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ABSTRACT
We propose a new anytime hierarchical clustering method
that iteratively transforms an arbitrary initial hierarchy on
the configuration of measurements along a sequence of trees
we prove for a fixed data set must terminate in a chain of
nested partitions that satisfies a natural homogeneity re-
quirement. Each recursive step re-edits the tree so as to
improve a local measure of cluster homogeneity that is com-
patible with a number of commonly used (e.g., single, aver-
age, complete) linkage functions. As an alternative to the
standard batch algorithms, we present numerical evidence
to suggest that appropriate adaptations of this method can
yield decentralized, scalable algorithms suitable for distributed
/parallel computation of clustering hierarchies and online
tracking of clustering trees applicable to large, dynamically
changing databases and anomaly detection.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Clustering ; I.5.3 [Pattern Recogni-
tion]: Clustering

General Terms
Theory, Algorithms

Keywords
Online Clustering, Homogeneity, Anytime Algorithm, Clus-
ter Tracking, Nearest Neighbor Interchange, Big Data

1. INTRODUCTION
The explosive growth of data sets in recent years is fu-

eling a search for efficient and effective knowledge discov-
ery tools. Cluster analysis [5, 20, 22] is a nearly ubiquitous
tool for unsupervised learning aimed at discovering unknown
groupings within a given set of unlabelled data points (ob-
jects, patterns), presuming that objects in the same group
(cluster) are more similar to each other (intra-cluster homo-
geneity) than objects in other groups (inter-cluster separa-
bility). Amongst the many alternative methods, this paper
focuses on dissimilarity-based hierarchical clustering as rep-
resented by a tree that indexes a chain of successively more
finely nested partitions of the dataset. We are motivated to
explore this approach to knowledge discovery because clus-
tering can be imposed on arbitrary data types, and hierarchy
can relieve the need to commit a priori to a specific parti-
tion cardinality or granularity [5]. However, we are gener-

ally interested in online or reactive problem settings and in
this regard hierarchical clustering suffers a number of long
discussed weaknesses that become particularly acute when
scaling up to large, and, particularly, dynamically chang-
ing, data sets [5,20]. Construction of a clustering hierarchy
(tree) generally requires O

(

n2
)

time with the number of data
points n [32]. Moreover, whenever a data set is changed by
insertion, deletion or update of a single data point, a cluster-
ing tree must generally be reconstructed in its entirety. This
paper addresses the problem of anytime online reclustering.

1.1 Contributions of The Paper
We introduce a new homogeneity criterion applicable to

an array of agglomerative (“bottom up”) clustering methods
through a test involving their“linkage function”— the mech-
anism by which dissimilarity at the level of individual data
entries is“lifted”to the level of the clusters they are assigned.
That criterion motivates a “homogenizing” local adjustment
of the nesting relationship between proximal clusters in the
hierarchy that increases the degree of similitude within them
while increasing the dissimilarity between them. We show
that iterated application of this local homogenizing opera-
tion transforms any initial cluster hierarchy through a suc-
cession of increasingly “better sorted” ones along a path in
the abstract space of hierarchies that we prove, for a fixed
data set and with respect to a family of linkages including
the common single, average and complete cases, must con-
verge in a finite number of steps. In particular, for the sin-
gle linkage function, we prove convergence from any initial
condition of any sequence of arbitrarily chosen local homog-
enizing reassignments to the generically unique1, globally
homogeneous hierarchy that would emerge from application
of the standard, one-step “batch” single linkage based ag-
glomerative clustering procedure.

We present evidence to suggest that decentralized algo-
rithms based upon this homogenizing transformation can
scale effectively for anytime online hierarchical clustering of
large and dynamically changing data sets. Each local ho-
mogenizing adjustment entails computation over a proper
subset of the entire dataset — and, for some linkages, merely
its sufficient statistics (e.g. mean, variance). In these cir-
cumstances, given the sufficient statistics of a dataset, such
a restructuring decision at a node of a clustering hierarchy
can be made in constant time (for further discussion see Sec-
tion 4.2). Recursively defined (“anytime”) algorithms such

1In the generic case, all pairwise distances of data points are
distinct and this guarantees that single linkage clustering
yields a unique tree [15,17].
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as this are naturally suited to time varying data sets that
arise insertions, deletions or updates of a set of data points
must be accommodated. Our particular local restructuring
method can also cope with time-varying dissimilarity mea-
sures or cluster linkage functions such as might result from
the introduction of learning aimed at increasing clustering
accuracy [40].

1.2 A Brief Summary of Related Literature
Two common approaches to remediating the limited scal-

ing capacity and static nature of hierarchical clustering meth-
ods are data abstraction (summarization) and incremental
clustering [5,23].

