
Reactive Footstep Planning for a Planar Spring Mass Hopper

Ömür Arslan, Uluc. Saranlı and Ömer Morgül

Abstract— The main driving force behind research on legged
robots has always been their potential for high performance lo-
comotion on rough terrain and the outdoors. Nevertheless, most
existing control algorithms for such robots either make rigid
assumptions about their environments (e.g flat ground), or rely
on kinematic planning at low speeds. Moreover, the traditional
separation of planning from control often has negative impact
on the robustness of the system against model uncertainty and
environment noise. In this paper, we introduce a new method
for dynamic, fully reactive footstep planning for a simplified
planar spring-mass hopper, a frequently used model for running
behaviors. Our approach is based on a careful characterization
of the model dynamics and an associated deadbeat controller,
used within a sequential composition framework. This yields
a purely reactive controller with a very large, nearly global
domain of attraction that requires no explicit replanning during
execution. Finally, we use a simplified hopper in simulation to
illustrate the performance of the planner under different rough
terrain scenarios and show that it is extremely robust to both
model uncertainty and measurement noise.

I. INTRODUCTION

Legged morphologies have always been considered nec-

essary to achieve dynamic, robust and autonomous traversal

of complex, outdoor terrain. Despite effective behaviors

and performance demonstrated by tracked vehicles [19] and

flexible multi-wheeled platforms [16], the pallet of behaviors

realizable with such morphologies inevitably remains limited

due to restricted directions in which forces can be applied

to the robot body. On the other hand, while legged designs

do not suffer from such limitations [15], their robust and

maneuverable control on complex terrain is still a largely

unsolved problem. Traditional approaches which perform

planning and control separately do not perform well in the

presence of model uncertainty and measurement noise. In

contrast, existing reactive control methods often make rigid

assumptions about their environment (e.g. flat ground or

single obstacle of known size) and do not offer the scalability

necessary for deployment on real-life problems.

Fig. 1. A spring-mass hopper running over rough terrain.

Ö.Arslan is with the Dept. of Electrical & Electronics Eng., Bilkent
University, 06800 Ankara, Turkey omur@ee.bilkent.edu.tr

U.Saranlı is with the Dept. of Computer Engineering, Bilkent University,
06800 Ankara, Turkey saranli@cs.bilkent.edu.tr

Ö.Morgül is with the Dept. of Electrical & Electronics Eng., Bilkent
University, 06800 Ankara, Turkey morgul@ee.bilkent.edu.tr

In this paper, we propose a novel algorithm to address

these issues for the specific problem of purely reactive

control and footstep planning for a simplified planar spring-

mass hopper running on rough terrain, illustrated in Fig. 1.

Our focus on the planar hopper is founded on the success

of the well-known Spring-Loaded Inverted Pendulum (SLIP)

model [17] both in accurately describing runners in nature

[3] and in providing morphological inspiration and a high-

level control interface to a family of robot runners [1, 11,

13]. Consequently, the contribution of a robust control and

planning framework for this model promises to be applicable

to a variety of robot sizes and morphologies ranging from

monopedal and bipedal runners to hexapedal robots.

Motion planning for locomotion on rough terrain has been

a topic of interest since the first days of legged robots. With

controllers that regulate step-lengths, Raibert’s bipeds [13]

have been able to traverse both flat terrain with “holes”

as well as terrain with significant height variations. Their

method relied on preprocessing of the terrain structure to

identify specific footholds in the planning step and used the

execution controller to achieve the constructed plan, resulting

in significant sensitivity to modeling uncertainty. A similar

planning framework was also investigated in [20], particu-

larly as it applies to the Bow-Leg platform. The proposed

solutions still remained non-reactive with explicit replanning

performed upon detection of plan failure. More recently,

footstep planning for bipeds in complex environments re-

ceived considerable attention with the availability of quasi-

static but well actuated humanoid robots. Footstep planning

for such platforms can rely on a kinematic characterization

of their stepping patterns [12]. Since movements of such

robots are usually rather slow, discrete abstractions of action

sequences combined with search algorithms, possibly with

replanning for dynamic or unpredictable environments, suf-

fice to achieve reasonable performance [5, 6]. Unfortunately,

for systems that must rely on their second order dynamics,

either due to underactuation or to achieve high speeds, such

kinematic methods quickly become inapplicable.

