
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

2017

Sensory Steering for Sampling-Based Motion
Planning
Omur Arslan
University of Pennsylvania, omur@seas.upenn.edu

Vincent Pacelli
University of Pennsylvania, pacelliv@seas.upenn.edu

Daniel E. Koditschek
University of Pennsylvania, kod@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/ese_papers

Part of the Electrical and Computer Engineering Commons, and the Systems Engineering
Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/ese_papers/836
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Omur Arslan, Vincent Pacelli, and Daniel E. Koditschek, "Sensory Steering for Sampling-Based Motion Planning", IEEE/RSJ
International Conference on Intelligent Robots and Systems , 3708-3715. January 2017. http://dx.doi.org/10.1109/IROS.2017.8206218

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=repository.upenn.edu%2Fese_papers%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=repository.upenn.edu%2Fese_papers%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=repository.upenn.edu%2Fese_papers%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/IROS.2017.8206218
https://repository.upenn.edu/ese_papers/836
mailto:repository@pobox.upenn.edu


Sensory Steering for Sampling-Based Motion Planning

Abstract
Sampling-based algorithms offer computationally efficient, practical solutions to the path finding problem in
high-dimensional complex configuration spaces by approximately capturing the connectivity of the
underlying space through a (dense) collection of sample configurations joined by simple local planners. In this
paper, we address a long-standing bottleneck associated with the difficulty of finding paths through narrow
passages. Whereas most prior work considers the narrow passage problem as a sampling issue (and the
literature abounds with heuristic sampling strategies) very little attention has been paid to the design of new
effective local planners. Here, we propose a novel sensory steering algorithm for sampling- based motion
planning that can “feel” a configuration space locally and significantly improve the path planning performance
near difficult regions such as narrow passages. We provide computational evidence for the effectiveness of the
proposed local planner through a variety of simulations which suggest that our proposed sensory steering
algorithm outperforms the standard straight-line planner by significantly increasing the connectivity of
random motion planning graphs.
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Sensory Steering for Sampling-Based Motion Planning

Omur Arslan and Vincent Pacelli and Daniel E. Koditschek

Abstract— Sampling-based algorithms offer computationally
efficient, practical solutions to the path finding problem in high-
dimensional complex configuration spaces by approximately
capturing the connectivity of the underlying space through a
(dense) collection of sample configurations joined by simple
local planners. In this paper, we address a long-standing
bottleneck associated with the difficulty of finding paths through
narrow passages. Whereas most prior work considers the
narrow passage problem as a sampling issue (and the literature
abounds with heuristic sampling strategies) very little attention
has been paid to the design of new effective local planners. Here,
we propose a novel sensory steering algorithm for sampling-
based motion planning that can “feel” a configuration space
locally and significantly improve the path planning performance
near difficult regions such as narrow passages. We provide
computational evidence for the effectiveness of the proposed
local planner through a variety of simulations which suggest
that our proposed sensory steering algorithm outperforms the
standard straight-line planner by significantly increasing the
connectivity of random motion planning graphs.

I. INTRODUCTION

The modern use of robots, such as in household applica-

tions [1], package delivery [2], warehouse management [3],

and transportation [4], requires finding safe navigation paths

in complex-shaped, high-dimensional configuration spaces

that are generally very difficult, if not impossible, to repre-

sent explicitly. Fortunately, sampling-based motion planning

methods (e.g., probabilistic roadmaps [5], rapidly-exploring

random trees [6], and their variants) offer computationally

efficient solutions to path planning in such complicated

configuration spaces by approximately modeling their con-

nectivity using a (dense) collection of sample configurations

that are connected by simple local planners. As one might

expect, it is usually a challenging task to identify narrow

passages in configuration spaces and find a path through such

limited regions, especially using randomized approaches [7],

[8]. In this paper, we introduce a new sensory steering

algorithm for sampling-based motion planners that can “feel”

the local geometric structure of a configuration space around

a sample configuration and can generate effective steering

motion near narrow passages, as illustrated in Fig. 1.

A. Motivation and Prior Literature

Although the use of (asymptotically dense) sample config-

urations connected by simple local planners enables compu-

tationally affordable, approximate modeling of configuration

spaces with probabilistic completeness guarantees, sampling-

based motion planners, with no additional special treatment,

The authors are with the Department of Electrical and Systems Engineer-
ing, University of Pennsylvania, Philadelphia, PA 19104. E-mail: {omur,
pacelliv, kod}@seas.upenn.edu. This work was supported in part by AFRL
grant FA865015D1845 (subcontract 669737-1).