Rather than improving algorithmic complexity of a spe-
cific clustering method, data abstraction aims to scale down
a large data set with minimum loss of information for ef-
ficient clustering. The large literature on data abstraction
includes (but is not limited to) such widely used methods as:
random sampling (e.g., CLARANS [31]); selection of repre-
sentative points (e.g., CURE [19], data bubble [9]); usage of
cluster prototypes(e.g., Stream [18]) and sufficient statistics
(e.g., BIRCH [41], scalable k-means [8], CluStream [3], data
squashing [12]); grid-based quantization [5,20] and sparcifi-
cation of connectivity or distance matrix (e.g., CHAMELEON
[24]).

In contrast, incremental approaches to hierarchical clus-
tering generally target algorithmic improvements for effi-
cient handling of large data sets by processing data in se-
quence, point by point. Typically, incremental clustering
proceeds in two stages: first (i) locate a new data point
in the currently available clustering hierarchy, and then (ii)
perform a set of restructuring operations (cluster merging,
splitting or creation), based on a heuristic criterion, to ob-
tain a better clustering model. Unfortunately, this sequen-
tial process generally incurs unwelcome sensitivity to the or-
der of presentation [5,23]. Independent of the efficiency and
accuracy of our clustering method, the results we report here
may be of interest to those seeking insight into the possible
spread of outcomes across the combinatorial explosion of dif-
ferent paths through even a fixed data set. Among the many
alternatives (e.g., the widely accepted COBWEB [14] or
BIRCH [41] procedures), our anytime method most closely
resembles the incremental clustering approach of [39], and
relies on analogous structural criteria, using similar concepts
(“homogeneity” and “monotonicity”). However, a major ad-
vantage afforded by our new homogeneity criterion (Defini-
tion 4) relative to that of [39] is that there is now no require-
ment for a minimum spanning tree over the dataset. Beyond
ameliorating the computational burden, this relaxation ex-
tends the applicability of our method beyond single-linkage
to a subclass of linkages, Definition 5, a family of cluster
distance functions that includes single, complete, average,
minimax and Ward’s linkages [22].

Of course, recursive (“anytime”) methods can be adapted
to address the general setting of time varying data process-
ing. Beyond the specifics of the data insertion problem han-
dled by incremental clustering methods adapting, we aim
for reactive algorithms suited to a range of dynamic set-
tings, including data insertion, deletion, update or perhaps,
a processing-induced non-stationarity such time varying dis-
similarity measure or linkage function [1]. Hence, as de-
scribed in the previous section, we propose a partially de-
centralized, recursive method: a local cluster restructuring

operation yielding a discrete dynamical system in the ab-
stract space of trees guaranteed to improve the hierarchy at
each step (relative to a fixed dataset) and to terminate in
an appropriately homogenizing cluster hierarchy from any
(perhaps even random) initial such structure.

1.3 Organization of The Paper
Section 2 introduces notation and offers a brief summary

of the essential background. Section 3 presents our homo-
geneity criterion and establishes some of its properties. Sec-
tion 4 introduces a simple anytime hierarchical clustering
method that seeks successively to “homogenize” local clus-
ters according to this criterion. We analyze the termination
and complexity properties of the method and then illustrate
its algorithmic implications by applying it to the specific
problem of incremental clustering. Section 5 presents ex-
perimental evaluation of the anytime hierarchical clustering
method using both synthetic and real datasets. We conclude
with a brief discussion of future work in Section 6.

2. BACKGROUND & NOTATION

2.1 Datasets, Patterns, and Statistics
We consider data points (patterns, observations) in Rm

with a dissimilarity measure2 d : Rm × Rm → R≥0, where
m ∈ N is the dimension of the space containing the dataset
and R≥0 denotes the set of non-negative real numbers. Note
that d need not necessarily be a metric3, and our results can
be easily generalized to qualitative data as well, once some
dissimilarity ordering has been defined.

Let x = (xj)j∈J
∈ (Rm)J be a set of data points bi-

jectively labelled by a fixed finite index set J , say J =
[n] : = {1, 2, . . . , n}, and let x|I = (xi)i∈I

denote a par-
tial set of observations associated with subset I ⊆ J , whose
centroid and variance, respectively, are

c(x|I) : =
1

|I |

∑

i∈I

xi, (1)

v(x|I) : =
1

|I |

∑

i∈I

‖xi − c(x|I)‖22 , (2)

where |I | and ‖x‖2 denote the cardinality of set I and the
standard Euclidean norm of point x ∈ Rm, respectively.
Throughout the sequel the term“sufficient cluster statistics”
denotes the cardinality, |I |, and mean (1) and variance (2)
for each cluster in a hierarchy [8].