The presence of non-negligible second-order dynamics

inevitably brings the need for reactivity since models for such

systems are much less accurate. One of the most successful

methods in integrating deliberate planning with reactivity for

dynamically dexterous robots is the Sequential Composition,

first introduced in the context of juggling [4] and later applied

to other platforms such as planar mobile robots with different

actuation modalities [7–9] and the Minifactory [14]. Se-

quential composition characterizes dynamic behaviors for a

robotic system through their invariant domains and goal sets

in the state space, ensuring proper activation order through a

X
n+1

n
X

D(Φi)

Gf (Φi)

Rg(Φi)

Fig. 2. An illustration of ground support Rg(Φi), policy domain D(Φi),
and feasible goal Gf (Φ1) regions for the spring mass hopper.

prioritization combined with reactive decision-making. Our

approach is largely based on these ideas but deviates in our

formulation of behavioral primitives and associated domain

and goal sets. Among primary contributions of our paper

are the formulation of a general framework for discrete,

per-step application of sequential composition to a loosely

constrained family of hoppers, as well as the application

of resulting ideas to a specific, simplified hopper model

supported by an analytical characterization of its apex states

reachable from specific regions of allowable footholds.

II. PLANNING FRAMEWORK

A. A Generic Hopper Model

Running trajectories for all one or two legged systems

exhibit a common structure: They alternatingly go through

flight and stance phases, separated by touchdown and liftoff

events as the foot comes into contact and leaves the ground,

respectively. It is also useful to define an apex event asso-

ciated with the highest point of the center of mass (COM)

during flight, whose height and forward velocity are often

used as a representative state vector for the subsequent stride.

In this section, we make as few assumptions as possible about

the underlying system beyond this structure in order to ensure

general applicability of our framework.

Throughout this paper, we assume that a planar one-

legged hopper is running on a piecewise flat ground (e.g.

Fig. 1), possibly with a number of “holes” on which no foot

placement is possible. During flight, we assume that the robot

COM follows a ballistic trajectory, whereas during stance, its

dynamics are determined by its leg morphology and control,

which we leave unspecified. We also assume that gait control

is achieved with per-step control inputs selected at each

apex (but possibly realized throughout the entirety of the

following flight and stance phases), allowing independent,

possibly limited control of all three degrees of freedom for

the next apex. This framework, for which a single stride is

illustrated in Fig. 2, is consistent with most planar running

robot morphologies in the literature ranging from the SLIP

model to more complex, multi-jointed leg designs.

We associate with each ground segment, one or more

single-step “local” families of control policies Φi that use

that segment for their foothold during stance, while using

control inputs from a constrained set U(Φi) to take the robot

to an associated set of possible apex states. Our planning

algorithm seeks to find a particular reactive sequencing of

these policies to ensure that the robot is driven to a desired

goal state from as large a set of initial conditions as possible.

In the spirit of sequential composition, we associate with

each family of policies Φi, a domain D(Φi), including

those apex states from which the corresponding ground

segment Rg(Φi) is reachable, as well as a feasible goal

set Gf (Φi) including only apex states that are achievable

from every state within the domain within a single stride

using allowable control inputs. In the sequel, we will use

Xn := {yn, zn, ẏn, 0} to denote the state of the hopper at

the nth apex event, and Fa(Xn, u) to denote the apex return

map that under a specific control input u. Formal definitions

of the domain and feasible goal sets hence take the form

D(Φi):={Xn | ẏn ∈ RV (Φi), En ∈ RE(Φi),

∀u ∈ U(Φi). yf,td(Xn, u) ∈ Rg(Φi),

TD(Xn, Φi) ⊂ FS } , (1)

Gf (Φi):={Xn+1 | ∀Xn ∈ D(Φi), ∃u ∈ U(Φi).

Xn+1 = Fa(Xn, u),

TA(Xn+1, Φi) ⊂ FS} , (2)

where the sets RV (Φi) and RE(Φi) are allowed ranges for

the velocity and energy of the initial apex state, U(Φi) is

the allowable set of control inputs, and Rg(Φi) denotes the

ground segment associated with the policy on which the

hopper will land as shown in Fig. 2. In order to prevent

collisions with the ground we also require descent and ascent

trajectories, denoted with TD(Xn,Φi) and TA(Xn+1,Φi), to

be contained in free space FS.

