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Voronoi-Based Coverage Control of Heterogeneous Disk-Shaped Robots

Omur Arslan and Daniel E. Koditschek

Abstract— In distributed mobile sensing applications, net-
works of agents that are heterogeneous respecting both actua-
tion as well as body and sensory footprint are often modelledby
recourse to power diagrams — generalized Voronoi diagrams
with additive weights. In this paper we adapt the body power
diagram to introduce its “free subdiagram,” generating a
vector field planner that solves the combined sensory coverage
and collision avoidance problem via continuous evaluationof
an associated constrained optimization problem. We propose
practical extensions (a heuristic congestion manager thatspeeds
convergence and a lift of the point particle controller to the
more practical differential drive kinematics) that mainta in the
convergence and collision guarantees.

I. INTRODUCTION

Among the many proposed multiple mobile sensor coor-
dination strategies [1], Voronoi-based coverage control [2]
uniquely combines both deployment and allocation in an
intrinsically distributed manner [3] via gradient descent (the
“move-to-centroid” law) down a utility function minimizing
the expected event sensing cost to adaptively achieve a
centroidal Voronoi configuration(depicted on the left in
Fig. 1). Since the original application to homogeneous point
robots [2], a growing literature considers the extension
to heterogeneous groups of robots differing variously in
their sensorimotor capabilities [4]–[7] by recourse topower
diagrams — generalized Voronoi diagrams with additive
weights [8].

A. Motivation and Prior Literature

Although it inherits many nice properties of a standard
Voronoi diagram such as convexity and dual triangulability,
a power diagram may possibly have empty cells associated
with some (unassigned) robots and/or some robots may not
be contained in their nonempty cells [8], as situation depicted
on the middle in Fig.1. Suchoccupancy defects(Definition
1) generally cost resource inefficiency or redundancy1, and,
crucially, they re-introduce the problem of collision avoid-
ance — the chief motivation for the present paper.

Voronoi-based coverage control implicitly entails collision
avoidance for point robots since robots move in their pair-
wise disjoint Voronoi cells [2], but an additional collision
avoidance strategy is mandatory for safe navigation of finite
size robots. Existing work on combining coverage control
and collision avoidance generally uses (i) either heuristic
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1Note that a power diagram with an occupancy defect can be beneficial
in certain applications to save/balance energy across a mobile network of
power limited agents [7].
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Fig. 1. An illustration of (left) the Voronoi and (middle) power diagrams
of an environment based on a noncolliding placement of pointrobots, where
the weights of power cells are shown in parentheses. Although each point
robot is always contained in its Voronoi cell, power cells associated with
some robots (e.g. the 7th robot) may be empty and/or some robots (e.g. the
1st and 4th robots) may not be contained in their nonempty power cells.
(Right) A collision free disk configuration does not necessarily have Voronoi
cells containing respective robot bodies.

approaches based on repulsive fields [9], [10] and reciprocal
velocity obstacles [11] causing robots to converge to con-
figurations far from optimal sensing configurations; or (ii)
the projection of a vector field whenever a robot reaches the
boundary of its partition cell [4], [12] introducing a source of
discontinuity. An important observation made in [4] is that
it is sufficient to restrict robot bodies to respective Voronoi
regions for collision avoidance, but this is a conservative
assumption for robot groups with different body sizes (as
illustrated on the right in Fig.1).

B. Contributions and Organization of the Paper

In this paper, we provide a necessary and sufficient con-
dition for identifying collision free configurations of finite
size robots in terms of their power diagrams, and accord-
ingly propose a constrained coverage control (“move-to-
constrained-centroid”) law whose continuous and piecewise
smooth flow asymptotically converges to an optimal sensing
configuration avoiding any collisions along the way. We
extend the practicability of the result by adding a congestion
management heuristic for unassigned robots that hastens
the assigned robots’ progress, and, finally, adapt the fully
actuated point particle vector field planner to the widely
used kinematic differential drive vehicle model (retaining
the convergence and collision avoidance guarantees in both
extensions).

This paper is organized as follows. SectionII briefly
summarizes coverage control of point robots. SectionIII
discusses occupancy defects of power diagrams. In Section
IV we introduce a novel use of power diagrams for identi-
fying collision free multirobot configurations, and then pro-
pose a constrained optimization framework combining area
coverage and collision avoidance, and present its practical
extensions. SectionV offers some numerical studies of the
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proposed algorithms. SectionVI concludes with a summary
of our contributions and a brief discussion of future work.

II. COVERAGE CONTROL OFPOINT ROBOTS

A. Location Optimization of Homogeneous Robots

Let Q be a convex environment inRN with a priori
known event distribution functionφ : Q → R>0 that
models the probability of some event occurs inQ, and
p := (p1, p2, . . . , pn) ∈ Qn be a (noncolliding) placement
of n ∈ N point robots inQ.2 Suppose that the event
detection (sensing) cost ofith robot at locationq ∈ Q is
a nondecreasing differentiable function,f : R → R, of
the Euclidean distance,‖q− pi‖, betweenq andpi. Further
assume that robots are assigned to events based on a partition
of Q yielding a cover,W:= {W1,W2, . . . ,Wn}, a collection
of subsets (“cells”),Wi, whose union returnsQ but whose
cells have mutually disjoint interiors.3 A well established
approach (arising in both facility location [3], [13] and
quantization [14], [15] problems) achieves such a cover by
minimizing the expected event sensing cost,

H (p,W) :=

n∑

i=1

∫

Wi

f (‖q− pi‖)φ (q) dq. (1)

Now observe that, for any fixedp, the optimal task
assignment minimizingH is the standard Voronoi diagram
V (p) := {V1, . . . , Vn} of Q based on the configurationp,