2.2 Hierarchies
A rooted semi-labelled tree τ over a fixed finite index

set J , illustrated in Figure 1, is a directed acyclic graph
Gτ =(Vτ , Eτ ), whose leaves, vertices of degree one, are bijec-
tively labeled by J and interior vertices all have out-degree
at least two; and all of whose edges in Eτ are directed away
from a vertex designated to be the root [7]. A rooted semi-
labelled tree τ uniquely determines (and henceforth will be

2A dissimilarity measure d : X ×X → R≥0 in X is a sym-
metric, non-negative and reflexive function, i.e. d(x, y) =
d(y, x), d(x, y) ≥ 0 and d(x, x) = 0 for all x, y ∈ X.
3A dissimilarity d : X × X → R≥0 is a metric if it satis-
fies strong reflexivity and the triangle inequality, i.e. for
all x, y, z ∈ X d(x, y) = 0 ⇐⇒ x = y and d(x, y) ≤
d(x, z) + d(z, y).

2
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Figure 1: Hierarchical relations: parent - Pr (I, τ ),
children - Ch(I, τ ), and local complement (sibling) -
I−τ of cluster I of a rooted binary tree, τ ∈ BT[13].
Filled and unfilled circles represent interior and leaf
nodes, respectively. An interior node is referred by
its cluster, the list of leaves below it; for example,
I = {4, 5, 6, 7}.

interchangeably used with) a cluster hierarchy [27]. By defi-
nition, all vertices of τ can be reached from the root through
a directed path in τ . The cluster of a vertex v ∈ Vτ is de-
fined to be the set of leaves reachable from v by a directed
path in τ . Accordingly, the cluster set C (τ ) of τ is defined
to be the set of all its vertex clusters,

C (τ ) : =
{

C (v)
∣

∣v ∈ Vτ

}

⊆ P(J) , (3)

where P(J) denotes the power set of J .
For every cluster I ∈ C (τ ) we recall the standard notion

of parent (cluster) Pr (I, τ ) and lists of children Ch(I, τ )
of I in τ , illustrated in Figure 1. For the trivial case, we
set Pr (J, τ ) = ∅. Additionally, we find it useful to de-
fine the local complement (sibling) of cluster I ∈ C (τ ) as
I−τ : = Pr (I, τ ) \ I , not to confused with the standard
(global) complement IC = J \ I . Further, a grandchild in τ
is a cluster G ∈ C (τ ) having a grandparent Pr2(G, τ ) : =
Pr
(

Pr (G, τ ) , τ
)

in τ . We denote the set of all grandchil-
dren in τ by G(τ ), the maximal subset of C (τ ) excluding the
root J and its children Ch(J, τ ),

G(τ ) : =
{

G ∈ C (τ )
∣

∣Pr2(G, τ ) 6= ∅
}

, (4a)

= C (τ ) \
(

{J} ∪ Ch(J, τ )
)

. (4b)

A rooted tree with all interior vertices of out-degree two
is said to be binary or, equivalently, non-degenerate, and
all other trees are said to be degenerate. In this paper BTJ

denotes the set of rooted nondegenerate trees over leaf set
J . Note that the number of hierarchies in BTJ grows super
exponentially [7],

|BTJ | =
(

2 |J | − 3
)

!! =
(

2 |J | − 3
)(

2 |J | − 5
)

. . . 3, (5)

for |J | ≥ 2, quickly precluding the possibility of exhaustive
search for the “best” hierarchical clustering model in even
modest problem settings.

2.3 Nearest Neighbor Interchange (NNI) Moves
Different notions of the neighborhood of a non-degenerate

hierarchy in BTJ can be imposed by recourse to different
tree restructuring operations [13] (or moves). NNI moves
are particularly important for our setting because of their
close relation with cluster hierarchy homogeneity (Definition
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Figure 2: An illustration of NNI moves between bi-
nary trees: each arrow is labeled by a source tree
and associated cluster defining the move.

4) and their role in the anytime procedure introduced in
Section 4.

A convenient restatement of the standard definition of
NNI walks [28, 33] for rooted trees, illustrated in Figure 2,
is:

Definition 1. The Nearest Neighbor Interchange (NNI)
move at a grandchild G ∈ G(σ) on a binary hierarchy σ ∈
BTJ swaps cluster G with its parent’s sibling Pr (G, σ)−σ to
yield another binary hierarchy τ ∈ BTJ .