Intuitively, D(Φi) captures apex states having energy and

forward velocity values in the associated ranges RV (Φi) and

RE(Φi) from where the hopper can reach the corresponding

ground segment using available control inputs u ∈ U(Φi).
In contrast, the feasible goal region Gf (Φi), represents all

apex states that are guaranteed to be reachable from the

entire domain using whatever control input is necessary from

within the allowable set U(Φi).

B. Reactive Footstep Planning

As described above, computation of the domain and

feasible goal regions depends on the particulars of system

dynamics. Nevertheless, once computed, they present a very

convenient abstract interface between planning and control

since the above construction ensures by design, the existence

of a single-step controller that can take any apex state

inside the domain to any subsequent apex state within the

feasible goal region. In this section, we describe how to

automatically construct a reactive, provably correct hybrid

footstep controller that uses a given set of policies Φi.

1) The Prepares Relation: The sequential composition

formalism introduced in [4] defines a relation between local

controller policies that captures whether their sequencing

is feasible or not. Their policy definitions include only a

single goal point, whose inclusion in the domain of another

policy is sufficient to ensure the validity of sequencing. Our

formulation of the goal set is more general, in the sense

that the feasible goal set Gf (Φi) includes an entire range of

possible goal points that can be chosen to yield a particular

policy instance. Consequently, we define a more general

relation, can prepare, indicating the availability of a goal

choice that can guarantee proper sequencing.

Definition 1: A policy Φi can prepare another policy Φj ,

denoted by Φi �c Φj , iff the following condition holds,

Gf (Φi) ∩ D(Φj) 6= ∅ .
This freedom in choice for the goal point associated with

a policy allows the planner to consider optimality or safety

criteria to increase the efficiency and robustness of the final

reactive controller. Much like the original sequential com-

position algorithm, this relation induces a directed, possibly

cyclic can prepare graph G := {Φi,�c} between all policies.

Before we proceed with the description of our planning

algorithm, we will find the following definition useful.

Definition 2: A policy instance Φ̂i(Xg) is a controller that

will take the hopper from an apex state Xn ∈ D(Φi) and

bring it to a specific, feasible goal point Xn+1 = Xg ∈
Gf (Φi) using an allowable control input u ∈ U(Φi) and

stepping once on the ground range Rg(Φi) for the policy.

2) Planning by Prioritizing Policies: The formulation of

the “can prepare graph” above captures all relevant sequenc-

ing constraints between different control policies. However,

a robot running across rough terrain must still decide at

every step which one of these policies will be used to

determine proper control inputs for the next stride. The

original sequential composition method divides this problem

into two stages. First, the prepares graph is converted into

a total order whose top element is chosen as a policy that

can take the robot to the desired global goal. The resulting

explicit prioritization of policies is then used at runtime to

determine which policy should be used from among those

whose domains cover the measured robot state. Even though

different alternatives such as sequence-based and automata-

based planners are possible [8], we adopt the order-based

method, adapted to deal with larger, non-point goal sets as

well as the discrete nature of our system.

Suppose a global goal is supplied to the planner in the

form of a desired apex state Xg. Our algorithm starts by

choosing goal policies Φj such that Xg ∈ Gf (Φj) and

instantiates them for the specific desired goal as Φ̂j(Xg). The

algorithm then proceeds by backchaining on G, incrementally

building a total order of instantiated policies until all policy

nodes in the graph are traversed. The instantiation of each

policy chooses a single goal point which is both in its feasible

goal set as well as the domain of the policy that it prepares,

using a heuristic cost function that takes into account ap-

propriate safety and efficiency criteria to determine the best

candidate from among available goal alternatives.

Table I gives the detailed planning algorithm that yields

the final policy ordering to be used for reactive control. Note

that for each instantiated policy, the algorithm computes a

specific goal point Gs(Φ̂j), and a priority P(Φ̂j) according

TABLE I

ORDER BASED POLICY PRIORITY PLANNER

1: Algorithm Order Based Policy Planner(Xg, G)

2: PolicyFIFO := ∅
3: GP := FindGoalPolicies(Xg, G)

4: for all Φ̂j ∈ GP do

5: Gs(Φ̂j) := Xg

6: P(Φ̂j) := 0

7: Push(PolicyFIFO, Φ̂j)
8: endfor
9: while not(isempty(PolicyFIFO))

10: Φ̂i := Pop(PolicyFIFO)