Vi =
{

q ∈ Q
∣
∣
∣ ‖q− pi‖ ≤ ‖q− pj‖ , ∀j 6= i

}

. (2)

Thus, given the optimal task assignment of robots, the
objective functionH takes the following form

HV (p):=H (p,V (p)) =

n∑

i=1

∫

Vi

f (‖q− pi‖)φ (q) dq, (3)

and it is common knowledge that [2], [3], [15]

∂HV (p)

∂pi
=

∫

Vi

∂

∂pi
f (‖q− pi‖)φ (q) dq. (4)

In the special case off (x) = x2, the partial derivative of
HV has a simple physical interpretation as follows:

∂HV (p)

∂pi
= 2mVi

(pi − cVi
) , (5)

wheremVi
and cVi

, respectively, denote the mass and the
center of mass ofVi according to the mass density functionφ,

mVi
:=

∫

Vi

φ (q)dq, cVi
:=

∫

Vi

q φ (q)dq. (6)

Assuming first order (completely actuated single integra-
tor) robot dynamics,

ṗi = ui, (7)

2Here,N is the set of all natural numbers;R andR>0 (R≥0) denote the
set of real and positive (nonnegative) real numbers, respectively; andR

N

is theN -dimensional Euclidean space.
3We will generally refer to such decompositions as “diagrams” but also

occasionally allow the slight abuse of language to follow tradition and refer
to W as apartition.

the standard “move-to-centroid” law asymptotically steering
point robots to a centroidal Voronoi configuration with the
guarantee of no collision along the way is

ui = −k (pi − cVi
) , (8)

where k ∈ R>0 is a fixed control gain and the Voronoi
diagramV (p) of Q is assumed to be continuously updated.
Note thatmVi

and cVi
are both continuously differentiable

functions ofp as are bothHV andui [16]. Finally, observe,
again, that the coverage controlui supports a distributed
implementation whose local communications structure is
specified by the associated Delaunay graph [2].

B. Location Optimization of Heterogeneous Robots

In distributed sensing applications, heterogeneity of
robotic networks in sensing and actuation [4]–[7] is of-
ten modelled by recourse topower diagrams, generalized
Voronoi diagrams with additive weights [8]. More precisely,
for a given multirobot configurationp ∈ Qn, the event
sensing cost ofith robot at locationq ∈ Q is assumed to be
given by thepower distance, ‖q− pi‖

2−ρ2i whereρi ∈ R≥0

is the power radius of ith robot. Accordingly, the task
assignment of robots are determined by the power diagram
P (p,ρ) := {P1, P2, . . . , Pn} of Q based on the configura-
tion p and the associated power radiiρ := (ρ1, ρ2, . . . , ρn),

Pi :=
{

q ∈ Q
∣
∣
∣ ‖q−pi‖

2−ρ2i ≤ ‖q−pj‖
2−ρ2j , ∀j 6= i

}

, (9)

and the location optimization function becomes

HP (p,ρ) =

n∑

i=1

∫

Pi

(

‖q−pi‖
2−ρ2i

)

φ (q) dq. (10)

Note that in the special case ofρi = ρj for all i 6= j the
power diagramP (p,ρ) and the Voronoi diagramV (p) of
Q are identical, i.e.Pi = Vi.

Similar to (5), for fixed ρ, the partial derivative ofHP

takes the following simple form [4], [7], [10],

∂HP (p,ρ)

∂pi
= 2mPi

(pi − cPi
) , (11)

wheremPi
andcPi

are the mass and the center of mass of
Pi, respectively, as defined in (6). 4 For the single integrator
robot model (7), the standard “move-to-centroid” law of het-
erogeneous robotic networks asymptotically driving robots to
a critical point ofHP (.,ρ), where robots are located at the
centroids of their respective power cells, is defined as

ui = −k (pi − cPi
) , (12)

for some fixedk ∈ R>0 and the power diagramP (p,ρ) of
Q is assumed to be continuously updated. Notwithstanding
its welcome inheritance of many standard Voronoi properties
(e.g., convexity, dual triangulability), a power diagram may
yield empty cells associated with some robots and/or some
robots may not be contained in their nonempty power cells,
illustrated in Fig.1. In consequence, contrary to the case

4 To be well defined we setcPi
= pi wheneverPi has an empty interior.



of homogeneous robots, the “move-to-centroid” law of het-
erogeneous point robots is discontinuous and it cannot guar-
antee collision free navigation. Thus, in past literature,for
robots of finite but heterogeneous size, the standard “move-
to-centroid” law inevitably requires an additional heuristic
collision avoidance strategy for safe navigation.

III. O CCUPANCY DEFECTS OFPOWER DIAGRAMS

Definition 1 (Occupancy Defect) The power partition,
P (p,ρ), associated with configurationp ∈ Qn and radii
ρ ∈ (R≥0)

n is said to have anoccupancy defectif pi 6∈ Pi

for somei ∈ {1, 2, . . . n}.

Configurations incurring occupancy defects introduce a
number of problems. First of all, empty partition cells cause
resource redundancy because some robots may never be
assigned to any event happening around them. Such robots
do not only become redundant, but also complicate collision
avoidance as (moving or stationary) obstacles and limit the
mobility of others. In general, robots that are not contained
in their respective cells require an extra care for collision
avoidance.

A straightforward characterization of an occupancy defec-
tive configuration is:5

Proposition 1 Given radii ρ ∈ (R≥0)
n, configurationp ∈

Qn does not incur an occupancy defective power diagram if
and only if‖pi − pj‖

2 ≥
∣
∣ρ2i − ρ2j

∣
∣ for all i 6= j.

