arXiv:1509.03842v1 [cs.RO] 13 Sep 2015

Voronoi-Based Coverage Control of Heterogeneous Disk-Sphad Robots

Omur Arslan and Daniel E. Koditschek

Abstract— In distributed mobile sensing applications, net-
works of agents that are heterogeneous respecting both actu
tion as well as body and sensory footprint are often modelledy
recourse to power diagrams — generalized Voronoi diagrams
with additive weights. In this paper we adapt the body power
diagram to introduce its “free subdiagram,” generating a
vector field planner that solves the combined sensory covege
and collision avoidance problem via continuous evaluatiorof
an associated constrained optimization problem. We propas
practical extensions (a heuristic congestion manager thapeeds Fig. 1. Anillustration of (left) the Voronoi and (middle) per diagrams
convergence and a lift of the point particle controller to the of an environment based on a noncolliding placement of poinbts, where

more practical differential drive kinematics) that maintain the e weights of power cells are shown in parentheses. Altha@agh point
L robot is always contained in its Voronoi cell, power cells@gated with
convergence and collision guarantees.

some robots (e.g. the 7th robot) may be empty and/or somésr¢eg. the
1st and 4th robots) may not be contained in their nonemptyepaells.
|. INTRODUCTION (Right) A collision free disk configuration does not neceggdave Voronoi

Among the many proposed multiple mobile sensor coofe!ls containing respective robot bodies.
dination strategies1], Voronoi-based coverage contral][
uniquely combines both deployment and allocation in aapproaches based on repulsive fieldls [10] and reciprocal
intrinsically distributed mannerS] via gradient descent (the velocity obstacles 1] causing robots to converge to con-
“move-to-centroid” law) down a utility function minimizon  figurations far from optimal sensing configurations; or (ii)
the expected event sensing cost to adaptively achievetl@ projection of a vector field whenever a robot reaches the
centroidal Voronoi configurationdepicted on the left in boundary of its partition cell], [12] introducing a source of
Fig. 1). Since the original application to homogeneous poindliscontinuity. An important observation made if] s that
robots P], a growing literature considers the extensiorit is sufficient to restrict robot bodies to respective Varbn
to heterogeneous groups of robots differing variously imegions for collision avoidance, but this is a conservative
their sensorimotor capabilitieg]]-[7] by recourse tqpower assumption for robot groups with different body sizes (as
diagrams — generalized Voronoi diagrams with additiveillustrated on the right in Figl).
weights [].

B. Contributions and Organization of the Paper

A. Motivation and Prior Literature | : . -
n this paper, we provide a necessary and sufficient con-
Although it inherits many nice properties of a standar@ition for identifying collision free configurations of fiei
Voronoi diagram such as convexity and dual triangulabilitysize robots in terms of their power diagrams, and accord-
a power diagram may possibly have empty cells associat@ghly propose a constrained coverage control (“move-to-
with some (unassigned) robots and/or some robots may n@nstrained-centroid”) law whose continuous and piecewis
be contained in their nonempty celig [as situation depicted smooth flow asymptotically converges to an optimal sensing
on the middle in Figl. Suchoccupancy defectefinition  configuration avoiding any collisions along the way. We
1) generally cost resource inefficiency or redundaneyd, extend the practicability of the result by adding a congesti
crucially, they re-introduce the problem of collision a¥oi management heuristic for unassigned robots that hastens
ance — the chief motivation for the present paper. the assigned robots’ progress, and, finally, adapt the fully
Voronoi-based coverage control implicitly entails cotis  actuated point particle vector field planner to the widely
avoidance for point robots since robots move in their paifgsed kinematic differential drive vehicle model (retamin
wise disjoint Voronoi cells J], but an additional collision the convergence and collision avoidance guarantees in both
avoidance strategy is mandatory for safe navigation Ofdinitextensions).
size robots. Existing work on combining coverage control This paper is organized as follows. Sectitin briefly
and collision avoidance generally uses (i) either heuristisymmarizes coverage control of point robots. Seciibn
The authors are with the Department of Electrical and Systengineer- dISCUSS_eS occupancy defects of power d_lagrams. In .SeCt!on
ing, University of Pennsylvania, Philadelphia, PA 19104mail: {omur, |V We introduce a novel use of power diagrams for identi-
kod} @seas.upenn.edu. This work was supported by AFOSR under tfiging collision free multirobot configurations, and theropr
C'jASE MURI FA9550-10-1-0567. . pose a constrained optimization framework combining area
Note that a power diagram with an occupancy defect can befibiahe .. . . .
coverage and collision avoidance, and present its practica

in certain applications to save/balance energy across alenagtwork of > - | )
power limited agents7]. extensions. SectioN offers some numerical studies of the
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proposed algorithms. Sectidfi concludes with a summary the standard “move-to-centroid” law asymptotically siegr
of our contributions and a brief discussion of future work. point robots to a centroidal Voronoi configuration with the
guarantee of no collision along the way is
Il. COVERAGE CONTROL OFPOINT ROBOTS
A. Location Optimization of Homogeneous Robots u; = —k(pi —cv), (8)