Fig. 1. Sensory steering steps (blue line segments) toward a goal (blue
star-shaped marker) among obstacles (dark gray polygons). Using critical
collisions around a sample configuration, sensory steering first identifies an
obstacle free convex neighborhood of the configuration, and then chooses a
step toward the closest point of this safe zone to the goal. By construction,
sensory steering is scale robust and preliminary numerical evidence (e.g.,
see Figs. 4 & 5) suggests that it substantially outperforms the standard
straight-line planner by significantly increasing connectivity of sample
configurations, especially near narrow passages.

are known to perform less well around narrow passages

[7], [8]. For instance, uniform sampling is known to have

a Voronoi bias causing rapid exploration of wider regions

of configuration spaces (i.e., reduced sampling from narrow

passages) [9]; similarly, the standard straight-line planner

is very limited in capturing local connectivity near narrow

passages, because it only connects a pair of sample configu-

rations if the straight line joining them is free of collisions.

The majority of past work has treated the narrow passage

problem as a sampling issue. Accordingly, many heuristic

strategies that bias sampling towards narrow passages have

been proposed based on geometric properties of configura-

tion spaces and sampling history. Representative approaches

include: retraction onto the medial-axis [10]–[12] and the

boundary [13] of the free space1; cell decomposition based

sampling [14]–[17]; bridge-test sampling [18]; Gaussian

sampling [19]; entropy based sampling [20]; artificial po-

tential biased sampling [21]; human-guided sampling [22];

simultanous sampling of the free space and configuration

space obstacles [23]; sampling using collision information

[5], [24]; and their combinations [25].

Alternatively, the difficulty of path finding around narrow

passages can be mitigated by designing effective local plan-

ners. Sampling-based [26], [27] and search-based (e.g., A*-

like) [13], [28], [29] local planning approaches have been

demonstrated to perform better than the standard straight-line

planner near narrow passages, but these approaches require

storage of path segments joining sample configurations and

so cause an increase in memory requirements. This additional

1We use the terms “free space” and “configuration space” interchangeably.
It also bears mentioning that, with no approximation, retraction onto the
medial-axis or the boundary of the free space and cell decomposition
methods require an explicit representation of configuration spaces.



memory complexity can be reduced by constraining the

search space to a low dimensional subspace and/or limiting

the number of vertices used to represent path segments [30].

Randomized potential field methods [31] that combine the

desired strengths of artificial potential functions [32] and

sampling-based methods, are successfully applied to the path

finding problem, but they inherently suffer from getting

trapped around local minima [33], because escape routes

from such traps might be narrow.

B. Contributions and Organization of the Paper

As an alternative local planner, in this paper we propose a

novel local path planning algorithm for sampling-based mo-

tion planning that tries to connect sample configurations by

exploiting, in a computationally effective manner, “sensed”

local geometric structure of configuration spaces around sam-

ple configurations. More precisely, using the critical points

of the free space boundary around a sample configuration,

computed from a “sensor” that returns the (range limited)

closest points of convex obstacles, we first construct a convex

collision-free neighborhood of the sample configuration, and

then accordingly build our local planner that steers the

sample configuration toward the closest point of its convex

local safe neighborhood to any given sample destination

configuration. We show that an incremental anytime version

of the proposed local planner can be implemented efficiently

using active set methods of convex quadratic optimization

[34]. We demonstrate in simulations the effectiveness of the

proposed local planner for finding paths through narrow pas-

sages, exploring how well it captures the local connectivity of

configuration spaces around such difficult regions. It is worth

mention that this construction is an adaptation of our recently

introduced feedback motion planner for collision free global

navigation in densely cluttered environments with convex

obstacles [35], [36]. Whereas the assumptions underlying the

formal guarantees associated with those methods cannot be

expected to hold in the general application settings addressed

here, their obstacle-avoiding, convergence-seeking “greedy”

design may help intuitively explain why the proposed sensory

steering algorithm performs significantly better than the

straight-line planner near narrow passages.

This paper is organized as follows. Section II briefly

reviews background on sampling-based motion planning.

Section III, comprising the central contribution of the paper,

constructs a convex local free space around a sample config-

uration and presents our sensory steering algorithm. Section

IV provides a brief discussion on computational complex-

ity and implementation suggestions. Section V illustrates

the effectiveness of the proposed planner using numerical

simulations. Section VI concludes with a summary of our

contributions and a brief discussion of future directions.

II. BACKGROUND:

SAMPLING-BASED MOTION PLANNING

In this section, we briefly review the generic components

of sampling-based motion planning algorithms, and present

two widely used randomized motion planners, probabilistic

roadmaps (PRMs) [5] and rapidly-exploring random trees

(RRTs) [6]. First, it is convenient to introduce some notation.

For a robotic system, let F ⊆ R
n denote its compact

closed free space that contains the set of robot config-

urations with no collisions, for some n ∈ N; and let

[x, y] :=
{
αx + (1−α) y ∈ Rn

∣∣∣0 ≤ α ≤ 1
}

be the straight

line segment between two points x, y∈Rn.

A. Generic Elements

A sampling-based motion planning algorithm typically

consists of the following generic components.

1) Sampling: A sampling method, denoted by

Sample (F), generates independent and identically

distributed random2 configurations from the free space

F, with a possible bias toward important regions such

as narrow passages and the boundary of the free space.

