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Abstract— The Spring-Loaded Inverted Pendulum (SLIP) running behaviors [9]. Evidence to this end was provided
model has long been established as an effective and accuratepy Raibert’s robots as well as work on active embedding of

descriptive model for running animals of widely differing sizes SLIP dynamics within more complex morphologies [3, 15]
and morphologies, while also serving as a basis for several ’ )

hopping robot designs. Further research on this model led to
the discovery of several analytic approximations to its normally
nonintegrable dynamics. However, these approximations mostly
focus on steady-state running with symmetric trajectories due
to their linearization of gravitational effects, an assumption
that is quickly violated for locomotion on more complex terrain
wherein transient, non-symmetric trajectories dominate. In this
paper, we introduce a novel gravity correction scheme that
extends on one of the more recent analytic approximations to
the SLIP dynamics and achieves good accuracy even for highly
non-symmetric trajectories. Our approach is based on incor- (@) ®) ©

porating the total effect of gravity on the angular momentum

throughout a single stance phase and allows us to preserve the Fig. 1. (a) The SLIP model, (b) Raibert's hopper, (c) A humamarm
analytic simplicity of the approximation to support our longer

term research on reactive footstep planning for dynamic legged This point of view led to the development of control strate-
locomotion. We compare the performance of our method in  gies that explicitly operate on the SLIP model itself. Sorhe o

simulation to two other existing analytic approximations and g6 are based on intuitive observations [14], while sther
show that it outperforms them for most physically realistic '

non-symmetric SLIP trajectories while maintaining the same ~S€€K accurate and preferably analytic approximationseo th

accuracy for symmetric trajectories. nonlinear model dynamics [10, 16]. Such approximations
turn out to provide critical tools in the stability analysié
I. INTRODUCTION locomotion as well as the design of high performance control

Effective, programmable control of dynamic legged lo2nd planning algorithms for robot runners while bei_ng much
comotion is still among difficult unsolved problems faced™0"® g_enerally gpphcable than nqmerlcal aIterna_tweshsuc
by the mobile robotics community. Current progress in thi@S the interpolation based alternatives presented in [7].
area can partly be attributed to the discovery of the Spring- Smce the stgnce dynamics of SLIP under_ the effect of
Loaded Inverted Pendulum (SLIP) model (illustrated in Figd"@Vity are nonintegrable [12], several approximate aéer
1), initially motivated by biomechanical observationsJIL, tives _have been _proposed in the Iltera_ture_. Most notably,
and later adopted and refined by robotics researchers [1 _hwmd and Kod|tsch_ek us<_ad a _generallzatlon of the mean-
Somewhat surprisingly, subsequent research in biomechan! lue theorem to obtain an iterative yet analytic approxima

established the SLIP model, despite its apparent sirrmlicittion to the stance dynamics [17]. Under certain assumptions

as a very accurate descriptive model for running animaf9€ Performance of their approximations is shown to in@eas
of widely varying sizes and morphologies [5, 8]. In parallelw't_h ea(_:h iteration, eventuglly_ converging to true SLIP
a succession of one-legged hopping robots with SLIP-likEJectories. Another alternative is presented by Geye.et
morphologies such as Raibert's hoppers [14], the ARLIN [10],. wherein a much S|mplgr gnalytl.c approximation 'Fo
Monopods [11], the Bow-Leg design [18] and the BiMASCthe spring mass hopper dynamics is derived based on various

leg [13] demonstrated that dynamic locomotion is not Onh;\ssumptlons specific to the SLIP model. Both methods focus

feasible but also has significant energetic and behavior3]! StePs that are symmetric around the vertical, where the

advantages. These developments led to an increasing beﬁgfeCt_Ofgra\_”;at'olnal ac<_:e|er_at|on can be either negigair
that the SLIP model may be more than just a descriptivlénfar'zﬁ_ WE only ahmlnor |mpa_ct oln acgurat;:y. inevitabl
model that fits biological data, but also a control target sého n reality, however, humans, animals and robots inevitably