Let Q be a convex environment ifR™ with a priori wherek € R, is a fixed control gain and the Voronoi
known event distribution functionp) : @ — R that diagramV (p) of @ is assumed to be continuously updated.
models the probability of some event occurs Gh and Note thatmy, andcy, are both continuously differentiable
p:= (p1,p2,...,Pn) € Q" be a (noncolliding) placement functions ofp as are botliHy andu, [16]. Finally, observe,
of n € N point robots in@Q.> Suppose that the eventagain, that the coverage contra} supports a distributed
detection (sensing) cost ath robot at locationg € @ is implementation whose local communications structure is
a nondecreasing differentiable functiofi,: R — R, of specified by the associated Delaunay gragh [
the Euclidean distancéq — p;||, betweeny andp;. Further ] o
assume that robots are assigned to events based on a partiffo LOcation Optimization of Heterogeneous Robots
of Q yielding a coverW: = {Wy, W, ..., W, }, a collection In distributed sensing applications, heterogeneity of
of subsets (“cells”)W;, whose union return§) but whose robotic networks in sensing and actuatiofi{7] is of-
cells have mutually disjoint interiors. A well established ten modelled by recourse tpower diagrams generalized
approach (arising in both facility location3]} [13] and Voronoi diagrams with additive weight§][ More precisely,
quantization [4], [15] problems) achieves such a cover byfor a given multirobot configuratiopp € @™, the event
minimizing the expected event sensing cost, sensing cost ofth robot at locationy € @ is assumed to be

" given by thepower distancg||q — piHQ—p? wherep; € R>
H(p,W) := Z/ f (la = pil]) ¢ (q) dq. (1) is the power radiusof ith robot. Accordingly, the task
P2 assignment of robots are determined by the power diagram
P(p,p) :={P1, Ps,...,P,} of Q based on the configura-

Now observe that, for any fixegh, the optimal task °. ; -
y ® P tion p and the associated power ragii= (p1, p2,...,pn),

assignment minimizingH is the standard Voronoi diagram
V(p) := {V1,...,V,} of Q based on the configuratigs, Pi::{q c Q‘ Hq—PiIIQ—p? < ||q—Pj||2—P§,Vj ” i},(g)

Vi= {q €@ |lla=pill < lla=psll,¥j # Z} - (@ and the location optimization function becomes
Thus, given the optimal task assignment of robots, the n s
objective function takes the following form Hy (p,p) = Z/P (Hq—PiH —Pi) ¢(q)dq.  (10)
1=1 i

Hy (p):=H (p,V (p)) = Z/ f(la—mpill) ¢(q)dq,(3) Note that in the special case pf = p; for all i # j the
=1/ Vi power diagrant? (p, p) and the Voronoi diagrariV (p) of
Q are identical, i.eP; = V;.
Similar to ), for fixed p, the partial derivative ofHp
OHv (p) :/ if(l\q— pill) 6 (@) dq (4) takes the following simple form], [7], [10],
V; Op; ’ '

and it is common knowledge that][ [3], [15]

Opi
! a:H:fP (p7 p) _
In the special case of (z) = 2, the partial derivative of opi 2mep, (pi —cp.), (11)
Hvy has a simple physical interpretation as follows:

wheremp, andcp, are the mass and the center of mass of
P;, respectively, as defined i) * For the single integrator
robot model 7), the standard “move-to-centroid” law of het-
grogeneous robotic networks asymptotically driving reliot

a critical point of Hy (., p), where robots are located at the
centroids of their respective power cells, is defined as

OH
%pi(p) =2my, (pi —cv;), (%)

where my, andcy;, respectively, denote the mass and th
center of mass df; according to the mass density function

= [ o@d o= [ ao@dr @ v = k(o —cp), 12)
Assuming first order (completely actuated single integrdfor some fixedk € R, and the power diagraift (p, p) of
tor) robot dynamics, Q@ is assumed to be continuously updated. Notwithstanding
Pi =, (7) its welcome inheritance of many standard Voronoi propsrtie

(e.g., convexity, dual triangulability), a power diagranayn
“Here, N is the set of all natural numberg; andR~o (R>o) denote the yield empty cells associated with some robots and/or some
set of real and positive (nonnegative) real numbers, réispgc and RV robots may not be contained in their nonempty power cells
is the N-dimensional Euclidean space. . . . !
SWe will generally refer to such decompositions as “diagraims also illustrated in Fig.1. In consequence, contrary to the case
occasionally allow the slight abuse of language to folloadition and refer
to W as apartition. 4 To be well defined we setp, = p; wheneverP; has an empty interior.



of homogeneous robots, the “move-to-centroid” law of hetwhereD (x,r):={y € RN\ [x —y|| <r} is the closed disk
erogeneous point robots is discontinuous and it cannot guai RV centered ak € R with radiusr > 0, andc} is the

antee collision free navigation. Thus, in past literatdfcg, interior of ). Note that the vectors of body rad# and

robots of finite but heterogeneous size, the standard “moveensory footprint radiic are not necessary equal singe
to-centroid” law inevitably requires an additional hetids models the heterogeneity of robots in body sizemodels

collision avoidance strategy for safe navigation. their heterogeneity in sensing and actuation.