For example, one might consider any heuristic sampling

approach referred to in Section I-A. In this paper, to

highlight the strength of the proposed local planner, we

generate uniform samples from the free space using

rejection sampling that repeatedly draws sample points from

a box-shaped subset of Rn containing F until finding a

collision free configuration in F.

2) Distance Measure: A distance function quantifies the

relative proximity of a pair of sample configurations in the

free space. Hence, an informative distance measure should be

ideally as close as possible to the geodesic distance so that it

expedites exploration of the free space. In this paper, we sim-

ply consider the standard Euclidean metric, denoted by ‖.‖,
and refer to [28], [37] for other alternative distance metrics.

3) Nearest Neighbor Search: For a choice of a dis-

tance function, nearest neighbor search, denoted by

NearestNeighbor(X, x), seeks for the closest element of a

collection of sample configurations X={x1, x2, . . . , xm}⊂F

to a newly generated sample configuration x ∈ F. Typically,

the underlying assumption is that the closest pairs of sample

configurations are more likely to be connected by a simple

local planner with no collisions. For the standard Euclidean

metric, nearest neighbor search can be performed in logarith-

mic time using efficient data structures such as kd-trees [38].

4) Local Planner: A local planner, also known as a

steering function, denoted by z = Steer (x, y), suggests

a greedy motion step from a sample configuration x ∈ F

toward a sample destination configuration y ∈ F via an

intermediate point z ∈ R
n that is “closer” to y than x, with a

possible upper bound ǫ > 0 on the step size, i.e., ‖z− x‖ ≤
ǫ. A deterministic local planner is always preferred over a

randomized local planner, because a deterministic planner

does not require storage of path segments joining sample

configurations [28]. A widely used deterministic local plan-

ner is the straight-line planner, defined as

StraightSteer(x, y) := arg min
z∈B(x,ǫ)

‖z− y‖ , (1)

where B (x, ǫ) :=
{
p ∈ R

n
∣∣ ‖p− x‖ ≤ ǫ

}
denotes the

closed Euclidean ball centered at x with radius ǫ.

2A sampling method might also be deterministically constructed based
on lattice-like regular structures [8].



To ensure the probabilistic completeness of a sampling-

based motion planner, one can consider a local planner that

can always join certain nearby configurations [39]:

Definition 1 A steering function Steer : Rn×Rn → Rn is

said to be admissible if for any x ∈ F,

Steer (x, y) = y, ∀y ∈ B
(
x, r

2

)
, (2)

where r:=min(2ǫ,d(x, ∂F)) and d(x,∂F):= arg min
z∈∂F

‖x−z‖

is the distance of x to the boundary ∂F of the free space F.

For example, the standard straight-line planner is known to

be admissible, since for any x, y ∈ Rn with ‖x− y‖ ≤ r
2 one

has B
(
y, r

2

)
⊆ B (x, r) [39]. In this paper, we introduce a

new deterministic, admissible sensory steering algorithm that

can be used with any existing sampling-based motion planner

while preserving probabilistic completeness guarantees.

Finally, to enable taking more than one concatenated

motion steps for joining sample configurations, we find it

convenient to define K-step motion steering as: for K ≥ 0,

SteerK+1(x, y) := Steer
(
SteerK(x, y) , y

)
, (3)

where we set Steer0(x, y) = x. Note that if Steer is

deterministic and admissible, then so is SteerK , for K ≥ 1.

5) Collision Detection: A collision detector, denoted
by CollisionFree(x, y), checks if the straight line
connecting a pair of sample points, x, y ∈ R

n, is free
of collisions; and it returns true if [x, y] ⊆ F, and false
otherwise. One can accurately determine collisions using
fast incremental distance computation between convex
polyhedra [40], or it can be approximately computed using
binary search along a discretized line segment joining
sample configurations. In this paper, to incrementally
compute distance between convex polytopes, we use active
set methods of convex optimization [34], briefly presented
in Section IV-B, because they offer a natural generalization
of [40] to arbitrary space dimensions. Further, abusing the
notation, we shall check the safety of a steering step by
CollisionFree(Steer(x, y)):=CollisionFree(x, Steer(x, y)),
and, likewise, the safety of K-step steering motion can be
determined by

CollisionFree

(

Steer
K+1(x, y)

)

:=

K
∧

k=0

CollisionFree

(

Steer
k(x, y), Steerk+1(x,y)

)

. (4)

B. Generic Algorithms

We now present basic versions (in Algorithm 1 and

Algorithm 2) of the two widely used random motion planning

graphs, probabilistic roadmaps (PRMs) [5] and rapidly-

exploring random trees (RRTs) [6] for multi-query and

single-query path planning applications, respectively.
A probabilistic roadmap G = (V,E) consists of a finite

collection of sample configurations as its vertex set V , and
a pair of vertices v 6= u ∈ V are connected by an undirected
edge in E if and only if they can be safely joined together
in K steering steps3, i.e.,

(v,u)
(u,v)

∈E⇔

(

Steer
K(v,u)=u

)

∧CollisionFree
(

Steer
K(v,u)

)

or
(

Steer
K(u,v)=v

)

∧CollisionFree
(

Steer
K(u,v)

)

(5)

Algorithm 1 shows how to construct such a PRM. Hence,

after the construction phase, in the query phase, one can find

a navigation path between a start and a goal configuration

by first safely connecting them to the constructed PRM, and

then searching a (shortest) path of the PRM between the

associated terminal nodes.