Proof. By Definition 1, P (p,ρ) has no occupancy defect if
and only ifpi ∈ Pi for all i, which is the case if and only if

‖pi − pi‖
2 − ρ2i ≤ ‖pi − pj‖

2 − ρ2j , (13)

‖pj − pj‖
2 − ρ2j ≤ ‖pj − pi‖

2 − ρ2i , (14)

for all i 6= j. Thus, the result follows. �

IV. COMBINING COVERAGE CONTROL AND COLLISION

AVOIDANCE

Throughout the rest of paper, we consider hetero-
geneous disk-shaped multirobot configurations,p =
(p1, p2, . . . , pn) ∈ Qn, in Q with associated vectors of
nonnegative body radiiβ := (β1, β2, . . . , βn) ∈ (R≥0)

n

and sensory footprint radiiσ := (σ1, σ2, . . . , σn) ∈ (R≥0)
n,

whereith robot is centered atpi ∈ Q and has body radius
βi ≥ 0 and sensory footprint radiusσi ≥ 0. Accordingly,
we will denote byB (p,β) = {B1, B2, . . . , Bn}, a cover
we term thebody diagramof Q, solving the power problem
(9), (10), defined fromHB (p,β); and we will denote by
S (p,σ) = {S1, S2, . . . , Sn}, a cover we term the sensor
diagram ofQ, solving the corresponding problem defined
by HS (p,σ). We also find it convenient to denote the
configuration space of body-noncolliding disks of radiiβ

in Q as

Conf (Q,β) :=
{

p ∈ Qn
∣
∣
∣ ‖pi−pj‖ > βi+βj ∀i 6= j,

D (pi, βi) ⊂ Q̊ ∀i
}

, (15)

5In [5] the authors note the issue of empty power cells and give a similar
sufficient condition for each robot to be contained in its power cell.

whereD (x, r) :=
{
y ∈ R

N
∣
∣ ‖x− y‖ ≤ r

}
is the closed disk

in R
N centered atx ∈ R

N with radiusr ≥ 0, andQ̊ is the
interior of Q. Note that the vectors of body radiiβ and
sensory footprint radiiσ are not necessary equal sinceβ
models the heterogeneity of robots in body size,σ models
their heterogeneity in sensing and actuation.

A. Encoding Collisions via Body Diagrams

A geometric characterization of collision free multirobot
configurations inQ via their body diagrams is:

Proposition 2 Let B (p,β) be the body diagram ofQ
associated with configurationp ∈ Qn and body radiiβ ∈
(R≥0)

n. Thenp is collision free if and only if every robot
body is contained in the interior of its body cell, i.e.

p ∈ Conf (Q,β) ⇐⇒ D (pi, βi) ⊂ B̊i ∀i. (16)

Proof. The sufficiency (⇐=) follows becauseB (p,β) is a
cover of Q whose elements have disjoint interiors. Hence,
givenD (pi, βi) ⊂ B̊i for all i, we haveD (pi, βi) ⊂ Q̊ and
D (pi, βi)∩D (pj , βj) = ∅ for all i 6= j, and so‖pi − pj‖ >

βi + βj . Thus,p ∈ Conf (Q,β).
To see the necessity (=⇒), for anyp ∈ Conf (Q,β) we

will show that pi ∈ Bi for all i, and the distance between
pi and the boundary∂Bi of Bi is greater thanβi, i.e.
minx∈∂Bi

‖x− pi‖ > βi, and soD (pi, βi) ⊂ B̊i.
It follows from Proposition1 that for anyp ∈ Conf (Q,β)

B (p,β) has no occupancy defect (Def.1), i.e. pi ∈ Bi ∀i.
The boundary∂Bi of Bi is defined by the boundary∂Q

of Q and the separating separating hyperplane between body
cells Bi andBj for somej 6= i [8]. By definition (15), we
haveminx∈∂Q ‖x− pi‖ > βi for anyp ∈ Conf (Q,β).

Now observe that, for anyi 6= j the separating hyperplane
between body cellsBi andBj is perpendicular to the line
joining pi andpj and is given by [8]

Hij :=
{

x∈R
N
∣
∣
∣2xT(pi−pj)=β2

j −β2
i +‖pi‖

2−‖pj‖
2
}

,(17)

and the perpendicular distance ofpi to Hij is given by

d (pi, Hij) :=
‖pi − pj‖

2
+

β2
i − β2

j

2 ‖pi − pj‖
. (18)

Note that d (pi, Hij) is negative whenB (p,β) has an
occupancy defect; and we have from Proposition1 that
B (p,β) is free of such a defect for anyp ∈ Conf (Q,β)
and sod (pi, Hij) ≥ 0. One can further show that for any
i 6= j

d (pi, Hij) = βi +
‖pi − pi‖

2
+ β2

i − β2
j − 2βi ‖pi − pi‖

2 ‖pi − pi‖
,

= βi +
(‖pi − pi‖ − βi)

2 − β2
j

2 ‖pi − pi‖
︸ ︷︷ ︸

>0, sincep∈Conf(Q,β)

> βi, (19)

which completes the proof. �

To determine a collision free neighborhood of a configura-
tion p∈Conf(Q,β) with a vector of body radiiβ∈(R≥0)

n,
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Fig. 2. (left) Encoding collision free configurations via body diagrams:
A configuration of disks is nonintersecting iff each disk is contained in the
interior of its body cell. (right) Free subcells, obtained by eroding each body
cell with its associated disk radius.

we define afree subdiagramF (p,β) := {F1, F2, . . . , Fn} of
the body diagramB (p,β) = {B1, B2, . . . , Bn} by eroding
each cell removing the volume swept along its boundary,
∂Bi, by the associated body radius, see Fig.2, as [17] 6

Fi :=Bi\
(
∂Bi⊕D(0, βi)

)
=

{

q∈Bi

∣
∣
∣
∣
min
x∈∂Bi

‖x−q‖>βi

}

.(20)

Note thatFi is a nonempty convex set becausepi ∈ Fi and
the erosion of a convex set by a ball is convex.7

The following observation yields a (possibly conservative)
convex inner approximation of the free configuration space
neighborhood surrounding free configuration as

p ∈ Conf (Q,β) ⇒
∏

F (p,β) ⊂ Conf (Q,β) , (21)

where
∏

F (p,β) = F1 × F2 × . . .× Fn.