Ill. OccuPANCY DEFECTS OFPOWER DIAGRAMS A. Encoding Collisions via Body Diagrams

Definition 1 (Occupancy Defert The power partition
P (p, p), associated with configuratiop € Q™ and radii
p € (R>p)" is said to have awmccupancy defedf p; ¢ P;
for somei € {1,2,...n}. Proposition 2 Let B (p,3) be the body diagram of)

i . . . . associated with configuratiop € Q™ and body radii3 €
Configurations incurring occupancy defects introduce QRZO)"‘ Thenp is collision free if and only if every robot

number of problems. First of all, empty partition cells Gausbody is contained in the interior of its body cell, i.e.
resource redundancy because some robots may never be )

assigned to any event happening around them. Such robots p € Conf (Q,8) <= D (pi,8;) C B; Vi. (16)
do not only become redundant, but also complicate collisio . .
avoidance as (moving or stationary) obstacles and limit th%rOOf‘ The sufficiency =) follows becauses (p, 8) is a

mobility of others. In general, robots that are not contdine“°Ve" of © whose elements have disjoint interiors. Hence,

in their respective cells require an extra care for coltisio 3Ven D (pi, B;) C B; for all i, we hayeD (pi, 6;) € @ and
avoidance. D (p;, Bi)ND (pj, B;) = 0 for all i # 7, and so||p; — p;|| >

A straightforward characterization of an occupancy defec? 1+ Fi- Thus.p € Conf (@, 8).
tive conf%uration is® pancy To see the necessity=£), for any p € Conf (Q, 3) we

will show thatp; € B; for all 4, and the distance between
Proposition 1 Given radii p € (R>0)", configurationp € p; and the boundary)B; of B; is greater thang;, i.e.
Q" does not incur an occupancy defective power diagram ihin, <5, ||x — p;|| > B, and soD (p;, 8;) C B;.
and only if||p; — p;||* > [p? — p?| for all i # j. It follows from Propositiort that for anyp € Conf (Q, 8)
(p, 3) has no occupancy defect (Dd), i.e.p; € B; Vi.
The boundaryB; of B; is defined by the bounda®§@
of @ and the separating separating hyperplane between body

Ipi = pill® = p7 < lIpi — p5lI° — P2, (13)  cells B; and B; for some; # i [&]. By definition (15), we
Ip; — pill* = p2 < lIpj — pill* — P2, (14) havemingeaq [|x — psl| > B; for any p € Conf (Q, B).

Now observe that, for any+# j the separating hyperplane
between body cell$3; and B; is perpendicular to the line
IV. COMBINING COVERAGE CONTROL AND COLLISION joining p; andp; and is given by §]

A geometric characterization of collision free multirobot
configurations inQ via their body diagrams is:

Proof. By Definition 1, P (p, p) has no occupancy defect if B
and only ifp; € P; for all 4, which is the case if and only if

for all i # j. Thus, the result follows. |

AVOIDANCE Nla T o o 5 9
Throughout the rest of paper, we consider heterojf]ij':{XER ‘2X (pi=py) =55 =B+ Ipill”— llps | }’(17)
geneous disk-shaped multirobot configurations, =  and the perpendicular distancefto H;; is given by
(p1,p2s---5,Pn) € Q" In Q with associated vectors of ) )
nonnegative body radii := (81,82,...,6,) € (Rso)" A (pr, His) 1= Ipi — pyll n B — 5 . as)
and sensory footprint radé : = (01,02, ...,0,) € (R>0)", B 2 2||pi — pjl|

whereith robot is centered gt; € @@ and has body radius
Bi > 0 and sensory footprint radius; > 0. Accordingly,
we will denote by (p,8) = {B1, B, ..., Br}, a cover B (p,3) is free of such a defect for any € Conf (Q, 3)

we term thebody diagramof @, solving the power problem d sod (.. H.) > 0. O furth how that f
(9), (10), defined fromHs (p, 3); and we will denote by f‘; jso (b, His) = 0. One can further show that for any

Note that d (p;, H;;) is negative whenB (p,3) has an
occupancy defect; and we have from Propositibrthat

S8(p,o) = {51,52,...,5,}, a cover we term the sensor

diagram ofQ, solving the corresponding problem definedd Hy—g Ips — pal|” + 82 — B2 — 26 |lpi — il
by Hs (p,o). We also find it convenient to denote the (pi, Hij) = Bi + 2 lpi — pill ’
configuration space of body-noncolliding disks of ragii

el — 8.2 _ B2
in Q as :ﬂi‘i'(le pill — 4) Bj>ﬂi, (19)

. 2 |lpi — pill
Conf (Q,B) := {peQ" |pi—Dpjll > Bi+B; Vi,

>0, sincepeConf(Q,8)
D (pi, Bi) € Q Vi}, (15)  which completes the proof. [

5In [5] the authors note the issue of empty power cells and give #asim ) To determine a CO”_'S'On free ne@hborhooq ofa Comlgura'
sufficient condition for each robot to be contained in its powell. tion p € Conf(Q, 3) with a vector of body radiB € (R>¢)",



Now, in contrast to the standard “move-to-centroid” law
that steers each robot directly towards the centrgid, of its
sensory cell,S;, we propose a coverage control policy that
selects a safe target location, called domstrained centroid
of S;, that solves the following convex programmifg

minimize |q; — cg,|?