Algorithm 1: Probabilistic Roadmap (PRM) [5]

Input: N – Number of Samples

K – Number of Steering Steps

Output: G = (V,E) – Random Motion Planning Graph

1 V ←
⋃N

i=1 {Sample (F)}; E ← ∅;

2 foreach v 6= u ∈ V do

3 if
(
SteerK(v,u)=u

)
∧
(
CollisionFree

(
SteerK(v,u)

))

or(
SteerK(u,v)=v

)
∧
(
CollisionFree

(
SteerK(u,v)

))

then

4 E ← E ∪ {(v, u) , (u, v)};

5 return G = (V,E);

A rapidly-exploring random tree is an incrementally con-

structed motion planning graph G = (V,E) such that its

construction is initiated at a start configuration xstart ∈
F and it is iteratively expanded toward a random sample

xrand = Sample (F) from its closest vertex xnearest =
NearestNeighbor(V, xrand) using a safe steering step to

xnew = Steer (xnearest, xrand), as illustrated in Algorithm 2.

Thus, to reach a goal set, one can expand an RRT until it

contains a vertex from the goal set.

Algorithm 2: Rapidly-Exploring Random Tree (RRT) [6]

Input: N – Number of Iterations

xstart ∈ F – Start Configuration

Output: G = (V,E) – Random Motion Planning Graph

1 V ← xstart; E ← ∅;

2 for i = 1, . . . , N do

3 xrand ← Sample (F);
4 xnearest ← NearestNeighbor(V, xrand);
5 xnew ← Steer (xnearest, xrand);
6 if CollisionFree(xnearest, xrand) then

7 V ← V ∪ {xnew}; E ← E ∪ {(xnearest, xnew)};

8 return (G = (V,E));

III. SENSORY STEERING

We now introduce a new greedy deterministic admis-

sible sensory steering function for sampling-based motion

planning, whose construction exploits the local geometric

structure of a configuration space by identifying a convex

collision-free neighborhood of a sample configuration using

the critical collisions around it.

3Although the simplified PRM in [39] assumes a limited-range straight-
line connectivity, we here find it convenient to construct a PRM using an
arbitrary steering function and an arbitrary fixed number of steering steps.



A. Safe Neighborhood of a Sample Configuration

1) Local Free Space from Critical Collision Sensing:

For ease of exposition, in this part we assume the a priori

unknown configuration space obstacles can be accurately

approximated as a finite union of closed convex polytopes4,

say {Q1, Q2, . . . , Qm}, where m ∈ N; and we further

assume the availability of a computational “sensing” model,

denoted by S (x), that returns the closest points of convex

obstacles, within a certain fixed sensing range R > 0, to a

sample configuration x ∈ F, i.e.,

S(x) :=
{
ΠQi

(x)
∣∣∣ d (x, Qi) ≤ R, i ∈ {1, . . . ,m}

}
, (6)

where d (x, Qi) := minq∈Qi
‖x− q‖ is the distance between

point x and obstacle Qi, and ΠQi
(x) :=arg minq∈Qi

‖x−q‖
denotes the metric projection of x onto Qi and returns the

unique closest point of Qi to x [41]. Metric projection onto a

convex polytope can be recast as a linearly constrained least

squares (i.e., convex quadratic optimization) problem and so

can be computed in polynomial time, for example, using

the active set method of convex quadratic optimization [34],

summarized in Section IV-B. We refer to this local sensing

model as limited range critical collision sensing.

Accordingly, given critical collision points S (x) around a

sample configuration x ∈ F, using Voronoi decomposition,

we construct the local free space LF(x) of configuration x,

illustrated on the left in Fig. 2, as

LF(x) :=
{
p∈B

(
x, R

2

)∣∣∣‖p−x‖≤‖p−s‖ , ∀s∈S(x)
}
. (7)

Note that LF (x) is a closed convex set whose boundary

is defined by the maximum-margin separating hyperplanes5

between x and obstacles [35], [36]. Hence, it is straight

forward to observe that:

Proposition 1 LF (x) ⊆ F for any x ∈ F.

In robotics, a safe neighborhood of a configuration x ∈
F is generally defined as the largest ball centered at x
in the free space F, i.e., B (x, d (x, ∂F)), which is a

very restrictive usage of critical collision sensing since

d (x, ∂F) = mins∈S(x) ‖s− x‖ for large enough R. Sim-

plicity notwithstanding, such a primitive symmetric safe

zone, B (x, d (x, ∂F)), around x is, unfortunately, not able

to capture the local geometry of the free space F around x.