Lemma 1 Let p ∈ Conf (Q,β) be a multirobot configura-
tion with a vector of body radiiβ ∈ (R≥0)

n, andF (p,β)
be the free subdiagram of the body diagramB (p,β).

Thenq ∈ Qn is a collision free multirobot configuration
in Conf (Q,β) if qi ∈ Fi (i.e. D (qi, βi) ⊂ B̊i) for all i.

Proof. The results directly follows fromB (p,β) covering a
partition ofQ, as discussed in the proof of Proposition2. �

B. Coverage Control of Heterogeneous Disk-Shaped Robots

Consider a heterogeneous multirobot configurationp ∈
Conf (Q,β+ǫ) with associated vectors of body radiiβ ∈
(R≥0)

n, safety marginsǫ ∈ (R>0)
n and sensory footprint

radii σ ∈ (R≥0)
n, and letS (p,σ) = {S1, . . . , Sn} be the

sensory diagram ofQ based on robot locationsp and sensory
footprint radii σ, andF (p,β+ǫ) = {F1, . . . , Fn} be the
free subdiagram associated with configurationp and enlarged
body radiiβ+ǫ. Here we useǫ to guarantee the clearance
between any pairi 6= j of robots to be at leastǫi + ǫj. 8

6Here, 0 is a vector of all zeros with the appropriate size, andA ⊕
B := {a+ b | a ∈ A, b ∈ B} is the Minkowski sum of setsA andB.

7It is obvious that the erosion of a half-space by a ball is a half-space.
Hence, since the erosion operation is distributed over set intersection [17],
and a convex set can be defined as (possibly infinite) intersection of half-
spaces [18], the erosion of a convex set by a ball is convex.

8Having a positive vector of safety marginsǫ enables us to consider col-
lision free configurations inConf (Q,β+ǫ) ⊂ Conf (Q,β). Throughout
the rest of the paper, in order the compress the notation, we will abuse the
notation and useConf (Q,β+ǫ) to refer to the closure of the configuration
space in (15).

Now, in contrast to the standard “move-to-centroid” law
that steers each robot directly towards the centroid,cSi

, of its
sensory cell,Si, we propose a coverage control policy that
selects a safe target location, called theconstrained centroid
of Si, that solves the following convex programming9

minimize ‖qi − cSi
‖2

subject to qi ∈ F i

(22)

whereF i is a closed convex set. It is well known that the
unique solution of (22) is given by [18, Section 8.1.1]10

cSi
:=

{
cSi

, if cSi
∈ F i,

ΠF i
(cSi

) , otherwise,
(23)

where ΠC (x) denotes the metric projection ofx ∈ R
N

onto a convex setC ⊂ R
N , and note thatΠC is piecewise

continuously differentiable [20].11 Accordingly, for the single
integrator robot dynamics (7), our “move-to-constrained-
centroid” law is defined as

ui = −k (pi − cSi
) , (24)

where k ∈ R>0 is a fixed control gain, and we assume
that S (p,σ) and F (p,β+ǫ) are continuously updated.
We find it convenient to haveGS (Q,β+ǫ,σ) denote the
set of equilibria of our “move-to-constrained-centroid” law
where robots are located at the constrained centroid of their
respective sensory cells,12

GS(Q,β+ǫ,σ) :=
{

p∈Conf (Q,β+ǫ)
∣
∣
∣ pi=cSi

∀i
}

. (25)

In the special case of identical sensory footprint radii, i.e.
σi = σj for all i 6= j, these stationary configurations are
called the constrained centroidal Voronoi configurations [21].
Also note that for homogeneous point robots our “move-
to-constrained-centroid” law in (24) simplifies back to the
standard “move-to-centroid” law in (8).

We summarize the qualitative properties of our “move-to-
constrained-centroid” law as follows:

Theorem 1 For any choice of vectors of body radiiβ ∈
(R≥0)

n, safety marginǫ ∈ (R>0)
n and sensory footprint

radii σ∈(R≥0)
n, the configuration space of nonintersecting

disks Conf(Q,β+ǫ) (15) is positive invariant under the
“move-to-constrained-centroid” law in (24) whose unique,
continuous and piecewise differentiable flow, starting at any
configuration inConf(Q,β+ǫ), asymptotically reaches a lo-
cally optimal sensing configuration inGS(Q,β+ǫ,σ) while

9Here,A is the closure of setA.
10In general, the metric projection of a point onto a convex setcan be

efficiently computed using a standard convex programming solver [18]. If
Q is a convex polytope, then a free subcell,Fi, is also a convex polytope
and can be written as a finite intersection of half-spaces. Hence, the metric
projection onto a convex polytope can be recast as quadraticprogramming
and can be solved in polynomial time [19]. In the case of a convex polygonal
environment,Fi is a convex polygon and the metric projection onto a convex
polygon can be solved analytically since the solution lies on one of its edges
unless the input point is inside the polygon.