. — (22)
subjectto q; € F;

Fig. 2. (left) Encoding collision free configurations viadyodiagrams: Where F'; is a closed convex set. It is well known that the

A configuration of disks is nonintersecting iff each disk @ntained in the unique solution of 22) is given by [L8, Section 8.1.1]10
interior of its body cell. (right) Free subcells, obtaineddsoding each body

cell with its associated disk radius. { cs; ,if cs, € Fy,

~ | Uz, (cs,) , otherwise, (23)

Cg, :=
we define dree subdiagran¥ (p, 3) : = {F1, F», ..., F,} of whereIl¢ (x) denotes the metric projection of € RY
the body diagran® (p,3) = {B1, Ba, ..., B,} by eroding onto a convex se€ ¢ RY, and note thall: is piecewise
each cell removing the volume swept along its boundargontinuously differentiable]0].2* Accordingly, for the single

0B;, by the associated body radius, see Rigas [L7] © integrator robot dynamics7), our “move-to-constrained-
centroid” law is defined as
FiZ:Bi (r“)Bl DO, i)) — Bl i — i 20 _
08,0000, ) = {ae B miy x> 5.}.(20) o, o4
Note thatF; is a nonempty convex set becayses I and  where k € R., is a fixed control gain, and we assume
the erosion of a convex set by a ball is convex. that 8 (p,o) and F(p,3+¢€) are continuously updated.

The fc_)llowing obse_rvati_on yields a (possibly cons_,erve)tiveWe find it convenient to hav&'s (Q, B+¢, o) denote the
convex inner apprommgﬂon of the f_ree cqnﬂguraﬂon Spacget of equilibria of our “move-to-constrained-centroidim
neighborhood surrounding free configuration as where robots are located at the constrained centroid of thei

p € Conf (Q,8) = H?(p’ﬁ) c Conf(Q,8), (21) respective sensory cell$
where[[F (p,B) = F1 x Fy x ... x F},. GS(Q75+67‘7)5:{p€COHf (Q,B+¢€)| pi=ts, Vi}- (25)

Lemma 1 Letp € Conf (Q,3) be a multirobot configura- In the special case of identical sensory footprint rada, i.
tion with a vector of body radi € (Rso)", and ¥ (p,3) i = % for all i« # j, these stationary configurations are

be the free subdiagram of the body diagréip, 3). called the constrained centroidal Voronoi configuraticiig.|
Thenq € Q" is a collision free multirobot configuration AISO note that for homogeneous point robots our “move-
in Conf (Q,8) if q; € F; (i.e. D (q;, 5;) C éi) for all i. to-constrained-centroid” law in2@) simplifies back to the

standard “move-to-centroid” law ir8J.

Proof. The results directly follows fror8 (p, 3) coveringa  we summarize the qualitative properties of our “move-to-
partition of @, as discussed in the proof of Propositan B constrained-centroid” law as follows:

B. Coverage Control of Heterogeneous Disk-Shaped Robdtheorem 1 For any choice of vectors of body radd <

Consider a heterogeneous multirobot configuraiore ~ (R>0)", safety margine € (R-o)" and sensory footprint
Conf (Q, B+¢€) with associated vectors of body ragi ¢  radii o< (Rx>g)", the configuration space of nonintersecting

(Rx0)", safety marging € (Rs,)" and sensory footprint disks Conf(Q, 3+€) (15) is positive invariant under the
radii o € (R>0)", and letS (p,o) = {S1,...,5,} be the “move-to-constrained-centroid” law in24) whose unique,

sensory diagram (ID based on robot |Ocatiorlsand sensory continuous and pieCEWise differentiable ﬂOW, Starting 1y a
footprint radii o, and F (p, 8+€) = {Fy,...,F,} be the configuration inConf(Q, B+¢), asymptotically reaches a lo-
free subdiagram associated with configuragicand enlarged cally optimal sensing configuration ifis (Q, 3+¢, o) while

body radii3+e€. Here we use to guarantee the clearance

. . 9Here, A is the closure of sefl.
between any pait # j of robots to be at least; + ¢;. &

10In general, the metric projection of a point onto a convexcset be
efficiently computed using a standard convex programmingesd1d]. If

SHere, 0 is a vector of all zeros with the appropriate size, atdb  (Q is a convex polytope, then a free subcéll, is also a convex polytope
B:={a+b|ae€ Abe B} is the Minkowski sum of sets! and B. and can be written as a finite intersection of half-spaces.celethe metric