In contrast, we believe that this new notion of a convex local

free space LF (x) around x may provide a computationally

4It is a common practice to represent obstacles as a union of convex
polytopes because the surface features that define the closest point between
convex polytopes persist under small perturbations and so the closest point
between convex polytopes can be computed incrementally [40].

5The maximum margin separating hyperplane [41] between any two
distinct points a 6= b ∈ Rn can be equivalently written as
{
x ∈ R

n

∣∣∣ ‖x−a‖ = ‖x−b‖
}

=
{
x ∈ R

n

∣∣∣(a−b)T
(
x− a+b

2

)
= 0

}
.

6One can define a convex version of the local free space in (11) as

L̂F(x):=
{
p∈B

(
x,min

(
R

2
, d (x, ∂F)

))∣∣∣‖p−x‖≤‖p−s‖ , ∀s∈ Ŝ (x)
}
,

but the restriction to B(x, d (x, ∂F)) might be very conservative near the
free space boundary.

Fig. 2. Local free space LF (x) (yellow polygon) around a sample configu-
ration x ∈ F (blue point), constructed from critical collisions (cyan points)
around x: (left) limited range critical collision “sensing” (6) and (right) lim-
ited range radial collision “sensing” (9). To reach a destination configuration
y ∈ F (red point), sensory steering generates a step toward the closest point
ΠLF(x) (y) (green point) of the local free space LF (x) to the goal y.

effective local representation of the free space [42], that is

useful for incremental motion planning.

2) Local Free Space from Radial Collision Sensing: We

now generalize to higher dimensions a version of critical

collision sensing that is more practical in low dimensional

settings where radial range scanning is literally available

(e.g., 2D LIDAR range scanner and 3D depth sensors). Let

ρ : Rn×Sn−1 → [0, R] be a limited-range radial distance-to-

collision function that returns the distance of x ∈ Rn to the

boundary ∂F of the free space F along direction v ∈ Sn−1,

defined as

ρ (x, v) := max
{
α ∈ [0, R]

∣∣∣ [x, x + αv] ⊆ F

}
, (8)

if x ∈ F, and zero otherwise. Recall from (6) that the critical

collision point on a convex obstacle is defined to be its closest

point to a configuration. Accordingly, using the strict local

minima of ρ, we identify critical collision points around x as

Ŝ (x) :=
{
x + ρ(x, v) v

∣∣∣ v ∈Mρ(x)
}
, (9)

where the set of the strict local minima of ρ at x is given by

Mρ (x):=

{
v ∈ S

n

∣∣∣∣ ∃ ε > 0 s.t. ρ(x, v)<ρ

(
x,

v+αu

‖v+αu‖

)

∀α∈(0, ε) , u ∈ S
n−1

}
. (10)

In practice, one can use a regular grid discretization of Sn−1

[43] and exhaustively search for the strict local minima of ρ.

Therefore, using critical collision points in Ŝ (x) and the

associated Voronoi decomposition of the sensory footprint,

we define the local free space L̂F (x) of x ∈ F as

L̂F (x) :=
{
p∈P (x)

∣∣∣ ‖p−x‖ ≤ ‖p−s‖ , ∀s ∈ Ŝ (x)
}
, (11)

where the (half-scale) sensory footprint is given by

P (x) :=

{
x +

1

2
αρ(x, v) v

∣∣∣ v ∈ S
n−1, α ∈ [0, 1]

}
. (12)

Proposition 2 For any x ∈ F, the local free space L̂F (x)
is a closed subset of F, but not necessarily convex.6

Proof. By definition, P(x)⊆F, and so L̂F(x)⊆F. Further,

by construction, both P (x) and L̂F (x) are closed. For a

counter example for L̂F (x) being convex, see Fig. 3. �
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Fig. 3. A nonconvex local free space (yellow region) constructed using
the strict local minima (cyan point) and the (half-scale) sensory footprint
(red region) of the range map ρ.

Note that to ensure the convexity of L̂F(x), instead

of the strict local minima of ρ, as discussed in Section

III-A.1, one can construct the local free space using convex

surface decomposition of the range data [44]. Besides, if the

configuration space obstacles can be represented as a finite

union of convex sets, then the convexity issue of L̂F (x)
becomes significantly less severe. In the following, we shall

introduce an alternative approach to get around this issue.

B. Sensory Steering Function

Inspired by the “move-to-projected-goal” paradigm intro-

duced in [35], [36], we design our sensory steering function

SensorySteer : Rn × Rn → Rn that returns a steering

step at a configuration x ∈ F toward a desired configuration

y ∈ F through the “projected-goal” ΠLF(x) (y) as follows:

SensorySteer(x, y) := ΠB(x,ǫ) ◦ΠLF(x) (y) , (13)

where ǫ > 0 is a fixed step size, and ΠLF(x) denotes the

metric projection onto the closed convex local free space

LF (x) defined in (7). Note that metric projection onto a

closed convex set is piecewise continuously differentiable

[45], and, since x ∈ LF (x) ∩ B (x, ǫ), by definition, yields

a greedy sensory steering function in the sense that

‖x− y‖ ≥ ‖SensorySteer(x, y)− y‖ . (14)