11 Note thatcSi
is well defined (see footnote4), hencecSi

must be as
well given Fi 6= ∅.

12 Note that this set cannot be empty since it contains the minima of a
smooth function over a compact set (22).
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strictly decreasing the utility functionHS(·,σ) (10) along
the way. If an equilibrium inGS(Q,β+ǫ,σ) is isolated,
then it is locally asymptotically stable.

Proof. The instantaneous ”target” in (24) lies in the clo-
sure of the convex inner approximation to the freespace
neighborhood of any free configuration,cS(p,σ) ∈
∏

F (p,β+ǫ) ⊂ Conf (Q,β+ǫ), hence, according to
Lemma 1, the configuration space tangent vector defined
by (24), −k

(
p− cS(p,σ)

)
∈ TpConf (Q,β+ǫ), is either

interior directed or, at worse, tangent to the boundary of
∏

F (p,β+ǫ). Therefore, by construction (22), the “move-
to-constrained-centroid” law leavesConf(Q,β+ǫ) posi-
tively invariant.

The existence, uniqueness and continuity of its flow can
be observed using an equivalent hybrid system consisting of
a family of piecewise continuously differentiable local vector
fields as follows. LetuI : DI →

(
R

N
)n

be a local controller
associated with a subsetI of {1, 2, . . . , n} defined as

uIi =

{
−k (pi − cSi

) , if i ∈ I

0 , otherwise,
(26)

where its domain is

DI :=
{

p∈Conf (Q,β+ǫ)
∣
∣
∣ S̊i 6= ∅ ∀i ∈ I

}

. (27)

Note that for a given configuration in its domain,DI , a
local policy index,I, indicates which robots are assigned
to sensory cells with nonempty interiors, and so the do-
mains,DI , of local controllers defines a finite open cover
of Conf (Q,β+ǫ). Hence, since all unassigned robots are
stationary under the “move-to-constrained-centroid” lawand
every robot whose sensory cell has a nonempty interior is
assigned to the coverage task, one can further conclude that
these local controllers can be composed using the policy
selection strategy,g : Conf (Q,β+ǫ) → P (n) maximizing
the number of assigned robots,13

g (p) := arg max
I⊆{1,...,n}

p∈DI

|I| . (28)

such that the resulting hybrid vector field is the same as
the “move-to-constrained-centroid” law in (24), i.e. for any
p ∈ Conf (Q,β+ǫ)

u (p) = ug(p) (p) . (29)

Note that, since a sensory cell with a nonempty interior can
not instantaneously appear or disappear under any continuous
motion, each time when a local controller is selected byg it
steers the robots for a nonzero time.

Now the continuity properties of each local control policy
can be observed as follows. As in the case of Voronoi
diagrams [16], we have that the boundary of a sensory
cell with a nonempty interior is a piecewise continuously
differentiable function of robot locations, and its centroid is
continuously differentiable with respect to robot locations.
Similarly, the boundary of each element ofF (p,β+ǫ) is

13HereP (n) denotes the set of all subsets of{1, 2, . . . , n}.

piecewise continuously differentiable since each free cell
is a nonempty erosion of an element of the body diagram
B (p,β + ǫ) by a fixed closed ball. Hence, one can conclude
that each local control policy is piecewise continuously
differentiable since metric projections onto convex cellsare
piecewise continuously differentiable [20] and the compo-
sition of piecewise continuously differentiable functions are
also piecewise continuously differentiable [22].

Therefore, the existence, uniqueness and continuously
differentiability of the flow of each local controlleruI follow
from the Lipschitz continuity ofuI in its compact domain
DI since a piecewise continuously differentiable function
is also locally Lipschitz on its domain [22] and a locally
Lipschitz function on a compact set is globally Lipschitz
on that set [23]. Hence, since their domains define a finite
open cover ofConf (Q,β + ǫ), the unique, continuous and
piecewise differentiable flow of the “move-to-constrained-
centroid” law is constructed by piecing together trajectories
of these local policies.

Finally, a natural choice of a Lyapunov function for the
stability analysis is the continuously differentiable location
optimization functionHS (10), and one can verify from (11),
(22) and (24) that for anyp ∈ Conf (Q,β+ǫ) 14

ḢS (p,σ) = −k

n∑

i=1

mSi
2(pi − cSi

)
T
(pi − cSi

)
︸ ︷︷ ︸

≥‖pi−cSi‖
2

,

sincepi∈Fi and‖pi−cSi‖
2
≥‖cSi

−cSi‖
2

, (30)

≤ −k

n∑

i=1

mSi
‖pi − cSi

‖2 ≤ 0, (31)

which is equal to0 only if pi = cSi
for all i, i.e.

p ∈ GS (Q,β+ǫ,σ). Thus, it follows from LaSalle’s
Invariance Principle [23] that all multirobot configurations
in Conf (Q,β+ǫ) asymptotically reachGS (Q,β+ǫ,σ). If
an equilibriump∗ in GS (Q,β+ǫ,σ) is isolated, then it is
guaranteed thaṫHS (p,σ) < 0 in a neighborhood ofp∗, and
so it is locally asymptotically stable [24]. �

C. Congestion Control of Unassigned Robots

In this subsection we shall present a heuristic congestion
management strategy for unassigned robots that improves
assigned robots’ progress.

For a choice of vectors of body radiiβ∈ (R≥0)
n, safety

marginsǫ∈(R>0)
n and sensory footprint radiiσ∈(R≥0)

n,
let p ∈ Conf (Q,β+ǫ) be a multirobot configuration
in Q with the associated body diagramB (p,β+ǫ) =
{B1, . . . , Bn}, free subdiagramF (p,β+ǫ) = {F1, . . . , Fn}
and sensory diagramS (p,σ) = {S1, . . . , Sn}.