11: PP := FindPreparingPolicies(Φ̂i,G)
12: for all Φj ∈ PP do

13: [CT , Xg
T

] = CostFunction(Φj , Φ̂i)

14: if (CT + P(Φ̂i)) < P(Φj) then

15: Gs(Φ̂j) := Xg
T

16: P(Φ̂j) := CT + P(Φ̂i)

17: Push(PolicyFIFO, Φ̂j)
20: endif
21: endfor
22: endwhile

23: return {Φ̂1,N}

Fig. 3. An illustration of locomotion trajectories for the simplified “con-
trollable ball” hopper model together with the “virtual ground” constructed
from the scenario depicted in Fig. 1.

to which the final total order will be obtained. The procedure

CostFunction(Φj , Φ̂i) is expected to return both the best

candidate goal point for policy Φj and a cost related to how

effectively it prepares the instantiated policy Φ̂i.

III. SIMPLIFIED HOPPER MODEL

Efficient, preferably analytic characterization of the do-

main and particularly the feasible goal regions for even

the relatively well-studied SLIP model is a challenging,

currently unsolved problem. Despite recent availability of

very effective analytical maps for the stance dynamics of

this model [2, 10, 18], numerical solutions are still needed

for the characterization of the feasible goal region. Since

our primary emphasis in this paper is the reactive planning

framework, we will investigate the efficacy of our proposed

method in a hopper model whose simplified dynamics will

structurally mimic SLIP behavior, while admitting analytical

characterization of the feasible goal region Gf (Φi) for indi-

vidual policies. This simplified model can be best described

as a controllable ball, which will summarize the stance

dynamics of the SLIP model with a “bounce” from a virtual

surface elevated by a height equal to the SLIP spring rest

length, changing the liftoff velocity and position of the body

center of mass in a controllable fashion. Fig. 3 illustrates this

idea for the scenario previously depicted in Fig. 1.

A. System Dynamics

During flight, the simplified hopper follows an uncontrol-

lable ballistic trajectory, whose dynamics are given by

Ẋ =
[

ẏ ż ÿ z̈
]

=
[

ẏ ż 0 −g
]

and are particularly important in computing both the domain

and feasible goal regions for a given ground segment.

The stance phase for the SLIP model is governed by the

compression and decompression of the leg spring until the

liftoff event. For the simplified hopper, we capture this be-

havior by using a direct, “instantaneous” touchdown to liftoff

map, controlled by a horizontal shift ∆y, and adjustments

θ and k on the angle and normal magnitude of the liftoff

velocity with respect to a symmetric gait. These parameters

have very close correspondence to control inputs frequently

used for the SLIP model and associated robot morphologies:

• The liftoff velocity gain, k, roughly corresponds to

the energy control for the SLIP model through the

decompression and compression stiffness ratio kd/kc.

• The liftoff velocity angle adjustment closely corre-

sponds to the touchdown leg angle for the SLIP model

with respect to the neutral angle, qθt
− qθn

.

• The position shifting control, ∆y, corresponds to the

average stiffness of the SLIP leg, which can increase

or decrease the positional span of the stance phase. In

the SLIP model, this displacement nonlinearly depends

on other control parameters, but can be independently

chosen by adjusting kc.

For example, a symmetric step can be obtained for the

SLIP by choosing kc = kd and qθt
= qθn

with the horizontal

liftoff position independently adjustable through the common

stiffness value. For the simplified hopper, this corresponds to

choosing θ = 0 and k = 1 with ∆y independently adjusting

the horizontal displacement during stance.

The resulting stance map for the simplified hopper is hence

Xlo = AXtd + B , (3)

where we define

A:=

0 0 0 0
0 0 0 0
0 0 1 − (1 + k) sin2(θ) 0.5(1 + k) sin(2θ)
0 0 0.5(1 + k) sin(2θ) 1 − (1 + k) cos2(θ)

B :=

∆y
0
0
0

B. Gait Control for the Simplified Hopper

The gait controller associated with each instantiated policy

Φ̂i is responsible from finding control inputs necessary

to bring the robot from any state Xn ∈ D(Φ̂i) to the

selected goal point Xg of Φ̂i. To this end, we use a simple

deadbeat controller for the simplified hopper, similar to those

frequently used for the SLIP model, yielding reactive control

inputs computed as u = F−1
a (Xn,Xg)

1.

1Xn+1:=Fa(Xn, u) is the apex return map for a specific control u.