Our construction of sensory steering in (13) is strongly

based on metric projection onto convex sets, which can be

efficiently computed using a standard off-the-shelf convex

optimization solver [41]. When the local free space LF (x) is

a closed convex polytope, then the projected goal ΠLF(x) (y)
can be efficiently computed in polynomial time by solving

a linearly constrained least squares problem using active set

methods [34], briefly presented in Section IV-B. Hence, to

ensure polynomial time computational complexity, we find

it convenient to redefine our sensory steering function as

SensorySteer(x, y) := Π
B(x,min(ǫ,R2 ))

◦ΠV(x) (y) , (15a)

= x +min
(
ǫ, R

2 ,
∥∥ΠV(x)(y)−x

∥∥) ΠV(x)(y)−x∥∥ΠV(x)(y)−x
∥∥ , (15b)

where R > 0 is the fixed sensing range, V (x) is the Voronoi

cell of x, associated with the critical collision points S (x)
in (6), defined as

V (x) :=
{
p ∈ R

n
∣∣∣ ‖p− x‖ ≤ ‖p− s‖ , ∀s ∈ S (x)

}
. (16)

Here, metric projection onto an Euclidean ball B (x, r) of

radius r ≥ 0 can be analytically computed as

ΠB(x,r) (y) = x + min (r, ‖y−x‖)
y − x

‖y−x‖
, (17)

whereas, since V (x) is a convex polytope, as aforemen-

tioned, the metric projection ΠV(x) can be computed in

polynomial time, with the number of hyperplane constraints.

Also observe that although LF (x)=B
(
x, R2

)
∩V(x), unfor-

tunately, ΠLF(x) 6=Π
B(x,R2 )

◦ΠV(x). Hence, the definitions

of sensory steering in (13) and (15) are slightly different.

Following the lines of (15), we also define the sensory

steering for radial collision sensing of Section III-A.2 as

∧

SensorySteer(x, y):=min
(
ǫ, ρ(x,v),

∥∥∥Π
V̂(x)(y)−x

∥∥∥
)
v,(18)

where v =
Π

V̂(x)
(y)−x

∥∥∥Π
V̂(x)

(y)−x
∥∥∥

, and ρ is the radial distance-to-

collision function in (8), and the Voronoi cell V̂ (x) of x,

associated with the strict local minima Ŝ (x) in (9) of the

range map ρ, is defined as

V̂ (x) :=
{
p ∈ R

n
∣∣∣ ‖p− x‖ ≤ ‖p− s‖ , ∀s ∈ Ŝ (x)

}
. (19)

We summarize important properties of SensorySteer as:

Theorem 1 The sensory steering functions in (13),(15) and

(18) are all greedy (14) admissible (2) deterministic safe (4)

local planners.

Proof. The greedy and deterministic construction of

SensorySteer is due to metric projection onto convex sets;

and its admissibility property (see Definition 1) follows from

the fact that B
(
x, r

2

)
⊆ LF (x) and B

(
x, r

2

)
⊆ L̂F (x)

for all x ∈ F, where r = min (2ǫ, d (x, ∂F)). Moreover,

for any x, y ∈ F, SensorySteer always generate a safe

steering step, i.e., CollisionFree(SensorySteer(x, y))

is true, since both LF (x) and L̂F (x) are subsets of F. �

Therefore, it is redundant to check the collision safety of

sensory steering while constructing PRMs and RRTs in Al-

gorithm 1 and Algorithm 2, respectively, since for any x, y∈
F, CollisionFree(SensorySteer(x, y)) is always true.

Hence, adaptive step size selection in (13), (15), and (18) for

safe steering intuitively suggests the improvement of sensory

steering over the straight-line steering,

StraightSteer(x, y) = ΠB(x,ǫ) (y) . (20)

IV. IMPLEMENTATION DETAILS

A. Complexity

We now briefly discuss the complexity of sensory steer-

ing in comparison to the computational cost of distance-

based collision detection. If the configuration space obstacles

are explicitly represented as a finite union of convex sets,

{Q1, Q2, . . . , Qm}, then the collision detection of a line

segment [x, y] ⊆ Rn can be performed using

CollisionFree([x, y])⇐⇒ d([x, y], Qi) > 0 ∀i, (21)



whose computational cost is given by

O
(
CollisionFree([x, y])

)
=

m∑

i=1

O
(
d([x, y], Qi)

)
, (22)

where O
(
d([x, y], Qi)

)
is the cost of computing the distance

between line segment [x, y] and obstacle Qi.

Likewise, for any x, y ∈ F, the computational complexity

of our sensory steering function in (13) can be determined as

O
(
SensorySteer(x, y)

)
=O

(
LF(x)

)
+O

(
ΠLF(x)(y)

)
, (23)

=O
(
ΠLF(x)(y)

)
+

m∑

i=1

O
(
ΠQi

(x)
)
. (24)

=O
(
d(y,LF(x))

)
+

m∑

i=1

O
(
d(x, Qi)

)
, (25)

where the latter follows from the assumption that the costs

of computing the distance of a point x ∈ R
n and its closest

point to a closed convex set A ⊆ Rn are the same, i.e.,

O
(
d(x, A)

)
=O

(
ΠA(x)

)
, because d(x, A)=‖x−ΠA(x)‖.