Consider the following heuristic management of robots:
if ith robot has a sensory cellPi with a nonempty interior,
then it is assigned to the coverage task with sensory cell
Si; otherwise, since the robot becomes redundant for the
coverage task, it is assigned to move towards a safe location

14AT is the transpose of matrixA.



in Bi. We therefore define the set of“active” domains
A (p,β+ǫ,σ) = {A1, A2, . . . , An} of robots as

Ai :=

{

Si , if S̊i 6= ∅,
Bi , otherwise.

(32)

Note that A (p,β+ǫ,σ) defines a cover ofQ and its
elements have nonempty interior for allp ∈ Conf (Q,β+ǫ)
(Proposition2).

For the first order robot dynamics (7), we propose the
following “move-to-constrained-active-centroid” law

ui = −k (pi − cAi
) , (33)

that steers each robot towards the constrained centroid,cAi
as

defined in (23), of its active domain,Ai, which is the closest
point in F i to the centroidcAi

and so uniquely solves [18]

minimize ‖qi − cAi
‖2

subject to qi ∈ F i

(34)

where F i is convex andk ∈ R>0 is a fixed con-
trol gain. Once again, we assume thatA (p,β+ǫ,σ) and
F (p,β+ǫ) are continuously updated. It is also useful to
have GA (Q,β+ǫ,σ) denote the set of equilibria of the
“move-to-constrained-active-centroid” law where robotsare
located at the constrained centroid of their active domains,

GA(Q,β+ǫ,σ) :=
{

p∈Conf (Q,β+ǫ)
∣
∣
∣pi=cAi

∀i
}

.(35)

We summarize some important properties of our “move-
to-constrained-active-centroid” law as follows:

Proposition 3 For any β,σ∈ (R≥0)
n and ǫ∈ (R>0)

n, the
“move-to-constrained-active-centroid” law in (33) leaves the
configuration space of nonintersecting disksConf(Q,β+ǫ)
positively invariant; and its unique, continuous and piece-
wise differentiable flow, starting at any configuration
in Conf(Q,β+ǫ), asymptotically reachesGA(Q,β+ǫ,σ)
without increasing the utility functionHS(·,σ) (10) along
the way.

Proof. The positive invariance ofConf (Q,β+ǫ) under the
“move-to-constrained-active-centroid” law and the existence,
uniqueness and continuity properties of its flow follow the
same pattern as established in Theorem1.

For the stability analysis, using (11), (33) and (34), one
can show that the continuously differentiable utility function
HS (.,σ) (10) is nonincreasing along the trajectory of the
“move-to-constrained-active-centroid” law as follows:

ḢS (p,σ) = −k
∑

i∈{1,...,n}

S̊i 6=∅

mSi
2(pi−cSi

)
T
(pi−cSi

)
︸ ︷︷ ︸

≥‖pi−cSi‖
2
,

sincepi∈Fi and‖pi−cSi‖
2

≥‖cSi
−cSi‖

2

− k
∑

i∈{1,...,n}

S̊i=∅

mSi
︸ ︷︷ ︸

=0
sinceS̊i=∅

2(pi−cSi
)T(pi−cBi

), (36)

≤ −k
∑

i∈{1,...,n}

S̊i 6=∅

mSi
‖pi − cSi

‖2 ≤ 0. (37)

Hence, we have from Lasalle’s Invariance Principle [23] that,
at an equilibrium point of the “move-to-constrained-active-
centroid” law, a robot is located at the constrained centroid,
cSi

, of its sensory cell,Si, if it has a nonempty interior, i.e.
S̊i 6= ∅. Given thatpi = cSi

for all i ∈ {1, . . . , n} with
S̊i 6= ∅, using (11), (33) and (34), one can further show that

ḢB (p,β+ǫ) = −k
∑

i∈{1,...,n}

S̊i 6=∅

mBi
2(pi−cBi

)
T
(pi−cSi

)
︸ ︷︷ ︸

=0,
sincepi=cSi

− k
∑

i∈{1,...,n}

S̊i=∅

mBi
2(pi−cBi

)
T
(pi−cBi

)
︸ ︷︷ ︸

≥‖pi−cBi‖
2

,

sincepi∈Fi and‖pi−cBi‖
2

≥‖cBi
−cBi‖

2

, (38)

≤ −k
∑

i∈{1,...,n}

S̊i=∅

mBi
‖pi − cBi

‖2 ≤ 0. (39)

Therefore, at a stationary point of (33) ith robot is located at
the constrained centroid,cBi

, of its body cellBi if S̊i = ∅.
Overall, by Lasalle’s Invariance Principle, we have that any
multirobot configuration starting inConf (Q,β+ǫ) asymp-
totically converges to a locally optimal sensing configuration
in GA (Q,β+ǫ,σ), which completes the proof. �

D. Coverage Control of Differential Drive Robots

Consider a noncolliding placement of a heterogeneous
group of disk-shaped differential drive robots(p, θ) ∈
Conf (Q,β+ǫ)× (−π, π]n in a convex planar environment
Q ⊂ R

2 with associated vectors of body radiiβ ∈ (R≥0)
n,

safety marginsǫ ∈ (R>0)
n and sensory footprint radii

σ ∈ (R≥0)
n, whereθ = (θ1, θ2, . . . , θn) is the vector of

robot orientations.
The kinematic equations describing the motion of each

differential drive robot are

ṗi = vi

[
cos θi
sin θi

]

,

θ̇i = ωi,

(40)

where vi ∈ R and ωi ∈ R are, respectively, the linear
(tangential) and angular velocity inputs ofith robot. Note
that the differential drive model is underactuated due to the
nonholonomic constraint

[
− sin θi
cos θi

]T

ṗi = 0.