dynamics are an effective and appropriate abstraction f&eed to locomote on a variety of wregular terrain (e.g.
grass, gravel, rock field, etc.), for which steady-state is
O.Arslan is with the Dept. of Electrical & Electronics Engilkent ~ NEVEr reached and trans_l_ent, non-symmetrlc motions dqm'
University, 06800 Ankara, Turkepnur @e. bi | kent . edu. tr inate. Under these conditions, assumptions based on either
U.Saranli is with the Dept. of Computer Engineering, Bilkeimiversity, linearization of gravity or conservation of angular moment
06800 Ankara, Turkepar anl i @s. bi | kent . edu. tr | 9 i ybI ki f 9 I adabl
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Fig. 2. The total gravity effect on the angular momentum at the ef

the stance phase compared to touchdown instant: (a) dewgeeffect on
magnitude, (b) the angular momentum is the same since it is a syiometr
gait, (c) increasing effect on magnitude.
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Fig. 3. The SLIP Model. (a) Coordinates and model parametés. (
L. ocomotion phases (shaded regions) and transition eveatmdaries).

gravity on the angular momentum of SLIP under different
non-symmetric trajectory conditions.

As noted above, one of our longer term goals is the design TABLE |
of reactive planning controllers for dynamic legged robots NOTATION USED THROUGHOUT THE PAPER
To this end, accurate, preferably analytic characteopaf a R
robot’s behavioral repertoire is critical, particularfyoiverall p—— Leg length and leg angie
stability and performance guarantees are required [6]s Thi @, a5 Leg compression and swing rates
necessitates analytic approximations for the SLIP mods! th Pr Po Radial and angular momenta

. . . . dr.4,96,,,tta | Touchdown leg length, angle and time
perform well even for trajectories on irregular terrainttha GrnGoc-ty | Bottom leg length, angle and time

may never converge to a symmetric steady-state. Such an | g, ,qs,, ., | Liftoff leg length, angle and time

analytic approximation promises to be extremely valuable ZmZy EOF?ZO”EG‘: a”g Ve;tt?ca: Bogy POISi“_Ct’_”S
for motion planning for the SLIP model and related robots. by by A;’Q§°h”egh?”an§evgﬁ;ity° y velocties
- . . Yar Zxa
In this paper, we propose a novel gravity correction SLIP Parameters
scheme to substantially increase the accuracy of method in ;nZ Eody maiss anhd grgvlitationf?l acceleration
) . . . 0, eg rest length and leg stiffness
[10] for non-symmetric SLIP trajectories and compare our ) Total mechanical energy

results with approximations presented in both [17] and.[10]
The paper continues with the SLIP model and associated ter-

minology, We then summarize previous approximate stanGgance phase of SLIP in polar coordinates are given by
maps and continue in Section Il with the proposed gravity

A . . . _ -2
correction method. This is followed by the performance mg. = mqrgo- + k(lo — q,) — mgcos(gp),
. . . . . . . d . .
a_naIyS|s and a comparison W|th.eX|st|ng_ approximations. = 2 (mg,%ds) + mgg, sin go.
Finally, we conclude the paper with a review of our work dt
and a summary of open research topics. If a sufficiently small angular spafiqy is assumed for the

