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Abstract— The Spring-Loaded Inverted Pendulum (SLIP)
model has long been established as an effective and accurate
descriptive model for running animals of widely differing sizes
and morphologies, while also serving as a basis for several
hopping robot designs. Further research on this model led to
the discovery of several analytic approximations to its normally
nonintegrable dynamics. However, these approximations mostly
focus on steady-state running with symmetric trajectories due
to their linearization of gravitational effects, an assumption
that is quickly violated for locomotion on more complex terrain
wherein transient, non-symmetric trajectories dominate. In this
paper, we introduce a novel gravity correction scheme that
extends on one of the more recent analytic approximations to
the SLIP dynamics and achieves good accuracy even for highly
non-symmetric trajectories. Our approach is based on incor-
porating the total effect of gravity on the angular momentum
throughout a single stance phase and allows us to preserve the
analytic simplicity of the approximation to support our longer
term research on reactive footstep planning for dynamic legged
locomotion. We compare the performance of our method in
simulation to two other existing analytic approximations and
show that it outperforms them for most physically realistic
non-symmetric SLIP trajectories while maintaining the same
accuracy for symmetric trajectories.

I. INTRODUCTION

Effective, programmable control of dynamic legged lo-
comotion is still among difficult unsolved problems faced
by the mobile robotics community. Current progress in this
area can partly be attributed to the discovery of the Spring-
Loaded Inverted Pendulum (SLIP) model (illustrated in Fig.
1), initially motivated by biomechanical observations [1,2]
and later adopted and refined by robotics researchers [14].
Somewhat surprisingly, subsequent research in biomechanics
established the SLIP model, despite its apparent simplicity,
as a very accurate descriptive model for running animals
of widely varying sizes and morphologies [5, 8]. In parallel,
a succession of one-legged hopping robots with SLIP-like
morphologies such as Raibert’s hoppers [14], the ARL-
Monopods [11], the Bow-Leg design [18] and the BiMASC
leg [13] demonstrated that dynamic locomotion is not only
feasible but also has significant energetic and behavioral
advantages. These developments led to an increasing belief
that the SLIP model may be more than just a descriptive
model that fits biological data, but also a control target whose
dynamics are an effective and appropriate abstraction for
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running behaviors [9]. Evidence to this end was provided
by Raibert’s robots as well as work on active embedding of
SLIP dynamics within more complex morphologies [3, 15].
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Fig. 1. (a) The SLIP model, (b) Raibert’s hopper, (c) A human runner.

This point of view led to the development of control strate-
gies that explicitly operate on the SLIP model itself. Some of
these are based on intuitive observations [14], while others
seek accurate and preferably analytic approximations to the
nonlinear model dynamics [10, 16]. Such approximations
turn out to provide critical tools in the stability analysisof
locomotion as well as the design of high performance control
and planning algorithms for robot runners while being much
more generally applicable than numerical alternatives such
as the interpolation based alternatives presented in [7].

Since the stance dynamics of SLIP under the effect of
gravity are nonintegrable [12], several approximate alterna-
tives have been proposed in the literature. Most notably,
Schwind and Koditschek used a generalization of the mean-
value theorem to obtain an iterative yet analytic approxima-
tion to the stance dynamics [17]. Under certain assumptions,
the performance of their approximations is shown to increase
with each iteration, eventually converging to true SLIP
trajectories. Another alternative is presented by Geyer etal.
in [10], wherein a much simpler analytic approximation to
the spring mass hopper dynamics is derived based on various
assumptions specific to the SLIP model. Both methods focus
on steps that are symmetric around the vertical, where the
effect of gravitational acceleration can be either neglected or
linearized with only a minor impact on accuracy.

In reality, however, humans, animals and robots inevitably
need to locomote on a variety of irregular terrain (e.g.
grass, gravel, rock field, etc.), for which steady-state is
never reached and transient, non-symmetric motions dom-
inate. Under these conditions, assumptions based on either
linearization of gravity or conservation of angular momentum
are no longer applicable, making most of currently available
approximations inaccurate. Fig. 2 illustrates the effect of



Fig. 2. The total gravity effect on the angular momentum at the end of
the stance phase compared to touchdown instant: (a) decreasing effect on
magnitude, (b) the angular momentum is the same since it is a symmetric
gait, (c) increasing effect on magnitude.

gravity on the angular momentum of SLIP under different,
non-symmetric trajectory conditions.