71t is obvious that the erosion of a half-space by a ball is d-$@éhce. projection onto a convex polytope can be recast as quagvatgramming
Hence, since the erosion operation is distributed overrgetsection ]7], and can be solved in polynomial timéq]. In the case of a convex polygonal
and a convex set can be defined as (possibly infinite) intéoseof half-  environment,F; is a convex polygon and the metric projection onto a convex

spaces [d], the erosion of a convex set by a ball is convex. polygon can be solved analytically since the solution lie®noe of its edges
8Having a positive vector of safety margiesenables us to consider col- unless the input point is inside the polygon.
lision free configurations ifConf (Q, B+e€) C Conf (Q, 3). Throughout ! Note thatcs, is well defined (see footnotd), hencecs, must be as

the rest of the paper, in order the compress the notation, iWatuse the  well given F; # 0.
notation and us€onf (Q, B+€) to refer to the closure of the configuration 12 Note that this set cannot be empty since it contains the nairdina
space in 15). smooth function over a compact se?J.
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strictly decreasing the utility functiofi(s(-, o) (10) along piecewise continuously differentiable since each fred cel
the way. If an equilibrium inGs(Q,B+e€,0) is isolated, is a nonempty erosion of an element of the body diagram
then it is locally asymptotically stable. B (p, 3 + €) by a fixed closed ball. Hence, one can conclude
that each local control policy is piecewise continuously

Proof. The instantaneous "target” in24) lies in the clo- . ; : . s
. LY differentiable since metric projections onto convex celle
sure of the convex inner approximation to the freespace

neighborhood of any free configuratiorg c piecewise continuously differentiablé€({ and the compo-
[[F(p.B+e) C C yf (Q, B+€), hence a?:(é)c;?()jin to sition of piecewise continuously differentiable functsoare

b ¢ CORt L) € ' 9! 8Iso piecewise continuously differentiabl&”].
Lemmal, the configuration space tangent vector define Therefore, the existence, uniqueness and continuously
by 24), —k (P — Cs(p.o T, f(Q, , Is eith . o ’
in){e(rior) direc(tre)z q gf(pét )3\/0?36 ptcazI;e(r?g 5) ﬁ;)e tl)souerll daerry differentiability of the flow of each local controller’ follow

17 (p, B+e€). Therefore, by constructior2®), the “move- q‘rom the Lipschitz continuity ofu’ in its compact domain
to-cor?s’trainea—centroid” 'Iaw leaveSonf(Q ;6+e) poSi- Dy since a piecewise continuously differentiable function

tively invariant is also locally Lipschitz on its domain?P] and a locally

The existence, uniqueness and continuity of its flow ca%‘i'ps'chItZ function on a compact set is globally Lipschitz

be observed using an equivalent hybrid system consisting a that set 1. Hence, since their dpmams dgfme a finite
a family of piecewise continuously differentiable locattar open cover pronf .(Q"B +e), the un|‘(‘:1ue, continuous f”md
fields as follows. Letr! : D; — (R™)" be alocal controller piecewise differentiable flow of the “move-to-constrained
associated with a subsétof {1,2 n} defined as centroid” law is constructed by piecing together trajeieter
Ty of these local policies.
ol — {—k(pi —Cs,),ifiel (26) Finally, a natural choice of a Lyapunov function for the
! 0 , otherwise stability analysis is the continuously differentiable dtion

where its domain is optimization functiori{s (10), and one can verify froml(),
) (22) and @4) that for anyp € Conf (Q, 3+¢€)
D= {peconf (Q,ﬁ—i—e)‘ S; 40 Vie 1}. 27)

n
Note that for a given configuration in its domaifd;, a Hs (p,o) = —ksti 2(p;i —cs,)" (pi —Ts,) , (30)
local policy index, I, indicates which robots are assigned =1
to sensory cells with nonempty interiors, and so the do-
mains, Dy, of local controllers defines a finite open cover

— 2
2 Pi*CSiH s

sincep; € F; and Hpi—Csi

2 |-
Z|‘Csi—csi

n
of Conf (Q,B+e). H?nce, since all u_naSS|gned _rof)ots are < —kzmsi Ipi — s, |2 < 0, 31)
stationary under the “move-to-constrained-centroid” kv =
every robot whose sensory cell has a nonempty interior is = . 3 o
assigned to the coverage task, one can further conclude tH4tich is equal to0 only if p; = cs, for all i, ie.

these local controllers can be composed using the polid € Gs(Q,8+¢€ o). Thus, it follows from LaSalle's
selection strategyy : Conf (Q, B+€) — P (n) maximizing Invariance Principle 73] that all multirobot configurations

the number of assigned robdfs, in Conf (@, B+¢€) asymptotically reacltzs (Q, B+¢€,0). If
an equilibriump* in G's (Q, B+€, o) is isolated, then it is

g(p) := arg max [I]. (28)  guaranteed thak(s (p, o) < 0 in a neighborhood op*, and

ety so it is locally asymptotically stable?f]. ]

such that the resulting hybrid vector field is the same a8 Congestion Control of Unassigned Robots
the “move-to-constrained-centroid” law i24), i.e. for any '
p € Conf (Q, B+¢) In this subsection we shall present a heuristic congestion

®) management strategy for unassigned robots that improves
u(p) =u’? (p). (29) assigned robots’ progress.