stance phase, the effect of gravity can be linearized, iyigld

Il. BACKGROUND simplified equations of motion

A. The SLIP Modéel

The SLIP model consists of a point mass connected to
a massless compliant leg as illustrated in Fig. 3(a). During E(mqfq'e) = 0,
locomotion, the system alternates between stance and flight . . .
phases. During stance, the toe remains stationary on %/glc;h.are now integrable since the angular momenfums=
ground with no torque applied to the leg whereas in flight, th8'¢-~9¢ and the total energy
body follows a ballistic trajectory. Transition to and frdhre m ., po* k 9
stance phase occurs with the touchdown and liftoff events, Ei= g0t 2mg,.2 + §(l° — @)+t mgsar (1)
respectively. Two important events are the apex, where the,.,me constants of the motion. Defining the parameters
body height is at its maximum and the bottom, where
leg compression is maximal. These events and associated ¢, —lo c0 e 2E _ po dwn — \/E
subphases are all illustrated in Fig. 3(b). Furthermoreleta =~ 1, = 2 YT e andwo = '
| details the notation we use throughout the paper. Finallygng substituting them into (1), yields
apex return map is defined as a mapping from the current o ) ) 5 5
apex statesh(n), to next apex states(n + 1), by using the e=p"+w /(1+p)7+wo™p” +29(1+p)/lo. (2)

chosen control inputsy, as illustrated in Fig. 3(b). If we also assume that the relative spring compression

B. Simple Approximate Stance Map by Geyer et al. Ip| < 1, then the terml/(1 + p)? can be approximated by
a Taylor series expansion around zero to yield

In this section, we briefly review the approximation
method proposed in [10]. The equations of motion for the 1/(1+ 0)2}p=0 =1-2p+3p> = O(p°).

mQT = mqu})Q + k(lO - Q'r) — mgs,




Under these assumptions and further simplifications [10%uch that the zeroth (initial) iteration can be any appratam
an analytical solution t@,(¢) can be found as analytical solution and;, = 3¢,,,/4 + ¢-/4 and H,i =

. HY (&, do (€4), Doy (60), B).
. t :l 1 b . t , 3 T k T/ k T/ . . .
¢r(t) =lo(1+a+bsin(wot)) 3 A touchdown to bottom map can be similarly derived as

where we define

Go 1= v/on? 1 32 Eotuen (@) = tia = m(gr = gr.) / H}
0 -— 0 ’

a:= (w2 . g/lo)/ﬁig QQ(nJrl)(q?") = 49,4 — Do, (ér)(%' - QTtd)/(é’leJL)
b \/a2 ot (6 2 29/l )/&)2 ﬁe(n+1)(CIr) =Pbiq — m2g£r Sin((an (ér))(qr - qhd)/Hl
= — — 0 0-

A _ T
. .  Prany (@) = —Hy g
The equation (3) can also be used to determine the times """ i

for critical events relative to an unknown time origin as The overall apex return map can then be obtained by com-
. R bining the above approximations using the desired number
tia = (m — arcsin(—a/b))/wo, (4)  of iterations with solutions to the flight dynamics. However
ty = 37 /2o, (5) this formulation of the apex return map has one important
tio = (27 + arcsin(—a/b)) /&0, (6) unknown: the bottom leg lengthg,.,. Fortunately, even

though an exact solution for the bottom leg length does not
exist, several approximate solutions can be used. One such
%olution is given by the quartic equation arising from the
total energy relation as

assuming that,.;, = ¢,y = lo.
Given the analytical solution for the radial motion and th
conservation of the angular momentum, we also have

gy =w/(1+ p)? =w(l—2p). (7) k kl2 2
i —qt+(mg—klo)@d+ (=2 —E q2+pi=0
Recalling thatp := (¢, — lo)/lo = a + bsin(wot)), an 9 1r 0/%r 2 T om ’
analytic solution to the angular motion can be found as for which a real analytic solution that is less than or eqaal t
qo(t) = qogq + w(1 — 2a)(t — tq) the rest leg length can be found. An alternative approximate

9 o )
+%[cos(d)0t) _ cos(@otea)], ) solution is given by the approximate stance map of [10] as

0 ) qr, =lo(1+a—0b),
wheret,y <t < t;,, andt,q andt;, as in (4) and (6).