As noted above, one of our longer term goals is the design
of reactive planning controllers for dynamic legged robots.
To this end, accurate, preferably analytic characterization of a
robot’s behavioral repertoire is critical, particularly if overall
stability and performance guarantees are required [6]. This
necessitates analytic approximations for the SLIP model that
perform well even for trajectories on irregular terrain that
may never converge to a symmetric steady-state. Such an
analytic approximation promises to be extremely valuable
for motion planning for the SLIP model and related robots.

In this paper, we propose a novel gravity correction
scheme to substantially increase the accuracy of method in
[10] for non-symmetric SLIP trajectories and compare our
results with approximations presented in both [17] and [10].
The paper continues with the SLIP model and associated ter-
minology, We then summarize previous approximate stance
maps and continue in Section III with the proposed gravity
correction method. This is followed by the performance
analysis and a comparison with existing approximations.
Finally, we conclude the paper with a review of our work
and a summary of open research topics.

II. BACKGROUND

A. The SLIP Model

The SLIP model consists of a point mass connected to
a massless compliant leg as illustrated in Fig. 3(a). During
locomotion, the system alternates between stance and flight
phases. During stance, the toe remains stationary on the
ground with no torque applied to the leg whereas in flight, the
body follows a ballistic trajectory. Transition to and fromthe
stance phase occurs with the touchdown and liftoff events,
respectively. Two important events are the apex, where the
body height is at its maximum and the bottom, where
leg compression is maximal. These events and associated
subphases are all illustrated in Fig. 3(b). Furthermore, Table
I details the notation we use throughout the paper. Finally,
apex return map is defined as a mapping from the current
apex states,b(n), to next apex states,b(n + 1), by using the
chosen control inputs,u, as illustrated in Fig. 3(b).

B. Simple Approximate Stance Map by Geyer et al.

In this section, we briefly review the approximation
method proposed in [10]. The equations of motion for the
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Fig. 3. The SLIP Model. (a) Coordinates and model parameters. (b)
Locomotion phases (shaded regions) and transition events (boundaries).

TABLE I

NOTATION USED THROUGHOUT THE PAPER

SLIP States
qr, qθ Leg length and leg angle
qṙ, q

θ̇
Leg compression and swing rates

pr, pθ Radial and angular momenta
qrtd

, qθtd
, ttd Touchdown leg length, angle and time

qrb
, qθb

, tb Bottom leg length, angle and time
qrlo

, qθlo
, tlo Liftoff leg length, angle and time

bx, by Horizontal and vertical body positions
bẋ, bẏ Horizontal and vertical body velocities

bya , bẋa
Apex height and velocity

SLIP Parameters
m, g Body mass and gravitational acceleration
l0, k Leg rest length and leg stiffness
E Total mechanical energy

stance phase of SLIP in polar coordinates are given by

mq̈r = mqr q̇θ
2 + k(l0 − qr) − mg cos(qθ),

0 =
d

dt
(mqr

2q̇θ) + mgqr sin qθ.

If a sufficiently small angular span∆qθ is assumed for the
stance phase, the effect of gravity can be linearized, yielding
simplified equations of motion

mq̈r = mqr q̇θ
2 + k(l0 − qr) − mgs,

d

dt
(mqr

2q̇θ) = 0,

which are now integrable since the angular momentum,pθ :=
mqr

2q̇θ and the total energy

E :=
m

2
q̇r

2 +
pθ

2

2mqr
2

+
k

2
(l0 − qr)

2 + mgsqr (1)

become constants of the motion. Defining the parameters

ρ =
qr − l0

l0
≤ 0, ǫ =

2E

ml0
2

, ω =
pθ

ml0
2

andω0 =

r

k

m
,

and substituting them into (1), yields

ǫ = ρ̇2 + ω2/(1 + ρ)2 + ω0
2ρ2 + 2g(1 + ρ)/l0. (2)

If we also assume that the relative spring compression
|ρ| ≪ 1, then the term1/(1 + ρ)2 can be approximated by
a Taylor series expansion around zero to yield

1/(1 + ρ)2
∣

∣

ρ=0
= 1 − 2ρ + 3ρ2 − O(ρ3).