Note that, since a sensory cell with a nonempty interior can FOr & choice Orfl vectors of body radii € (R>o)", saf(zty
not instantaneously appear or disappear under any countinugharginse < (R-o)" and sensory footprint radé < (R>o)",
motion, each time when a local controller is selectedybiy '€t P € Conf (Q,8+¢€) be a multirobot configuration

steers the robots for a nonzero time. in @ with the associated body diagrad (p,3+e€) =
Now the continuity properties of each local control policyl B1: - - -» Bn}, free subdiagrartf (p, 8+€) = {Fi, ..., Fy}
can be observed as follows. As in the case of Voron@nd sensory diagradi(p, o) = {51,..., 5.}

diagrams [6], we have that the boundary of a sensory Consider the following heuristic management of robots:
cell with a nonempty interior is a piecewise continuouslyf ith _ro_bot hqs a sensory cefl; with a nonempty interior,

differentiable function of robot locations, and its cefdrgs  then it is §133|gqed to the coverage task with sensory cell
continuously differentiable with respect to robot locato Si; Otherwise, since the robot becomes redundant for the

Similarly, the boundary of each element 8f(p, 3+¢) is Coverage task, it is assigned to move towards a safe location

3Here P (n) denotes the set of all subsets {f, 2,...,n}. 14AT is the transpose of matriA.



in B;. We therefore define the set dactive” domains
A(p,B+e,0)={A1,As,..., A,} of robots as

Al_:_{si  if S # 0,

B; , otherwise.
Note that A (p,3+€,0) defines a cover of and its
elements have nonempty interior for alle Conf (Q, 3+¢)
(Proposition2).
For the first order robot dynamicg)( we propose the
following “move-to-constrained-active-centroid” law

(32)

w; = —k(pi —Ta,), (33)

that steers each robot towards the constrained centrgics

defined in @3), of its active domaind;, which is the closest

point in F; to the centroid:4, and so uniquely solvesl§]
minimize |q; — ca, ||?

. — (34)
subjectto q; € I;

where F; is convex andk € R., is a fixed con-
trol gain. Once again, we assume théi{p, 3+¢,0) and
F (p, B+e€) are continuously updated. It is also useful t

have G4 (Q,3+¢€,0) denote the set of equilibria of the
“move-to-constrained-active-centroid” law where robats

(0]

Hence, we have from Lasalle’s Invariance Principié]fthat,
at an equilibrium point of the “move-to-constrained-aetiv
centroid” law, a robot is located at the constrained cediroi
Cg,, Of its sensory cellS;, if it has a nonempty interior, i.e.
S; # 0. Given thatp; = cg, for all i € {1,...,n} with
S; = (), using @1), (33) and @4), one can further show that

Ha (p,B+€) =~k > mp, 2(pi—cp,)" (p:—Cs,)

{1 n} nY
Si#0 sincep; =cs,
—k Z mp; 2(pi_cBi)T(pi_éBi) , (38)
ic{1,...m}
e >||pi—<5, ||,

sincep; € F; and

2 _ 2
e[ *2fem, —ca, |

<—k Y mp|pi—egl” <0. (39)

Therefore, at a stationary point &3) ith robot is located at
the constrained centroid@g,, of its body cell B; if S; = 0.
Overall, by Lasalle’s Invariance Principle, we have thay an
multirobot configuration starting iConf (Q), 3+¢€) asymp-
totically converges to a locally optimal sensing configiomat
in G4 (Q, B+e€, o), which completes the proof. [ |

located at the constrained centroid of their active domainsD. Coverage Control of Differential Drive Robots

Ga(Q.B+e,0):={peConf (@, B+¢)

pi=Ca, Vi}.(35)

Consider a noncolliding placement of a heterogeneous
group of disk-shaped differential drive robotp,8) <

We summarize some important properties of our “moveconf (Q, 3+¢€) x (—x,7|™ in a convex planar environment

to-constrained-active-centroid” law as follows:

Proposition 3 For any 3,0 € (R>o)" ande € (R>o)", the
“move-to-constrained-active-centroid” law ir88) leaves the
configuration space of nonintersecting digksnf(Q, 3+¢)

positively invariant; and its unique, continuous and piece
wise differentiable flow, starting at any configuration

in Conf(Q, B+¢€), asymptotically reacheé& 4(Q, B+€, o)
without increasing the utility functiot{s(-, o) (10) along
the way.

Proof. The positive invariance ofonf (Q), 3+¢) under the
“move-to-constrained-active-centroid” law and the existe,

Q C R? with associated vectors of body raglie (R>¢)",
safety marginse € (R.o)" and sensory footprint radii
o € (Rx)", where® = (01,02,...,0,) is the vector of
robot orientations.

The kinematic equations describing the motion of each
differential drive robot are

Pi =i [
éi = Wi,

wherev; € R andw; € R are, respectively, the linear

(tangential) and angular velocity inputs @h robot. Note

cos0;
sin 91

(40)

uniqueness and continuity properties of its flow follow thenat the differential drive model is underactuated due ® th

same pattern as established in Theotem
For the stability analysis, usindll), (33) and 34), one
can show that the continuously differentiable utility ftioa

Hs (., o) (10) is nonincreasing along the trajectory of the

“move-to-constrained-active-centroid” law as follows:

j{S (pvo') =—k Z ms; 2(pi_CSi)T(pi_ESi)
i€{l,...,n}
Si#0

>

sincep; € F; and

~ 2
pi*CSiH s

2 (= 2
pi—es; || 2[[es; —es |

—Fk Z ms; 2(pi_CSi)T(pi_éBi)7 (36)
——
16{},...,71} -0
Si=0  sinceS;=0
< —k Z ms; Hpi _6511”2 <0. (37)
i€{1,...,n}
S0

—sind; .

nonholonomic constrain iy } pi; = 0.