Let S (p,σ) = {S1, . . . , Sn} (9) be the sensory diagram of
Q based on robot locationsp and sensory footprint radiiσ,
andF (p,β+ǫ) = {F1, . . . , Fn} (20) be the free subdiagram
associated with configurationp and enlarged body radiiβ+
ǫ. For a choice ofε ∈ (R>0)

n with εi > ǫi for all i, we
further defineT (p,β+ε) = {T1, T2, . . . , Tn} to be

Ti := conv ({pi} ∪ F ′
i ) (41)

where F (p,β+ε) = {F ′
1, F

′
2, . . . , F

′
n} and conv (A) de-

notes the convex hull of setA. Note that, sinceF ′
i ⊂ Fi,

pi ∈ Fi and Fi is convex, every element ofT (p,β+ε)
is contained in the associated element ofF (p,β+ǫ), i.e.
Ti ⊆ Fi. It is useful to remark that we particularly require
pi ∈ Ti to guarantee an optimal choice of a local target



position in (45) relative topi, and we construct subsetTi of
Fi to increase the convergence rate of our proposed coverage
control law in (47).

As in the case of “move-to-constrained-centroid” law of
fully actuated robots in (24), for optimal coverage each
differential drive robot will intent to move towards the
constrained centroid,cSi

(23), of its sensory cell,Si, but
with a slight difference due to the nonholonomic constraint.
To determine a linear velocity input guaranteeing collision
avoidance, we select a safe target location that solves the
following convex programming,

minimize ‖qi − cSi
‖2

subject to qi ∈ F i ∩Hi

(42)

where

Hi :=

{

x ∈ Q
∣
∣
∣

[
cos θi
sin θi

]T

(x− pi) = 0

}

(43)

is the straight line motion range due to the nonholonomic
constraint. Note thatF i ∩Hi is a closed line segment inQ.
Hence, once again, the unique solution of (42) is given by

c v
Si

:=

{
cSi

, if cSi
∈ F i ∩Hi,

ΠF i∩Hi
(cSi

), otherwise,
(44)

whereΠC is the metric projection map onto a convex set
C. Similarly, to determine robot’s angular motion, we select
another safe target location that solves

minimize ‖qi − cSi
‖2

subject to qi ∈ T i

(45)

whereT i ⊂ F i is convex, and the unique solution of (45) is

cω
Si

:=

{
cSi

, if cSi
∈ T i,

ΠT i
(cSi

), otherwise.
(46)

Accordingly, based on a standard differential drive con-
troller [25], we propose the following “move-to-constrained-
centroid” law for differential drive robots,15

vi = −k
[

cos θi
sin θi

]T (
pi − c v

Si

)
, (47a)

ωi = k atan






[
− sin θi
cos θi

]T (
pi − cω

Si

)

[
cos θi
sin θi

]T (
pi − cω

Si

)




 , (47b)

wherek > 0 is fixed. HavingGD(Q,β, ǫ, ε,σ) denote its
set of stationary points where the constrained centroidsc v

Si

andcω
Si

coincide andith robot is located atc v
Si

= cωSi
,

GD(Q,β, ǫ, ε,σ):=
{

p∈Conf(Q,β+ǫ)
∣
∣
∣pi=c v

Si
=cω

Si
∀i
}

,

we summarize important qualitative properties of the “move-
to-constrained-centroid” law of differential drive robots as:

Proposition 4 For any β,σ ∈ (R≥0)
n and ǫ, ε ∈

(R>0)
n with ǫi < εi for all i, the “move-to-constrained-

centroid” law of differential drive robots in (47) asymp-
totically steers all configurations in its positively invariant

15To resolve indeterminacy we setωi = 0 wheneverpi = cω
Si

.

domainConf (Q,β+ǫ)×(−π, π]n towards the set of optimal
sensing configurationsGD (Q,β, ǫ, ε,σ)×(−π, π]n without
increasing the utility functionHS (·,σ) (10) along the way.

Proof. The configuration spaceConf (Q,β+ǫ)×(−π, π]n is
positively invariant under the “move-to-constrained-centroid”
law in (47) because, by construction (42), each robot’s
motion is constrained to the associated safe partition subcell
in Q. The existence and uniqueness of its flow can be
established using the pattern of the proof of Theorem1 and
the flow properties of the differential drive controller in [25].

Now, usingHS (·,σ) (10) as a continuously differentiable
Lyapunov function, we obtain the stability properties as
follows: for any (p, θ) ∈ Conf (Q,β+ǫ)× (−π, π]n

ḢS (p,σ) = −k

n∑

i=1

mSi
2(pi − cSi

)
T (

pi − c v
Si

)

︸ ︷︷ ︸

≥‖pi−c v

Si
‖2

,

sincepi∈Fi∩Hi and‖pi−cSi‖
2

≥‖c v

Si
−cSi‖

2

, (48)

≤ −k

n∑

i=1

mSi

∥
∥pi − c v

Si

∥
∥
2
≤ 0, (49)

where ṗi = −k
(
pi − c v

Si

)
. Hence, by LaSalle’s Invariance

Principle [23], at a stationary point of (47) ith robot is located
at c v

Si
. Since for fixedc v

Si
and cω

Si
the standard differential

drive controller asymptotically aligns each robot with the

constrained centroidcω
Si

, i.e.
[

− sin θi
cos θi

]T(
pi−cω

Si

)
= 0 [25],

it is guaranteed by (42) and (45) that c v
Si

= cω
Si

whenever
∥
∥pi − c v

Si

∥
∥ = 0 and

[
− sin θi
cos θi

]T(
pi−cω

Si

)
= 0. Therefore,

we have from LaSalle’s Invariance Principle that all config-
urations inConf (Q,β+ǫ)× (−π, π]n asymptotically reach
GD (Q,β, ǫ, ε,σ)× (−π, π]n. �

Finally, note that the “move-to-constrained-active-
centroid” law of SectionIV-C can be utilized for congestion
control of differential drive robots by using active domains
in (32) instead of the sensory diagramS (p,σ), and the
resulting coverage law maintains qualitative properties.