Under these assumptions and further simplifications [10],
an analytical solution toqr(t) can be found as

qr(t) = l0(1 + a + b sin(ω̂0t)), (3)

where we define

ω̂0 :=
√

ω0
2 + 3ω2,

a := (ω2 − g/l0)/ω̂2
0 ,

b :=
√

a2 + (ǫ − ω2 − 2g/l0)/ω̂2
0 .

The equation (3) can also be used to determine the times
for critical events relative to an unknown time origin as

ttd = (π − arcsin(−a/b))/ω̂0, (4)

tb = 3π/2ω̂0, (5)

tlo = (2π + arcsin(−a/b))/ω̂0, (6)

assuming thatqrlo = qrtd = l0.
Given the analytical solution for the radial motion and the

conservation of the angular momentum, we also have

qθ̇ = ω/(1 + ρ)2 = ω(1 − 2ρ). (7)

Recalling thatρ := (qr − l0)/l0 = a + b sin(ω̂0t)), an
analytic solution to the angular motion can be found as

qθ(t) = qθtd + ω(1 − 2a)(t − ttd)

+
2bω

ω̂0

[cos(ω̂0t) − cos(ω̂0ttd)], (8)

wherettd ≤ t ≤ tlo, andttd and tlo as in (4) and (6).

C. Iterative Approximate Stance Map by Schwind et al.

In [17], Schwind and Koditschek propose an analytic
approximation to the nonintegrable stance dynamics of SLIP
through an iterative application of the mean value theorem
for integral operators. They showed that this iterative method
converges to true SLIP dynamics under certain assumptions,
which are unfortunately easily violated for non-symmetric
trajectories. Furthermore, the presented form of their approx-
imation only gives a map from bottom to apex and does not
readily support the entire apex return map. In this section
we briefly describe and extend on their method to enable
comparisons with our proposed approximations.

The Hamiltonian function for the stance phase is given by

H(qr, pr, qθ, pθ) =
1

2m

„

p
2

r +
p2

θ

q2
r

«

+
1

2
k(l0−qr)

2+mgqr cos(qθ).

Solving the equationH(qr, pr, qθ, pθ) = E for pr yields

pr = H
†(qr, qθ, pθ, E) :=
s

2m

„

E −
1

2
k(l0 − qr)2 − mgqr cos(qθ)

«

−
p2

θ

q2
r

,

The approximation introduced in [17] gives thenth iteration
for the bottom to liftoff map as

t̂s(n+1)
(qr) = tb + m(qr − qrb

)/H†
n,

q̂θ(n+1)
(qr) = qθb

+ p̂θn
(ξ̂r)(qr − qrb

)/(ξ̂2
rH†

n),

p̂θ(n+1)
(qr) = pθb

+ m2gξ̂r sin(q̂θn
(ξ̂r))(qr − qrb

)/H†
n,

p̂r(n+1)
(qr) = H†

n+1,

such that the zeroth (initial) iteration can be any approximate
analytical solution and̂ξr = 3qrtd

/4 + qr/4 and H†
k :=

H†(ξ̂r, q̂θk
(ξ̂r), p̂θk

(ξ̂r), E).
A touchdown to bottom map can be similarly derived as

t̂s(n+1)
(qr) = ttd − m(qr − qrtd

)/H†
n

q̂θ(n+1)
(qr) = qθtd

− p̂θn
(ξ̂r)(qr − qrtd

)/(ξ̂2
rH†

n)

p̂θ(n+1)
(qr) = pθtd

− m2gξ̂r sin(q̂θn
(ξ̂r))(qr − qrtd

)/H†
n

p̂r(n+1)
(qr) = −H†

n+1.