Let8 (p,o) = {S1,...,Sn} (9) be the sensory diagram of
Q@ based on robot locations and sensory footprint radir,
andd (p,B+e€) = {Fi,..., F,,} (20) be the free subdiagram
associated with configuratigm and enlarged body rad# +
e. For a choice ofe € (R-o)" with ¢; > ¢; for all i, we
further defineT (p, B+¢) = {T1,T>,...,T,} to be

T; :=conv ({p;} U F}) (41)

where F (p,B+¢) = {F|,F5,...,F/} and conv (A) de-
notes the convex hull of set. Note that, since} C F;,
p; € F; and F; is convex, every element df (p, 3+¢)
is contained in the associated elementJofp, B+c¢), i.e.
T; C F;. It is useful to remark that we particularly require
p: € T; to guarantee an optimal choice of a local target



position in @5) relative top;, and we construct subs&t of domainConf (Q, 3+e€)x (—m, 7] towards the set of optimal

F; to increase the convergence rate of our proposed coveragnsing configurationSp (Q, 3, €, €, 0) X (—m, w|™ without

control law in @7). increasing the utility functio{s (-, o) (10) along the way.
As in the case of “move-to-constrained-centroid” law of

) . B o
fully actuated robots in 24), for optimal coverage each P(;Zi{;/;h?nsgﬂgi?[la;:; fﬁ:ﬁﬁ%ﬁfe(_%_f ;12;(;1(|ngéljc]en:is
differential drive robot will intent to move towards theIO y

constrained centroidgs, (23), of its sensory cell,S;, but law in (47) because, by constructiortd), each robot's

with a slight difference due to the nonholonomic constnain{nouon Is constrained to the associated safe partitionallibc

} . . . .. In Q. The existence and uniqueness of its flow can be
To determine a linear velocity input guaranteeing colhsio . .
) . stablished using the pattern of the proof of Theofdeand
avoidance, we select a safe target location that solves tfje : i ) : .
i . e flow properties of the differential drive controller in5].
following convex programming, . . . .
Now, usingXHs (-, o) (10) as a continuously differentiable
Lyapunov function, we obtain the stability properties as

follows: for any (p, @) € Conf (Q, B+¢€) x (—m, 7]"

minimize ||q; — cs, ||?

. — (42)
subjectto q; € F; N H;

where

j—CS (pa 0') = _kZmSi 2(p1 - CSi)T (pl - 6:[9)1) ) (48)
i=1

>[lpi-eg, |
sincep; € F;NH,; and

sin 0;

H = {er‘ [Cosei r(x—pi)—O} (43)

2 f|=w 2
ez, ~cs. |

‘pi_CSi

is the straight line motion range due to the nonholonomic

constraint. Note thaF’; N H; is a closed line segment if). = 112
. . i e < — Nlps =28 |7 <
Hence, once again, the unique solution 42)(is given by - kZlmSl Pi CS%'H <0, (49)
Cs; 1= { CHS_i ’ gtﬁzirviisFi N, (44) wherep; = —k (p; —©4,). Hence, by LaSalle’s Invariance
7o, (€50, ¢ Principle [23], at a stationary point of47) ith robot is located

wherellc is the metric projection map onto a convex settcg . Since for fixedcg andcg the standard differential
C. Similarly, to determine robot’s angular motion, we selectirive controller asymptotically aligns each robot with the
another safe target location that solves

T
: : : —sin6; — _
constrained centroidy , i.e. cos6, (pi—cg) =01[29],

minimize  lq; — cs,||® 45) it is guaranteed by4) and @5) thatcy, = ¢, whenever
subject to q; € 7' |pi =<4 || = 0 and [ o } (p;—c&) = 0. Therefore,

whereT; c F; is convex, and the unique solution ef5) is We have from LaSalle’s Invariance Principle that all config-
urations inConf (Q, B+¢€) x (—m, 7™ asymptotically reach

_ J cs  if cs, € T, G- €,e,0) % (—m,7|" u
e { Iz (cs,), otherwise (46) Cp(@.B.€e.0) x (~m.]
Accordingly, based on a standard differential drive con- Finally, note that the ‘move-to-constrained-active-

T . centroid” law of SectiorlV-C can be utilized for congestion
troller [25], we propose the following “move-to-constrained- . : : . ) .
- . . . control of differential drive robots by using active domain
centroid” law for differential drive robot¥

in (32 instead of the sensory diagraf(p,o), and the

T . . . . . .
s0; ~ m
v; = —k { Zije } (pi — &), (47a) resulting coverage law maintains qualitative properties.

