-

ter task assignment is introduced: The optimal configuration for event coverage only

locates all the sensors close to the event, and most Voronoi cells are extremely ”imbal-

anced”, i.e. the geometric centroid of the Voronoi cell is far away from the position of

its corresponding sensor. Such configuration is unfavorable for area coverage because

the points away from the event are sensed with low quality due to the imbalanced

Voronoi cell. On the other hand, when the task assignment is introduced, most sensors

are on area coverage and only one sensor is located near the event center to do event

coverage. The sensor on area coverage is prevented from getting close to the event

for two reason: one is that the major force acted on the sensor is directed towards

the geometric center of its Voronoi cell instead of event center; another is that the

sensor is pushed away from event by additional force on either the Voronoi boundary

or the neighborhood set boundary due to the di↵erence in activity distribution on

two sides of the boundary. Based on such observation, one can expect that initial

sensor configuration will have e↵ect on how many sensors are on event coverage in

the optimal configuration.

To show this, the second row of Figure.1 demonstrate the case where sensors are

initially close to the event. The density function of the event is given by:

�e2(x) =
1

2⇡
exp

✓
�
1

2

��x� [3, 5]T
��2
◆

Since now there are 3 sensors that is initially located near the event, those sensors

immediately switch to event coverage and stay close to the event. Notice that under
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the discrete-time control for the slightly modified objective, the event is not evenly

assigned to those 3 sensors, as in the continuous-time control case. This is because of

the additional constraints that the neighborhood sets of sensors should not intersect.

Lastly, we shows the optimal configuration for a more complex event function, as in

the third row of Figure.1. The density function of the event is given by:

�e3(x) =
1

C


exp

✓
�
1

9

��x� [8, 8]T
��2
◆
+ exp

✓
�
1

2

��x� [8, 2]T
��2
◆

+ exp

✓
�
1

2

��x� [8, 4]T
��2
◆
+ exp

⇣
�
��x� [3, 7]T

��2
⌘�

where C is a normalizing term. By introducing the task assignment, the continuous-

time control achieves an optimal configuration such that each event intensive region

is occupied by one sensor, since initially no sensor is close to events. However, the

optimal configuration for discrete-time control with alternative objective is not ideal:

for the event at [3, 7]T, although there are sensors located around the event, no sensor

is on event coverage and close to event center. The reason is because no sensor’s

neighborhood set is close enough to the event so that sensor can switch to event

coverage. Such result shows for the coverage control with task assignment, having

modified objective with additional constraints for computational e�ciency comes with

disadvantage of potentially getting less optimal configuration.

5 Conclusion

In this thesis, we proposed the Voronoi-based coverage control with task assignment

to balance the event and area coverage in the workspace. A continuous-time ”move-

to-centroid” control is shown to converge to a locally optimal sensor configuration;

Then a discrete-time control for a slightly modified objective is introduced. The
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simulation result shows significant improvement in balancing event and area coverage

by introducing the task assignment to each sensor. It can be observed that in the

optimal configuration, each sensor has distinct behavior that matches its task: the

sensor assigned to event coverage is located near event center, while the sensor on

area coverage positions itself close to the geometric center of its Voronoi cell.

For the discrete-time control with task assignment, potential drawbacks are seen in

the simulation as the neighborhood sets of sensors introduce additional constraints

for sensor movement. Dynamically controlling the radii of the neighborhood set for

each sensor should be a possible improvement in the future work to reduce the e↵ect

of such constraints.

Another future research direction is to extend the idea of task assignment to camera

networks [5]. As widely utilized in applications such as visual surveillance, the camera

networks clearly need to e↵ectively track event while maintain overall area coverage of

the environment. A good task assignment scheme along with Pan/Tilt/Zoom control

would allow only a few cameras in the network to fulfill complex sensing tasks, which

is of great importance for many practical applications.

Appendix

A Non-decreasing step for H̄ki(pi) by line search

Recall In Section 3.2, the objective for sensor i is:

max
pi2Fi[k]

H̄ki(pi) =

Z

Vi[k]

[1x/2Ui(pi)�m(x) + 1x2Ui(pi)�i(x)]qi(x | pi)dx (A.1)
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To do line search for pi[k + 1] along the gradient direction, we firstly compute the

gradient of H̄ki(pi) with respect to pi:

Proposition A.1. The gradient of H̄ki(pi) with respect to pi is given by:

@H̄ki(pi)

@pi
=

Z

Vi[k]

[1x/2Ui(pi)�m(x) + 1x2Ui(pi)�i(x)]qi(x | pi)
x� pi

�2
dx

+

Z

@Ui(pi)

[�i(x)� �m(x)]qi(x | pi)
x� pi

d
dx

(A.2)

Proof. Divide H̄ki(pi) into two integrals:

H̄ki(pi) =

Z

Vi[k]

�m(x)qi(x | pi)dx+

Z

Ui(pi)

[�i � �m(x)]qi(x | pi)dx

For the second term, similar to Lemma 3.1, we can easily verify that on @Ui(pi),

n
T(x) = n

T(x) @x

@pi
= x�pi

d
. Then we take the gradient of two integrals respectively by

Leibniz’s Rule and we get (A.2).

To rewrite the gradient as a vector direct from pi to some centroidal position, we

define the following masses, centroidal positions:

Mki =

Z

Vi[k]

[1x/2Ui(pi)�m(x) + 1x2Ui(pi)�i(x)]qi(x | pi)dx (A.3a)

µ
+
ki
=

Z

@Ui(pi)

�i(x)qi(x | pi)dx, µ
�
ki
=

Z

@Ui(pi)

�m(x)qi(x | pi)dx (A.3b)

M̄ki =
Mki

�2
+

µ
+
ki
+ µ

�
ki

d
(A.3c)

pki =

Z

Vi[k]

[1x/2Ui(pi)�m(x) + 1x2Ui(pi)�i(x)]qi(x | pi)xdx (A.3d)

p
+
ki
=

Z

@Ui(pi)

�i(x)qi(x | pi)xdx, p
�
ki
=

Z

@Ui(pi)

�m(x)qi(x | pi)xdx (A.3e)

p̄ki =
1

M̄ki


Mki

�2
pki +

µ
+
ki

d
p
+
ki
+

µ
�
ki

d
(2pi � p

�
ki
)

�
(A.3f)
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Then @H̄ki(pi)
@pi

can be rewritten as:

@H̄ki(pi)

@pi
= M̄ki(p̄ki � pi) (A.4)

Although p̄ki is not necessarily a non-decreasing step for H̄ki(pi), it suggest that we

can do binary search starting from p̄ki: update next step to be the ↵-th quantile on

the line segment from pi[k] to current step and check the objective value at each step

until we find a non-decreasing one, where 0 < ↵ < 1 is a fixed parameter. However,

given the constraint that pi[k + 1] must be within Fi[k], we should project p̄ki onto

Fi[k] before doing the line search, first define:

�
⇤ = max{0 < �  1 | �p̄ki + (1� �)pi[k] 2 Fi[k]}

let p̄⇤
ki

= �
⇤
p̄ki + (1 � �

⇤)pi[k]. Since Fi[k] is convex, any point on the line segment

between p̄
⇤
ki

and pi[k] is in Fi[k], thus p̄
⇤
ki

can be a starting point of the binary line

search.
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