The overall apex return map can then be obtained by com-
bining the above approximations using the desired number
of iterations with solutions to the flight dynamics. However,
this formulation of the apex return map has one important
unknown: the bottom leg length,qrb

. Fortunately, even
though an exact solution for the bottom leg length does not
exist, several approximate solutions can be used. One such
solution is given by the quartic equation arising from the
total energy relation as

k

2
q4
r + (mg − kl0)q

3
r +

(

kl20
2

− E

)

q2
r +

p2
θ

2m
= 0,

for which a real analytic solution that is less than or equal to
the rest leg length can be found. An alternative approximate
solution is given by the approximate stance map of [10] as

qrb
= l0(1 + a − b),

wherea andb are as defined in Section II-B.

III. APPROXIMATE STANCE MAP WITH GRAVITY
CORRECTION

In Section II, we reviewed two leading methods [10, 17] to
find analytic approximations to the stance map of SLIP, both
of which were based on assumptions of symmetric gaits. In
this section, we extend the method presented in [10] with a
gravity correction to yield a much larger domain of validity
in the presence of non-symmetric trajectories.

As illustrated in Fig. 2, the angular momentum from
touchdown to liftoff is conserved only for symmetric SLIP
trajectories. Consequently, while the conservation of angular
momentum is a reasonable assumption for symmetric steps,
it becomes rather inaccurate for non-symmetric trajectories.

During stance (see Fig. 3), the effect of gravity on the
angular momentum,P (t), can be generally modeled as

P (t) = Pt0 +

∫ t

t0

τ(ζ)dζ

τ(t) := mgqr(t) sin qθ(t),

whereτ(t) is the torque applied by the gravitational accel-
eration around the toe point. Generally, even the analytic
approximations (3) and (8) are too complex for symbolic
integration. Consequently, our method involves ann-point
approximation to this integral, yielding

P (t) ≈ Pt0 + (t − t0)

(

1

n

n
∑

k=1

mgqr[n] sin qθ[n]

)

. (9)



We propose to model the total effect of gravity on the
angular momentum from any initial to any final state during
stance with a constant total correction, computed by using an
approximation to the average leg lengthqrav

(ti, tf ) during
this period. We then use this general formulation to compute
a correction for the apex return map, using touchdown and
liftoff as the initial and final states, respectively.

Using (3) and lettingti andtf be the initial and final state
times such thatttd ≤ ti < tf ≤ tlo, we have

qrav (ti, tf ) ≈
1

tf − ti

Z tf

ti

l0(1 + a + b sin(ω̂0t))dt,

= l0(1 + a) −
b

ω̂0(tf − ti)
(cos(ω̂0tf ) − cos(ω̂0ti)),

wherea, b andω̂0 can be calculated by using related formulas
in Section II-B. Using (9), the total effect of gravity becomes

Pc :=
(tf − ti)mgsqrav (ti, tf )

2
(sin qθ(ti) + sin qθ(tf )) ,

whereqθ(t), is as given in Section II-B.
We propose to incorporatePc into the approximation

as a simple correction term added to the original angular
momentum,pθ, otherwise assumed to be constant for the
formulations in [10]. This yields a new angular momentum
term

p̂θ = pθ + Pc.

which replacespθ in all derivations. Using touchdown and
liftoff times as the initial and final states yields our corrective
method for the apex return map.

IV. PERFORMANCE ANALYSIS

A. Simulation Environment and Performance Criteria

Our interest in analytic approximations to the stance
dynamics of SLIP arises from our need to compute the apex
return map for a given set of controls.(i.e. touchdown angle
and leg stiffness). Therefore, the most important performance
criteria for us is the accuracy of the predicted apex position
and velocity. To this end, we use two measures to quantify
the prediction performance of both our method and existing
methods: Normalized percentage errors in the apex position
and liftoff velocity predictions are respectively defined as

PEap = 100
||(bxa , bya) − (b̂xa , b̂ya)||2

||(bxa , bya)||2
,

PElov = 100
||(bẋlo

, bẏlo
) − (b̂ẋlo

, b̂ẏlo
)||2

||(bẋlo
, bẏlo

)||2
.

We use the liftoff velocity rather than the apex velocity to
ensure that normalization is practical even for non-symmetric
gaits for which the apex velocity may become zero.