C. Iterative Approximate Stance Map by Schwind et al wherea andb are as defined in Section |I-B.

In [17], Schwind and Koditschek propose an analytidll. APPROXIMATE STANCE MAP WITH GRAVITY
approximation to the nonintegrable stance dynamics of SLIP CORRECTION

through an iterative application of the mean value theorem |4 section 11, we reviewed two leading methods [10, 17] to
for integral operators. They showed that this iterativelmodt i, analytic approximations to the stance map of SLIP, both
converges to true SLIP dynamics under certain assumptioRs.which were based on assumptions of symmetric gaits. In
which are unfortunately easily violated for non-symmetrigpig section, we extend the method presented in [10] with a
trajectories. Furthermore, the presented form of their@pp  gravity correction to yield a much larger domain of validity
imation only gives a map from bottom to apex and does ngj the presence of non-symmetric trajectories.
readily support the entire apex return map. In this section ag jlustrated in Fig. 2, the angular momentum from
we briefly describe and extend on their method to enablgychdown to liftoff is conserved only for symmetric SLIP
comparisons with our proposed approximations. trajectories. Consequently, while the conservation ofutary
The Hamiltonian function for the stance phase is given by,omentum is a reasonable assumption for symmetric steps,
it becomes rather inaccurate for non-symmetric trajeesori

1 2 pg) 1 2
H Ty Ty I = r + +7k7 l —Yr + r COS . . . .
(arpr g0 p0) = 5.0 (p )" 2 (lo=ar)"+mgq- cos(qo) During stance (see Fig. 3), the effect of gravity on the

Solving the equatior (g, pr. go, ps) = E for p, yields angular momentumpP(t), can be generally modeled as
t
pe = H'(ges 0,0, ) = PO = Py [ Qe
1 b y
\/2m (E - §k(lo —qr)? —mgq, cos(q9)> - %’ T(t) = mgq,(t)sings(t),

wherer(¢) is the torque applied by the gravitational accel-
eration around the toe point. Generally, even the analytic
approximations (3) and (8) are too complex for symbolic

The approximation introduced in [17] gives thé" iteration
for the bottom to liftoff map as

toiin (@) = to + m(qr — qr,)/H, integration. Consequently, our method involves rapoint

G0 s, () = a0, + Do, (&) (ar — ar,)/(E2H), approximation to this integral, yielding

ﬁ@ n+1 (qr) = po, + m2gér Sin((jGn (ér))(QT —qr )/H71;7 1 - .

R : ’ P(t)~ Py, + (t—to) | = Y_ mgg[n]sings[n] | . (9)
s (@) = H| n

Priny1)\dr n+1» k=1



We propose to model the total effect of gravity on theconsidered for these dimensions were determined based on
angular momentum from any initial to any final state durindpiomechanics literature as well as structural properties o
stance with a constant total correction, computed by using aarious legged robots. In particular, experiments on higman
approximation to the average leg length), (¢;,t;) during (with 80kg mass and 1m leg length on average) running at
this period. We then use this general formulation to computdifferent speeds (in the range 2.5-6.5m/s) reveals that the
a correction for the apex return map, using touchdown arldg stiffnesses are in the range [10, 50] KN/m [4] . In the

liftoff as the initial and final states, respectively. robotic domain, the small hexapod robot RHex [15], has
Using (3) and letting; andt; be the initial and final state an approximate mass of 10kg, leg length of 0.25 m and
times such that,q <t; <t; <t;,, we have compliant legs with stiffness of around 2000N/m for each
1 tf leg. Based on a dimensionless stiffness measuse dog,
Grao (bistr) & /t lo(1+a+ bsin(@ot))dt, these examples motivate our choice of simulation parameter
Z R R of Table 1l and control input ranges &f< [125, 1000] N/m
= lo(l1+a)— W(COS(WOW) — cos(@oti)), andgy,, , € [-0.4, 0.4] rad.