ol
g

V. NUMERICAL SIMULATIONS

{ —sin6; }T( ) —Ew)

cosf: P (47b) A common source of collisions between robots while
{ cosb; r (pi — ) performing a distributed sensing task is a concentratedteve
sin 0; e distribution which generally causes robots to move towards

wherek > 0 is fixed. HavingGp(Q, B, €, e, 0) denote its the same small region of the environméht.We therefore

set of stationary points where the constrained centrofds consider the following event distribution,: [0, 10 = Ry,

andcg coincide andith robot is located atg = c¢, for a homogeneous group of disk-shaped robots operating in

a 10 x 10 square environment,
Go(Q.B,¢.€,0):={peConl(Q, B+¢)

-4
we summarize important qualitative properties of the “move ¢(q) =e { ! ]
to-constrained-centroid” law of differential drive rolscas:

w; = k atan

—v —w .
pl:CST :CS»; VZ},

2

(50)

In Fig. 3 we present the resulting trajectories of our proposed
Proposition 4 For any 8,0 € (Rso)" and e,e € coverage control algorithms. Since the event distribution
(R-0)™ with ¢; < ¢; for all 4, the “move-to-constrained-

SFor all simulations we sek; = 0.05 and ¢; = 0.1 for all

centroid” law of differential drive robots in 47) asymp- i € {1,2,...,n}, and all simulations are obtained through numerical

totically steers all configurations in its positively invant  integration of the associated coverage control law usiegtre45 function
of MATLAB, and the computation of the centroid of a power dell(6) is
15To resolve indeterminacy we set = 0 wheneverp; = cg . approximated by discretizing the power cell by@ x 20 grid.
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(@) (b) (©) (d) (e)
Fig. 3. Avoiding collisions around a concentrated eventriligtion. (a) Initial configuration of a homogeneous rohetwork, where the weight of sensory
cell are shown in the parenthesis, and the resulting tajest of (b) the standard “move-centroid” lad2j, (c) the “move-to-constrained-centroid” law
(24), (d) the “move-to-constrained-active-centroid” 1a@8), (e) the “move-to-constrained-centroid” law of diffetiah drive robots 47) which are initially
aligned with the horizontal axis.

@.
(@) ©)

Fig. 4. Safe coverage control of heterogeneous disk-shapeats with a heuristic management of unassigned robojsin{@al configuration of a

heterogeneous robot network, where the weight of sensdhare shown in the parenthesis, and the resulting trajetoof (b) the standard “move-
centroid” law (2), (c) the “move-to-constrained-centroid” la4), (d) the “move-to-constrained-active-centroid” 1a@8), (e) the “move-to-constrained-
active-centroid” law of differential drive robots whicheainitially aligned with the horizontal axis.

is concentrated around a small region, as expected, thebots to a locally optimal sensing configuration without
standard “move-to-centroid” law steers robots to a cedéloi avoiding collisions along the way. Our “move-to-constean
Voronoi configuration where robots collide. On the othecentroid” law prevents any possible self-collisions antli-co
hand, since a Voronoi partition has no occupancy defect, oasions with the boundary of the environment. However, since
“move-to-constrained-centroid” and “move-to-constegin the 2nd robot stays unassigned for all future time, the 1st
active-centroid” laws yield the same trajectory that asymprobot is blocked and it can not move to a better coverage
totically converges a collision free constrained centabid location. Fortunately, while guaranteeing collision @avice,
\Voronoi configuration. It is also well known that minimizing our “move-to-constrained-active-centroid” law steersasm
the location optimization functiofi(s (10) generally results signed robots to improve assigned robots’ progress for both
in a locally optimal sensing configuration, and we observauilly actuated and differential drive robots, as illusg@tin

in Figures3.(c) and3.(e) that, although they are initiated atFigures4.(d) and4.(e), respectively.

the same location, fully actuated and differential driveats
asymptotically reach different constrained centroidaiovimi
configurations.

To demonstrate how unassigned robots may limit the
mobility of others, we consider a heterogeneous group ?f
disk-shaped robots operating inl& x 10 environment with 0
the following event distribution functior; : [0, 10]2 — Rso,

VI. CONCLUSION

In this paper we introduce a novel use of power diagrams
r identifying collision free multirobot configurationgnd
propose a constrained optimization framework combining
coverage control and collision avoidance for fully actdate

2 2

—1 qf[ g} -1 qf[ S} disk-shaped robots, comprising the main contribution$ef t
¢(q) =1+ 10e te paper. We also present its extensions for the widely used
-1 q_{i] ’ _Hq_[g] ’ differential drive model and for congestion management of
t+e t+e unassigned robots. Numerical simulations demonstrate the

which is also used in7]. In Fig. 4 we illustrate the resulting effectiveness of the proposed coverage control algorithms

trajectories of our safe coverage control algorithms. Aense  Work now in progress targets another extension of
in Fig. 4.(a), the 2nd robot is initially not assigned to anyVoronoi-based coverage control for hierarchical settings
region. It stays stationary for a certain finite time undex thbased on nested partitions of convex environmeni\Ve

the standard “move-to-centroid” law during which the 1stlso believe that encoding collision free configurations in
robot moves through it. Also notice that the 3rd robot vietat terms of power diagrams might have a significant value for
the workspace boundary before converging a safe locatiombot motion planning, and we are currently exploring its
In summary, the “move-to-centroid” law steers disk-shapegossible usage in the design of feedback motion planners.
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