In order to compare different methods of approximation,
we ran simulations spanning four different dimensions of
initial states and control inputs: the apex height (bya

), the
apex velocity (bẋa

), the spring constant (k) and the rela-
tive touchdown angleqθtdrel

:= qθtd
− qθtdn

1. The ranges

1qθtdn
is the neutral touchdown angle which results in a symmetric SLIP

trajectory and depends on the initial conditions. For each simulation, we
numerically calculated this angle to be used as the origin forour plots.

considered for these dimensions were determined based on
biomechanics literature as well as structural properties of
various legged robots. In particular, experiments on humans
(with 80kg mass and 1m leg length on average) running at
different speeds (in the range 2.5-6.5m/s) reveals that their
leg stiffnesses are in the range [10, 50] kN/m [4] . In the
robotic domain, the small hexapod robot RHex [15], has
an approximate mass of 10kg, leg length of 0.25 m and
compliant legs with stiffness of around 2000N/m for each
leg. Based on a dimensionless stiffness measurek̂ = l0

mg
k,

these examples motivate our choice of simulation parameters
of Table II and control input ranges ofk ∈ [125, 1000] N/m
andqθtdrel

∈ [-0.4, 0.4] rad.
TABLE II

SIMULATION PARAMETERS

m (kg) l0 (m) g (m2/s) bya (m) bẋa
(m/s)

1 1 9.81 1.1 - 1.5 0 - 8

For each of our simulations, we checked whether they
satisfied two conditions to ensure that we can support
meaningful comparisons of all approximations to the stance
map. Firstly, due to the hybrid nature of SLIP locomotion,
certain stance trajectories never leave the ground or prevent
foot protraction. Consequently, we restricted our domainsto
exclude simulations where the next apex height is smaller
than the rest length of the leg spring, ensuring that there
are no limitations on the touchdown angle for the next step.
Second, in order to preserve similarity to results presented in
both [17] and [10], we restricted the maximum allowable leg
compression to a maximum of 25% and excluded trajectories
that violate this condition. From among a total of 25500
initial states and control inputs, 10264 were found to satisfy
these two conditions.

We computed “ground truth” through numerical integra-
tion of SLIP dynamics within MATLAB using a variable
time-step, fourth order Runge-Kutta integrator. We then
computed approximate estimates of the apex states based on
two previously proposed approximations and our new gravity
correction scheme and compared estimation performances
uwing the error criteria defined above. For the Schwind
approximations, we used the 10th iterate (after which further
iterations yield no improvements) to make sure we obtained
the best possible performance for their method.

B. Simulation Results

Our simulation results are illustrated in Fig. 4, where we
show the mean, standard deviation and maximum values for
the apex position and liftoff velocity percentage errors,PEap

andPElov, across all valid simulations and all three approx-
imation methods. Our results show that there is a notable
performance improvement on the average for our proposed
gravity correction method compared both to Geyer’s and
Schwind’s approximations.

A more informative comparison between different ap-
proximation alternatives can be achieved by investigating
the estimation performance as a function of the relative
touchdown angle. Since our method is expected to perform
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Fig. 5. Mean Apex Position Percentage Error (PEap) versus Relative
Touchdown Angle (qθtd
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deviations for the approximate stance map with gravity correction.

well for non-symmetric trajectories, its error performance
should be better than the alternatives for nonzero relative
angle values. As illustrated by Figures 5 and 6, this was
indeed the case both error measures,PEap andPElov.

In almost all cases, our approximation performed better
than Geyer’s method for non-symmetric trajectories. Note
that these two approximations are expected to perform iden-
tically for symmetric gaits (zero relative touchdown angle),
which is also confirmed by their almost identical estimation
performance forqθtdrel

∈ [−0.1, 0] rad.
On the other hand, Schwind’s iterative approximation has

an almost uniform performance profile, relatively indepen-
dent of symmetry. Consequently, it performs better than our
approximation for some non-symmetric trajectory regions
far out into the touchdown angle spectrum. However, these
regions correspond to rather extreme transient conditions
unlikely to be observed for locomotion on reasonable terrain.
Furthermore, some of their method’s performance can be
attributed to the fact that we used the 10th iterate of their
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Fig. 6. Mean Liftoff Velocity Percentage Error (PElov) versus Relative
Touchdown Angle (qθtd

− qθtdn
). The vertical bars represent the standard

deviations for the approximate stance map with gravity correction.

approximations rather than more reasonable ones such as the
first or second iterate for which the analytical nature of the
approximations can still be preserved.