C. Derivation of the Domain Region

Before we proceed with an analytical representation of the

domain region associated with a ground segment Rg(Φi), we

add an additional constraint on the minimum apex height

hmin to ensure that the leg can always clear the ground for

protraction. This leads to a redefinition of the domain as

DSH(Φi):={Xn|Xn ∈ D(Φi), zn ≥ hmin}

Fig. 4. Global domain coverage Dg :=
⋃

i D(Φi) for a planar rough
surface, showing the union of all instantiated policy domains. Note that the
depth axis represents the apex velocity.

−2 0 2 4 6 8 10 12

0

1

2

3

4

y(m)

z(
m

)

Fig. 5. A cross section of the global domain Dg at apex speed ẏ = 1m/s.

Apart from this adjustment, policy domains are simply

constrained by the selected energy and velocity ranges to-

gether with the constraint of landing on the selected ground

segment. For a given energy E and velocity ẏ, the ballistic

flight trajectories yield simple expressions for the upper and

lower limits of the horizontal position as

ymin(ẏ, E)=yg − 0.5lg − ẏ

√

2(E − 0.5mẏ2 − mgzg)

mg

ymax(ẏ, E)=yg + 0.5lg − ẏ

√

2(E − 0.5mẏ2 − mgzg)

mg

where (yg, zg) and lg are the center and length of the ground

segment associated with a policy.

The resulting simple analytical formulation yields a com-

putationally efficient inclusion test for measured apex states.

An illustration of the global domain of attraction Dg :=
⋃

i D(Φi) resulting from the deployment of such policies

over the complex terrain shown in Fig. 3 is illustrated in

Fig. 4. Similarly, Fig. 5 illustrates a cross section of the

same domain at ẏ = 1m/s, showing positions from which

the hopper can successfully recover from collision and find

a foothold while travelling at ẏ = 1m/s.

Fig. 6. Global goal coverage Gg := Dg

⋂

(
⋃

i Gf (Φi)) over a planar
rough surface, showing the union of feasible goal regions for all instantiated
policies that are also inside the global domain. Note that the depth axis
represents the apex velocity.

D. Derivation of the Feasible Goal Region

The feasible goal region for a policy includes all apex

states reachable in a single step from every initial state in

the domain, using only inputs from within the allowable set.

In deriving a computational representation of this set, we

proceed by analyzing each of the three dimensions in the

apex state, namely the height z, the horizontal position y
and the forward velocity ẏ. The following steps outline our

method for finding the representation of Gf (Φi) where we

will omit analytical details for space considerations.

i) We first find the feasible z range, [zmin, zmax], using

analytical solutions to the equations

zmin = argmax
Xn∈D(Φi)

(argmin
u∈U(Φi)

π2 ◦ Fa(Xn, u))

zmax = argmin
Xn∈D(Φi)

(argmax
u∈U(Φi)

π2 ◦ Fa(Xn, u))

ii) Then, for any z ∈ [zmin, zmax], we find the feasible y
range, [ymin, ymax], by analytically solving

ymin(z)= argmax
Xn∈D(Φi)

(argmin
zn+1=z, u∈U(Φi)

π1 ◦ Fa(Xn, u))

ymax(z)= argmin
Xn∈D(Φi)

(argmax
zn+1=z, u∈U(Φi)

π1 ◦ Fa(Xn, u))

iii) Finally, for any z ∈ [zmin, zmax] and y ∈ [ymin, ymax],
we find the feasible velocity range, [ẏmin, ẏmax], by

ẏmin(z, y)= argmax
Xn∈D(Φi)

(argmin
(z,y)n+1=(z,y), u∈U(Φi)

π3 ◦ Fa(Xn, u))

ẏmax(z, y)= argmin
Xn∈D(Φi)

(argmax
(z,y)n+1=(z,y), u∈U(Φi)

π3 ◦ Fa(Xn, u))

Note that we have been able to derive fully analytical

solutions to these equations, yielding a very simple inclusion

test for membership in the feasible goal set. Fig. 6 illustrates

the resulting goal regions Gg := Dg

⋂

(
⋃

i Gf (Φi)) for

the example of Fig. 3. Note that feasible goal regions that

do not intersect any of the instantiated policy domains can

be considered “as good as lost” since, by definition, states

that are not in any the domain of any policies correspond

to catastrophic situations from which none of the existing

controllers are capable of recovering.