Therefore, since O(d(x, Qi))≤O
(
d([x, y] , Qi)

)
, one can

conclude from (22) and (25) that if the explicit repre-

sentation of configuration space is available as a union

of convex components, then the cost of sensory steer-

ing O
(
SensorySteer(x, y)

)
is generally significantly less

than the cost of collision detection of a line segment

O
(
CollisionFree([x, y])

)
.

In case that the configuration space is not available explic-

itly, sensory steering can be preformed using radial collision

sensing of Section III-A.2. If the range map ρ in (8) is as-

sumed to provide a (uniform) resolution of M measurements,

then the cost of sensory steering becomes a constant multiple

of the cost of distance-based collision detection,

O(SensorySteer) = M ·O(CollisionFree) . (26)

B. Active Set Methods for Convex Quadratic Optimization

In our implementations, we recast metric projection onto

convex polytopes and distance between them as convex

quadratic optimization problems, and solve them iteratively

using the active set method, summarized below.

Consider a convex quadratic optimization problem with

equality and inequality constraints (QP-IE):

min
x∈Rn

f(x) =
1

2
xTQ x + xTc

subject to aTi x = bi, i ∈ E, (QP-IE)

aTj x ≥ bj, j ∈ I,

where Q ∈ Rn×n is a positive definite matrix, E and I are

sets of indices for equality and inequality constraints, respec-

tively, and c, ai ∈ Rn and bi ∈ R, where i ∈ E ∪ I. Also,

let X:=
{
x ∈ Rn

∣∣aiTx = bi ∀i ∈ E, aj
Tx ≥ bj ∀j ∈ I

}
de-

note the set of feasible solutions of (QP-IE), and let

A (x) := E ∪
{
j ∈ I| ai

Tx = bj
}

be the index set of active

constraints at a feasible solution x ∈ X.

Among many alternative solvers [34], [41], active set

methods offers an iterative solution for the convex quadratic

optimization problem (QP-IE), whose iterations, denoted by

xk+1 = AS(xk), satisfy for any feasible solution xk ∈X the

properties:

(i) (Feasible Iterations) AS (xk) ∈ X ,

(ii) (Monotonic Decrease) f (xk) ≥ f (AS (xk)),
(iii) (Finite-Step Global Convergence) AS (xk) converges in

polynomial steps to the global solution of (QP-IE).

More precisely, to find the global solution of (QP-IE), the

active set method starts with a feasible solution x0 ∈ X

and, at each iteration k ∈ N, it solves an associated convex

quadratic optimization problem with equality constraint to

find an update step, pk ∈ Rn:

min
pk∈Rn

1

2
pk

TQ pk + pTk gk (QP-EQ)

subject to aTi pk = 0, i ∈Wk

where gk = Qxk + c and Wk ⊆ A (xk) is a subset of

the indices of the active constraints at xk with linearly

independent constraint gradients, ai’s, and is referred to

as the working set. The solution to (QP-EQ), denoted by

(pk, λk) = SolveQPEQ (xk,Wk), can be found by solving
[
Q AT

A 0

] [
−pk
λk

]
=

[
gk
0

]
, (27)

where A = [ai
T]i∈W(xk) is the Jacobian of working set con-

straints, and λk denotes the vector of Lagrange multipliers

for (QP-EQ) and is used to check the Karush-Kuhn-Tucker

(KKT) optimality condition of xk for (QP-IE).

In summary, the active set method repeatedly uses the

solution of (QP-EQ) to generate a new estimated solution

xk+1 for (QP-IE), and terminates at the global solution of

(QP-EQ), as shown in Algorithm 3. For more details, refer

to [34][Chapter 16].

7The working set Wk should always contain the indices of linearly
independent constraint gradients and so should be updated accordingly.

Algorithm 3: The Active Set Algorithm [34][Chapter 16]

Input: x0 ∈ X – Initial Feasible Solution

W0 ⊂ A (x0) – Initial Working Set

Output: x∗ ∈ X – The global solution of (QP-IE)

1 for k = 0, 1, . . . do

2 (pk, λ)← SolveQPEQ (xk,Wk);
3 if pk = 0 then

4 if λi ≥ 0 ∀i ∈Wk ∩ I then

5 x∗ ← xk; return x∗;

6 else

7 j ← arg min
j∈Wk∩I

λj ;

8 xk+1 ← xk; Wk+1 ←Wk \ {j};

9 else

10 αk ← min

(
1, min

i∈I\Wk, aT
i
pk<0

bi−aT
i
xk

aT
i
pk

)
;

11 xk+1 ← xk + αkpk;

12 if ∃i ∈ A (xk+1) \Wk then7 Wk+1←Wk∪{i};
13 else Wk+1 ←Wk ;



Fig. 4. Probabilistic roadmaps (PRMs) and their adjacency matrices obtained using (left) the straight-line planner, (right) our sensory steering algorithm.
The green path shows a path found via a PRM that joins a start and a goal configurations (green points). Here, we set the number of samples to N = 60,
the number of steering steps to K = 20, and the maximum step size to ǫ = 1 unit.