Overall, our gravity correction scheme performs best for
relative touchdown angles in the range of[−0.2 0.2] rad.
Fortunately, angles outside this range correspond to very
sudden changes in the locomotion and can safely be left
unused by a reasonable planner cognizant of the limitations
of available approximations.
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Fig. 7. Comparison of the mean Apex Position Percentage Errors. Colored
regions show where the associated approximation performs better.

Finally, Figs. 7 and 8 illustrate regions in the control
input space for which different approximants produce the
best error performance. Schwind’s method once again, is
observed to have good performance far from symmetric
gaits. When the relative touchdown angle is in the range
[−0.2, 0.2] rad, our gravity correction scheme has the best
performance for both error measures. In Fig. 7, even though
Geyer’s approximations seem to be better than ours for larger
leg stiffnesses and nearly symmetric gaits, their performance
is actually almost identical to ours in those areas as can be
observed from corresponding regions in Fig. 5.

As illustrated by these results, our proposed method signif-



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
100

200

300

400

500

600

700

800

900

1000  

Relative Touchdown Angle − (qθ td
 − qθ td n

) − (rad.)

Mean Liftoff Velocity Percentage Error Comparison

 

S
pr

in
g 

C
on

st
an

t −
 k

 −
 (

N
/m

)
Geyer [10]
Schwind [17]
Gravity Correction

Fig. 8. Comparison of the mean Liftoff Velocity Percentage Errors. Colored
regions show where the associated approximation performs better.

icantly improves the accuracy of approximations presentedin
[10]. When compared to Schwind’s iterative approximations
presented in [17], our approximation also performs better
for the most commonly used subset of non-symmetric tra-
jectories. It is important to note that the higher iterates of
the Schwind approximations have much more complicated
analytical forms, a significant handicap for the design of
control algorithms and dynamic locomotion planning for
SLIP. Our approximations, even with the gravity correction,
have a very simple analytical form that can easily support
control algorithms for dynamical locomotion and footstep
planning for the SLIP model.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel gravity correction
method to improve the performance of the previously pro-
posed analytic approximations to the stance dynamics of the
SLIP model in [10]. Our method is based on the hypothesis
that for non-symmetric locomotion trajectories, the effect of
gravity on the total angular momentum can be summarized
with a constant correction term. We demonstrated that this
is indeed the case through comparisons of estimation errors
for both Geyer’s method, our method as well as a different
analytic approximation method proposed in [17]. Our method
was found to perform best for relative touchdown angles
in the range [- 0.2 0.2] rad. For gaits that are sufficiently
far from symmetric, Schwind’s iterative stance map was
observed to have better performance but under the condition
that it is iterated until convergence, which usually results
in unacceptable analytical complexity. Overall, our method
seems to present the best combination of accuracy and
simplicity for non-symmetric SLIP trajectories and is suitable
for the design of footstep planning algorithms that rely on
the use of transient stepping behavior.

Even though it was left outside the scope of the present
paper, our approximations can also be easily applied to
using tunable stiffness during stance as a control input as
introduced in [14] and also embodied in the passive dynamics
of the BiMASC leg [13]. This aspect turns out to be critical

for nontrivial planning tasks with the SLIP model since it
allows inducing changes in the total energy of the system,
allowing finer control over possible maneuvers.

Our longer term goal is the design of reactive planning
controllers for the SLIP model, which can in turn be applied
to more complex legged robots through passive or active
embedding of the SLIP model. To this end, we believe
that analytic approximations to the dynamic behavior of this
model will be invaluable both in the design of controllers
that can accurately and efficiently regulate its discrete control
inputs as well as in the analytical characterization of such
controllers for planning purposes. Our proposed method fills
a gap in this area and provides an analytic approximation
that remains valid for a large range of control inputs and
initial conditions of the SLIP model.
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