IV. SIMULATION RESULTS

A. Simulation Environment

In order to illustrate the effectiveness of our algorithm,

we conducted a range of simulations of the simplified planar

hopper on the rough terrain illustrated in Fig. 1, with different

initial conditions and goal configurations under both ideal

models as well as different noise conditions. All simulations

were run in Matlab, numerically integrating the equations

of motion described in Section III-A using control inputs

selected by the reactive controller deployment.

B. Policy Generation and Deployment

Our planning algorithm assumes that a map of the envi-

ronment is available in the form of the locations and heights

of each flat ground segment. In practice, this information can

be obtained through exteroceptive sensors such as cameras

and range sensors as the robot locomotes over new terrain.

Before our planning algorithm in Table I can be applied,

a collection of local control policies Φi must be generated.

To this end, we start by coarsely discretizing the known map

into a set of constant length (lg = 0.25m) sections. We then

consider for each such region, four “exiting” policies that can

freely transition between forward (RV (Φi) = [0, 2.5]m/s)

and backward (RV (Φi) = [−2.5, 0]m/s) locomotion (ff, bb,

fb, bf) and two “goal” policies that can stop the robot from

either slow forward (RV (Φi) = [0, ǫ]m/s) or slow backward

(RV (Φi) = [−ǫ, 0]m/s) locomotion (fs, bs). Orthogonally,

we also consider different energy levels by imposing a global

constraint on the hopping height as z ∈ [0.2, 3]m and

dividing this range into as many energy levels as necessary

to obtain policies whose domain and goal regions exhibit

maximal overlap. This results in four different energy levels

in our case: very low, low, medium and high, yielding a total

of 6*4 = 24 policies associated with each ground segment.

For each policy, we also impose certain limits on con-

trol inputs. First, global limits on the velocity gain and

angle adjustment are imposed with k ∈ [0.5, 2], and

θ ∈ [−π/2, π/2]rad. Limits on the horizontal shift ∆y
are designed to ensure close correspondence to trajectories

feasible in the SLIP model. For steps resulting in nonzero

forward or backward speeds, we require ∆y ∈ [0, 0.5]m,

and ∆y ∈ [−0.5, 0]m, respectively. In contrast, for stopping

controllers, we require smaller displacements with ∆y ∈
[−0.25, 0.25]m, realized through a two-step controller. As

a result of this construction, each policy also gets assigned

their corresponding ground segment Rg(Φi), apex velocity

range RV (Φi), apex energy range RE(Φi), minimum apex

height Fhmin
(Φi), and allowable control set U(Φi).

Once all policies are generated (960 for 40 ground seg-

ments in the example of Fig. 1), we proceed with the

generation of the prepares graph G. Having the analytical

representations and associated inclusion checks for the do-

main and goal regions described in Sections III-C and III-D,

the construction of the prepares graph is straightforward and

can be done offline. This graph, whose representation is very

concise with only as many nodes as there are policies, can

be reused every time a different apex goal state is supplied.

Fig. 7. An example hopper trajectory over rough terrain with reactive
planning, starting from initial state y = 0.2m, z = 1.2m, ẏ = 0 and going
to the goal y = 10.6m, z = 0.7m, ẏ = 0. Cross sections of domain (green)
and feasible goal (red) regions are illustrated at every apex event.

The deployment of a reactive controller for a specific

apex goal involves the application of the algorithm shown in

Table I to obtain a total order of instantiated policies Φ̂i from

the prepares graph G constructed above. During execution,

the reactive controller measures the system state at every

apex, performs a prioritized inclusion test to determine which

policy to activate, and then applies a single-step deadbeat

controller to select control inputs that will bring the hopper

to the goal state associated with the selected policy instance.

C. Results

Fig. 7 illustrates an example run with reactive control over

rough terrain, starting from y = 0.2m and going to the goal

y = 10.6m. At every apex, the controller performs ordered

inclusion tests on all policy domains and selects the first

match as the policy to apply. The domain of the selected

policy is illustrated with the red region in the figure while

the feasible goal for the previously used policy is illustrated

with the green region. As visible from the figure, the prepares

relation is satisfied with nonempty intersections with the

feasible goal and domain regions of successive policies.

Furthermore, policies are instantiated with goals that are

maximally safe, lying as far in the domain of the next policy

as possible. Note that only activated policies are shown, but

the union of all domains has substantially more coverage as

shown in Fig. 4. This example illustrates that under ideal

conditions with no model or measurement uncertainty, our

planner and reactive controller performs as expected.