V. NUMERICAL SIMULATIONS

A common source of collisions between robots while
performing a distributed sensing task is a concentrated event
distribution which generally causes robots to move towards
the same small region of the environment.16 We therefore
consider the following event distribution,φ : [0, 10]

2 → R>0,
for a homogeneous group of disk-shaped robots operating in
a 10× 10 square environment,

φ (q) = e
−

∥

∥

∥

∥

q−
[

7
7

]∥
∥

∥

∥

2

. (50)

In Fig. 3 we present the resulting trajectories of our proposed
coverage control algorithms. Since the event distribution

16For all simulations we setǫi = 0.05 and εi = 0.1 for all
i ∈ {1, 2, . . . , n}, and all simulations are obtained through numerical
integration of the associated coverage control law using theode45 function
of MATLAB, and the computation of the centroid of a power cellin (6) is
approximated by discretizing the power cell by a20× 20 grid.
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Fig. 3. Avoiding collisions around a concentrated event distribution. (a) Initial configuration of a homogeneous robotnetwork, where the weight of sensory
cell are shown in the parenthesis, and the resulting trajectories of (b) the standard “move-centroid” law (12), (c) the “move-to-constrained-centroid” law
(24), (d) the “move-to-constrained-active-centroid” law (33), (e) the “move-to-constrained-centroid” law of differential drive robots (47) which are initially
aligned with the horizontal axis.
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Fig. 4. Safe coverage control of heterogeneous disk-shapedrobots with a heuristic management of unassigned robots. (a) Initial configuration of a
heterogeneous robot network, where the weight of sensory cell are shown in the parenthesis, and the resulting trajectories of (b) the standard “move-
centroid” law (12), (c) the “move-to-constrained-centroid” law (24), (d) the “move-to-constrained-active-centroid” law (33), (e) the “move-to-constrained-
active-centroid” law of differential drive robots which are initially aligned with the horizontal axis.

is concentrated around a small region, as expected, the
standard “move-to-centroid” law steers robots to a centroidal
Voronoi configuration where robots collide. On the other
hand, since a Voronoi partition has no occupancy defect, our
“move-to-constrained-centroid” and “move-to-constrained-
active-centroid” laws yield the same trajectory that asymp-
totically converges a collision free constrained centroidal
Voronoi configuration. It is also well known that minimizing
the location optimization functionHS (10) generally results
in a locally optimal sensing configuration, and we observe
in Figures3.(c) and3.(e) that, although they are initiated at
the same location, fully actuated and differential drive robots
asymptotically reach different constrained centroidal Voronoi
configurations.

To demonstrate how unassigned robots may limit the
mobility of others, we consider a heterogeneous group of
disk-shaped robots operating in a10× 10 environment with
the following event distribution function,φ : [0, 10]

2 → R>0,

φ (q) = 1 + 10e
−1

9

∥

∥

∥

∥

q−
[

8
8

]∥
∥

∥

∥

2

+ e
− 1

2

∥

∥

∥

∥

q−
[

8
2

]∥
∥

∥

∥

2

+ e
− 1

2

∥

∥

∥

∥

q−
[

8
4

]∥
∥

∥

∥

2

+ e
−

∥

∥

∥

∥

q−
[

3
7

]∥
∥

∥

∥

2

,

(51)

which is also used in [7]. In Fig. 4 we illustrate the resulting
trajectories of our safe coverage control algorithms. As seen
in Fig. 4.(a), the 2nd robot is initially not assigned to any
region. It stays stationary for a certain finite time under the
the standard “move-to-centroid” law during which the 1st
robot moves through it. Also notice that the 3rd robot violates
the workspace boundary before converging a safe location.
In summary, the “move-to-centroid” law steers disk-shaped

robots to a locally optimal sensing configuration without
avoiding collisions along the way. Our “move-to-constrained-
centroid” law prevents any possible self-collisions and colli-
sions with the boundary of the environment. However, since
the 2nd robot stays unassigned for all future time, the 1st
robot is blocked and it can not move to a better coverage
location. Fortunately, while guaranteeing collision avoidance,
our “move-to-constrained-active-centroid” law steers unas-
signed robots to improve assigned robots’ progress for both
fully actuated and differential drive robots, as illustrated in
Figures4.(d) and4.(e), respectively.

VI. CONCLUSION

In this paper we introduce a novel use of power diagrams
for identifying collision free multirobot configurations,and
propose a constrained optimization framework combining
coverage control and collision avoidance for fully actuated
disk-shaped robots, comprising the main contributions of the
paper. We also present its extensions for the widely used
differential drive model and for congestion management of
unassigned robots. Numerical simulations demonstrate the
effectiveness of the proposed coverage control algorithms.

Work now in progress targets another extension of
Voronoi-based coverage control for hierarchical settings,
based on nested partitions of convex environments [26].We
also believe that encoding collision free configurations in
terms of power diagrams might have a significant value for
robot motion planning, and we are currently exploring its
possible usage in the design of feedback motion planners.
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