To conclude this section, we emphasize a virtue of the

active set method beyond its polynomial time complexity.

We believe its feasible iterations and guaranteed monotonic

decrease make it a compelling option for general incre-

mental anytime computations of distance between convex

bodies, metric projection onto convex sets, and, of course,

our sensory steering function. This anytime nature affords

opportunistic interruption of its computation while relying on

the last iterated feasible solution as an estimate of the global

optimal solution. In the context of dynamically evolving

motion planning or dynamic settings, these interruptions can

be event based and the results of the previous computation

can improve the initiation of its successor.

V. NUMERICAL SIMULATIONS

In this section, we provide simulation results demonstrat-

ing the effectiveness of the proposed sensory steering over

the standard straight-line planner for increased connectivity

of random motion planing graphs.

In Fig. 4, for a 2D configuration space with overlapping

convex obstacles, we compare the probabilistic roadmaps

(PRMs) constructed using the straight-line planner and our

sensory steering algorithm. Here, we uniformly generate

N = 60 sample configurations from the free space using

rejection sampling, and join two sample configurations using

at most K =20 steering steps of maximum step size ǫ=1
unit. As seen in Fig. 4, sensory steering generally generates

more complex but effective paths to join sample configu-

rations than the straight-line planner does, which explains

the significant improvement in the connectivity of resulting

PRMs, as clearly observed from the associated adjacency

matrices. It is worth mention that in our simulation studies

we observe that when the configuration space obstacles con-

sist of nonoverlapping convex sets, then the sensory steering

does significantly better in capturing the local connectivity

of the configuration space.

To compare their path finding performance around narrow

passages, in Fig. 5 we present the rapidly-exploring random

trees (RRTs) constructed using the straight-line planner and

our sensory steering function in 2D configuration spaces with

maze-like narrow passages of gap size 0.5 and 0.2 units.

Here, we set the number of RRT iterations to N = 1500
and the maximum step size to ǫ = 0.3 units. Although, the

straight-line planner is able to locate the entrance of the

narrow passage for the gap size 0.5 units and make some

progress along it, it is not able to construct an RRT that

connects the start configuration (green point) to the goal

region (red polygon) in N = 1500 iterations, while our

sensory steering yields an RRT that expands to the entire

configuration space and finds a path between the start con-

figuration and the goal region. In our simulations, we observe

that nearly half of the attempts to expand an RRT using the

straight-line planner fails; for example, the RRTs in Fig. 5 (a)

and Fig. 5(c) have 734 and 714 vertices, respectively, after

N = 1500 iterations. Whereas, our anecdotal experience

with the sensory steering method gives the impression that it

successfully grows an RRT at almost all attempts (Theorem

1), and so the RRTs in Fig. 5 (b,d) both have 1500 vertices,

which is due to the fact that, by construction, sensory steering

uses adaptive step size in response to the “sensed” local

geometry of configuration spaces.

VI. CONCLUSIONS

In this paper, we introduce a new deterministic greedy

admissible sensory steering algorithm (Theorem 1) for

sampling-based motion planning algorithms that significantly

increases the connectivity of random motion planning graphs,

(a) (b) (c) (d)

Fig. 5. Rapidly-exploring random trees (RRTs) constructed using (a,c) the straight-line planner and (b,d) our sensory steering algorithm. The red path,
if found, is the shortest path of the constructed RRT from the green starting point to the red goal region. Here, we set the number of RRT iterations to
N = 1500 and the maximum steering step size to ǫ = 0.3 units, and the sizes of narrow gaps in (a,b) and (c,d) are 0.5 and 0.2 units, respectively. Please
see the accompanying video submission for an animated demonstration.



especially around difficult regions of configuration spaces

such as narrow passages. The construction of our sensory

steering algorithm is based on the identification of a local

(convex) collision free zone around a sample configuration

that reflects the surrounding local geometric structure of

a configuration space. Accordingly, our sensory steering

algorithm generates a safe steering motion toward the closest

point of the local free space of a sample configuration to any

given destination configuration, which yields an adaptive step

size selection. For an incremental iterative anytime compu-

tation of our sensory steering algorithm, we suggest using

the active set method of convex quadratic optimization. The

effectiveness of the proposed sensory steering is suggested

using nontrivial numerical simulations.

Work now in progress targets computationally efficient

adaptation of sensory steering to complex configuration

spaces, e.g., for manipulator motion planning, using si-

multaneous optimization of control and sensing. We are

also exploring an alternative use of active set methods for

incremental distance computation in robot motion planning.
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