In contrast to the ideal environment with no model un-

certainty, Fig. 8 illustrates simulation runs with a constant

“wind” force, constantly pushing the hopper East. The top

figure shows that if control inputs computed offline under

an ideal model assumption are applied, hopper trajectories

slowly deviate from the generated “plan” and eventually

crash into the side of the wall around y = 8.5m. In contrast,

the application of our reactive control method ensures that

proper control policies are selected at each apex, safely

taking the hopper across the terrain.

Finally, Fig. 9 illustrates a scenario wherein the “sensed”

ground (i.e. the ground profile used by the planner, shown

0 0.5 1
0

0.5

1

Real Ground Virtual Ground

0 1 2 3 4 5 6 7 8 9 10 11

−1

0

1

2

3

4

5

y (m)

z
 (

m
)

0 1 2 3 4 5 6 7 8 9 10 11

−1

0

1

2

3

4

5

y (m)

z
 (

m
)

Offline Planning without noise

Offline Planning with noise

Reactive Planning without noise

Reactive Planning with noise

Fig. 8. Example hopper trajectories under a constant “wind” force of
0.05 N in the East direction. Top figure compares trajectories with no noise
(green) to trajectories when control inputs computed offline are directly
applied (red). The bottom figure compares trajectories with no noise (green)
to trajectories resulting from our reactive control (blue).

with dashed lines) is different than the actual ground profile.

This corresponds to a possibly more problematic situa-

tion since rather than the gradual noise introduced by the

wind disturbance above, surface discrepancies may result

in sudden, large disturbances that may quickly invalidate

previously constructed plans. Indeed, as show in the figure,

the large difference between the sensed ground and the

actual ground profile in the range y ∈ [0, 1]m causes

the application of control inputs computed offline to fail

catastrophically, causing a crash into the wall at y = 5m.

However, our reactive controller, once it finds itself in a

new, unexpected apex state, automatically selects the control

policy that is guaranteed to eventually drive it to the overall

goal, following a completely different plan than what was

originally intended.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel algorithm for the

automated construction of a reactive footstep controller for

a planar hopper. Our method is based on a careful charac-

terization of the attracting domain and feasible goal sets of

potential footholds on a piecewise flat surface map, combined

through backchaining in a sequential composition framework

to yield a full reactive control policy that guides the robot

to a specified goal point, while providing an almost global

region of attraction for the overall behavior.

0 0.5 1
0

0.5

1

Real Ground Virtual Ground Sensed Ground

0 1 2 3 4 5 6 7 8 9 10 11

−1

0

1

2

3

4

5

y (m)

z
 (

m
)

0 1 2 3 4 5 6 7 8 9 10 11

−1

0

1

2

3

4

5

y (m)

z
 (

m
)

Offline Planning without noise

Offline Planning with noise

Reactive Planning without noise

Reactive Planning with noise

Fig. 9. Example hopper trajectories under a mismatch between sensed
and actual ground heights. Top figure compares trajectories with no noise
(green) to trajectories when control inputs computed offline are directly
applied (red). The bottom figure compares trajectories with no noise (green)
to trajectories resulting from our reactive control (blue).

We demonstrate the performance of our algorithm with a

series of simulations of a simplified planar hopper, capturing

essential properties of the popular Spring-Loaded Inverted

Pendulum model while preserving analytical derivability of

domain and goal regions for individual control policies and

associated deadbeat controllers. We show that even in the

presence of significant model and measurement noise, the

global controller deployed by our algorithm is capable of

successfully reaching the desired goal point, automatically

taking alternative paths when the original, ideal plan fails due

to unexpected disturbances. Compared to existing, mostly

quasi-static footstep planning algorithms, both the ability of

our algorithm to handle fully dynamic legged locomotion as

well as its robustness against external, large sources of noise

represents a significant step towards autonomous deployment

of legged robots on realistic, rough terrain.

In the near future, we will extend our results and analytical

domain and goal representations to the more realistic SLIP

model. This will ensure that our results are immediately ap-

plicable to a large class of legged robots whose morphology

and controls closely parallel those of the SLIP model. We

will also demonstrate the experimental applicability of our

method through a SLIP-like robot.