TABLE I

wherea, b andw, can be calculated by using related formulas SIMULATION PARAMETERS

in Section 11-B. Using (9), the total effect of gravity becem

tr — ti)mgsqry, (tists) . : [m (g) [lo (m) [9 (m?/s) [ by, () | bs, (M5) ]
=W )mng ST RSN +singo(ty)), 1 [ 1 [ 98 [11-15] 0-8 |
wheregy(t), is as given in Section II-B. For each of our simulations, we checked whether they

We propose to incorporaté”. into the approximation satisfied two conditions to ensure that we can support
as a simple correction term added to the original angulgheaningful comparisons of all approximations to the stance
momentum,py, otherwise assumed to be constant for thenap. Firstly, due to the hybrid nature of SLIP locomotion,
formulations in [10]. This yields a new angular momentuntertain stance trajectories never leave the ground or pteve
term foot protraction. Consequently, we restricted our dom#&ins
exclude simulations where the next apex height is smaller
than the rest length of the leg spring, ensuring that there
which replacegy in all derivations. Using touchdown and gre no limitations on the touchdown angle for the next step.
liftoff times as the initial and final states yields our catiee  Second, in order to preserve similarity to results preskinte
method for the apex return map. both [17] and [10], we restricted the maximum allowable leg

IV. PERFORMANCE ANALYSIS compression to a maximum of 25% and excluded trajectories
that violate this condition. From among a total of 25500

A Simullatlon Enx_n ronment _and Perfor_man.ce Criteria initial states and control inputs, 10264 were found to Batis
Our interest in analytic approximations to the stancghese two conditions.

dynamics of SLIP arises from our need to compute the apexye computed “ground truth” through numerical integra-
return map for a given set of controls.(i.e. touchdown anglgon of SLIP dynamics within MATLAB using a variable
and leg stiffness). Therefore, the most important perforcea time-step, fourth order Runge-Kutta integrator. We then
criteria for us is the accuracy of the predicted apex p“‘ﬁitiocomputed approximate estimates of the apex states based on
and velocity. To this end, we use two measures to quantify,q previously proposed approximations and our new gravity
the prediction performance of both our method and existingyrrection scheme and compared estimation performances
methods: Normalized percentage errors in the apex positi%ing the error criteria defined above. For the Schwind
and liftoff velocity predictions are respectively definesl a  5pproximations, we used the 10th iterate (after which &irth

P9 = po+F..

PE _ 100 |(bay by, ) — (bay s by, ||z iterations yield no improvements) to make sure we obtained
W [[(bey » by )| |2 ' the best possible performance for their method.
PE,,, = 100 H(bizovbyzo) — (bfblwbmo)H?. B. Smulation Results
||(b5£zo7 byzo)||2

Our simulation results are illustrated in Fig. 4, where we

We use the liftoff velocity rather than the apex velocity t0gpoy the mean, standard deviation and maximum values for

ensure that _normalization is prgctical even for non-symimet {,o apex position and liftoff velocity percentage errarss,,

gaits for which the apex velocity may become zero. anqpp,,,, across all valid simulations and all three approx-
In order to compare different methods of approximationyyation methods. Our results show that there is a notable

we ran simulations spanning four different dimensions Oﬁerformance improvement on the average for our proposed

initial states and control inputs: the apex heighy, I, the  gravity correction method compared both to Geyer's and
apex velocity §;,), the spring constantkj and the rela- gchwind's approximations.

: — 1 : ; . .
tive touchdown angley,, , ‘= 4o, — 90,4, - Th€ TANGES A more informative comparison between different ap-

1 ) ) . . proximation alternatives can be achieved by investigating
96,4, 1S the neutral touchdown angle which results in a symmetridSLI h . . £ f . f th |ati
trajectory and depends on the initial conditions. For edaofulation, we the estimation per c_>rmance as a u_nCt'On of the relative
numerically calculated this angle to be used as the origirtorplots. touchdown angle. Since our method is expected to perform
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Fig. 4. Approximation performances for the stance mapS&efer [10],