In the long term, automated deployment with variable

length ground segment selection and the incorporation of

inclined surfaces are the among possible future extensions

to our proposed method. The consideration of ceiling con-

straints may also be interesting for indoor or otherwise

covered settings. Finally, simultaneous mapping and policy

deployment for fully autonomous utilization of our algorithm

is among interesting future directions for this research.

REFERENCES

[1] R. Altendorfer, U. Saranli, H. Komsuoglu, D. Koditschek, H. B.
Brown, M. Buehler, N. Moore, D. McMordie, and R. Full. Evidence
for Spring Loaded Inverted Pendulum Running in a Hexapod Robot.
In Proc. of the Int. Symp. on Exp. Robotics, Honolulu, HI, 2001.

[2] O. Arslan, U. Saranlı, and O. Morgül. An aproximate stance map
of the spring mass hopper with gravity correction for nonsymmetric
locomotions. In Proc. of the Int. Conf. on Robotics and Automation,
Kobe, Japan, 2009.

[3] R. Blickhan and R. J. Full. Similarity in multilegged locomo-
tion: Bouncing like a monopode. Journal of Comparative Physiol-

ogy A: Neuroethology, Sensory, Neural, and Behavioral Physiology,
173(5):509–517, November 1993.

[4] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequential
composition of dynamically dexterous robot behaviors. International

Journal of Robotics Research, 18(6):534–555, 1999.
[5] J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagami. Planning biped

navigation strategies in complex environments. In Proc. of the 2003

Int. Conf. on Humanoid Robots, October 2003.
[6] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and

T. Kanade. Footstep planning for the honda asimo humanoid. In Proc.

of the IEEE Int. Conf. on Robotics and Automation, April 2005.
[7] D. C. Conner. Integrating Planning and Control for Constrained

Dynamical Systems. PhD thesis, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, January 2008.

[8] D. C. Conner, H. Choset, and A. A. Rizzi. Integrated planning
and control for convex-bodied nonholonomic systems using local
feedback. In Proc. of Robotics: Science and Systems II, pages 57–
64, Philadelphia, PA, August 2006. MIT Press.

[9] D. C. Conner, H. Choset, and A. A. Rizzi. Flow-through policies for
hybrid controller synthesis applied to fully actuated systems. Robotics,

IEEE Transactions on, 25(1):136–146, Feb. 2009.
[10] H. Geyer, A. Seyfarth, and R. Blickhan. Spring-mass running: simple

approximate solution and application to gait stability. Journal of

Theoretical Biology, 232:315–328, February 2005.
[11] J. W. Hurst, J. Chestnutt, and A. Rizzi. Design and Philosophy of

the BiMASC, a Highly Dynamic Biped. In Proc. of the Int. Conf. on

Robotics and Automation, April 2007.
[12] J. J. Kuffner, J. Koichi, N. S. Kagami, M. Inaba, and H. Inoue. Footstep

planning among obstacles for biped robots. In Proc. of IEEE Intl. Conf.

on Intelligent Robots and Systems, pages 500–505, 2001.
[13] M. H. Raibert. Legged robots that balance. MIT Press, Cambridge,

MA, USA, 1986.
[14] A. A. Rizzi, J. Gowdy, and R. L. Hollis. Distributed coordination

in modular precision assembly systems. The International Journal of

Robotics Research, 20(10):819–838, 2001.
[15] U. Saranli, M. Buehler, and D. E. Koditschek. RHex: A simple and

highly mobile robot. International Journal of Robotics Research,
20(7):616–631, July 2001.

[16] P. S. Schenker, T. L. Huntsberger, P. Pirjanian, E. T. Baumgartner, and
E. Tunstel. Planetary rover developments supporting mars exploration,
sample return and future human-robotic colonization. Autonomous

Robots, 14(2):103–126, Mar. 2003.
[17] W. J. Schwind. Spring loaded inverted pendulum running: a plant

model. PhD thesis, University of Michigan, Ann Arbor, MI, USA,
1998.

[18] W. J. Schwind and D. E. Koditschek. Approximating the Stance
Map of a 2 DOF Monoped Runner. Journal of Nonlinear Science,
10(5):533–588, 2000.

[19] B. M. Yamauchi. Packbot: a versatile platform for military robotics.
In Proc. of SPIE: Unmanned Ground Vehicle Technology VI, volume
5422, pages 228–237, September 2004.

[20] G. Zeglin. The Bow Leg Hopping Robot. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, October 1999.