Schwind [17] and our propose@ravity Correction method. PE,, (left) Fig. 6. Mean Liftoff Velocity Percentage ErroPE;,,) versus Relative
and PE;,, (right) are apex position and liftoff velocity percentageoes. ~ Touchdown Angle ¢y, , — qemn)- The vertical bars represent the standard
Empty markers, filled markers and colored vertical bars reptesean, deviations for the approximate stance map with gravity céioac

maximum and standard deviations of associated approximations

approximations rather than more reasonable ones such as the

Mean Apex Position Percentage Error vs. Relative Touchdown Angle

P ————T first or second iterate for which the analytical nature of the
1 Schwind [17] , approximations can still be preserved.
Gravity Correction v H H
14 Lt Overall, our gravity correction scheme performs best for

relative touchdown angles in the range [6f0.2 0.2] rad.
Fortunately, angles outside this range correspond to very
sudden changes in the locomotion and can safely be left
unused by a reasonable planner cognizant of the limitations
of available approximations.
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Fig. 5.  Mean Apex Position Percentage ErrétH,,) versus Relative
Touchdown Angle do,, — qgmn). The vertical bars represent standard
deviations for the approximate stance map with gravity coioac

400 -

Spring Constant — k — (N/m)

well for non-symmetric trajectories, its error performanc 300f
should be better than the alternatives for nonzero relative 200l
angle values. As illustrated by Figures 5 and 6, this was

indeed the case both error measu%;,, and PEj,,. =04 -03 =02 =01 0 01 02 03 04

Relative Touchdown Angle - (ue @ %9 I1) - (rad.)

In almost all cases, our approximation performed better

than Geyer's method for non-symmetric trajectories. NotE!d: 7: Comparison of the mean Apex Position Percentage EfCaisred
. . ., _regions show where the associated approximation perfornterbet

that these two approximations are expected to perform iden-
tically for symmetric gaits (zero relative touchdown angle Finally, Figs. 7 and 8 illustrate regions in the control
which is also confirmed by their almost identical estimatiorinput space for which different approximants produce the
performance for,, =~ € [-0.1, 0] rad. best error performance. Schwind’s method once again, is

On the other hand, Schwind’s iterative approximation hagbserved to have good performance far from symmetric
an almost uniform performance profile, relatively indepengaits. When the relative touchdown angle is in the range
dent of symmetry. Consequently, it performs better than ou-0.2, 0.2] rad, our gravity correction scheme has the best
approximation for some non-symmetric trajectory regionperformance for both error measures. In Fig. 7, even though
far out into the touchdown angle spectrum. However, thedgeyer’s approximations seem to be better than ours fordarge
regions correspond to rather extreme transient conditiotag stiffnesses and nearly symmetric gaits, their perfocea
unlikely to be observed for locomotion on reasonable tarraiis actually almost identical to ours in those areas as can be
Furthermore, some of their method’s performance can kabserved from corresponding regions in Fig. 5.
attributed to the fact that we used the 10th iterate of their As illustrated by these results, our proposed method signif



1000, oCn LitOM Velocty Percentage Eor Compatson for nontrivial planning tasks with the SLIP model since it
-Sfﬁﬂn%?]m | allows inducing changes in the total energy of the system,
I I Gty Correction| allowing finer control over possible maneuvers.

soo|- [N A Our longer term goal is the design of reactive planning
controllers for the SLIP model, which can in turn be applied
to more complex legged robots through passive or active
embedding of the SLIP model. To this end, we believe
that analytic approximations to the dynamic behavior of thi
model will be invaluable both in the design of controllers
that can accurately and efficiently regulate its discretdrob
inputs as well as in the analytical characterization of such
controllers for planning purposes. Our proposed methaal fill
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0 o3 oz o1 0 ol o027 o3 o4 agap in t.his area and provides an analytic approximation
Relative Touchdown Angle - (¢, = g ) - (rad.) that remains valid for a large range of control inputs and
initial conditions of the SLIP model.
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Fig. 8. Comparison of the mean Liftoff Velocity PercentageoEsr Colored
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