We say that σ, τ ∈ BTJ are NNI-adjacent if and only if
one can be obtained from the other by a single NNI move.

More precisely, τ ∈ BTJ is the result of performing the NNI
move at grandchild G ∈ G(σ) on σ ∈ BTJ if

C (τ ) =
(

C (σ) \ {Pr (G, σ)}
)

∪
{

I
−σ ∪G

−σ
}

. (6)

Throughout the sequel we will denote the map of BTJ into
itself defining an NNI move at a grandchild cluster of a tree
G ∈ G(σ) as τ = NNI(σ,G).

A useful observation for NNI-adjacent hierarchies illus-
trating their structural difference is:

Lemma 1. [4] An ordered pair of hierarchies (σ, τ ) is
NNI-adjacent if and only if there exists one and only one
ordered triple (A,B,C) of common clusters of σ and τ such
that {A ∪B} = C (σ) \ C (τ ) and {B ∪ C} = C (τ ) \ C (σ).

We call (A,B,C) the “NNI-triplet” of (σ, τ ).

2.4 Hierarchical Agglomerative Clustering
Given a choice of linkage, ζ : (Rm)J ×P(J)×P(J)→ R≥0,

Table 1 formalizes the associated Hierarchical Agglomerative
ζ-Clustering method [22]. This method yields a sequence
of nested partitions of the dataset that can be represented
by a tree with root at the coarsest, single cluster partition,
leaves at the most refined trivial partition (comprising all
singleton sets), and a vertex for each subset appearing in
any of the successively coarsened partitions that appears
as the mergers of Table 1 are imposed. Because only two
clusters are merged at each step, the resulting sequence of
nested partitions defines a binary tree, τ ∈ BTJ whose nodes
represent the clusters

C (τ ) =

|J|−1
⋃

k=0

Jk = {J} ∪

|J|−2
⋃

k=0

{A∗
k, B

∗
k} . (7)

3
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Table 1:Hierarchical Agglomerative ζ-Clustering[22]

For any given set of data points x ∈ (Rm)J and linkage

function4 ζ : (Rm)J × P(J)× P(J)→ R≥0,

• Begin with the finest partition of J , J0 =
{

{i}
}

i∈J
.

• For every k ∈ [0, |J | − 1), merge two blocks of Jk
with the minimum linkage value,5

(A∗
k, B

∗
k) = arg min

A6=B∈Jk

ζ(x;A,B) , (9a)

Jk+1 = {A∗
k ∪B

∗
k} ∪ Jk \ {A

∗
k, B

∗
k} . (9b)

and whose edges represent the nesting relation, again as pre-
sented in Table 1. Hence, the set of grandchildren clusters
G(τ ) (4) of τ is given by

G(τ ) =

|J|−3
⋃

k=0

Jk =

|J|−3
⋃

k=0

{A∗
k, B

∗
k} . (8)

From this discussion it is clear that Table 1 defines a rela-
tion from datasets to trees, HACζ ⊂ (Rm)J ×BTJ . Note that
HACζ is in general not a function since there may well be
more than one pair of clusters satisfying (9a) at any stage,
k. It is, however, a multi-function: in other words, while ag-
glomerative clustering of a dataset always yields some tree,
that tree is not necessarily unique to that dataset.

2.4.1 Linkages
A linkage, ζ : (Rm)J × P(J) × P(J) → R≥0, uses the

dissimilarity of observations in the partial datasets, x|A and
x|B, to define dissimilarity between the clusters, A,B ⊆ J

and x ∈(Rm)|J| [2]. Some common examples are

ζS(x;A,B) : = min
a∈A
b∈B

d(xa, xb) , (10a)

ζC(x;A,B) : = max
a∈A
b∈B

d(xa, xb) , (10b)

ζA(x;A,B) : =
1

|A| |B|

∑

a∈A
b∈B

d(xa, xb) , (10c)

ζM (x;A,B) : = min
a∈A∪B

max
b∈A∪B

d(xa, xb) , (10d)

ζW (x;A,B) : =
|A| |B|

|A|+ |B|
‖c(x|A)− c(x|B)‖22 (10e)

for single, complete, average, minimax and Ward’s linkages,
respectively [6,22], where d and ‖.‖2 are a dissimilarity mea-
sure in Rm and the standard Euclidean norm , respectively.

A common way of characterizing linkages is through their
behaviours after merging a set of clusters. For any pairwise
disjoint subsets A,B,C of J and dataset x ∈(Rm)J , a link-
age relation between partial observations x|A ∪ B and x|C
after merging x|A and x|B are generally described by the
recurrence formula of Lance and Williams [25],

ζ(x;A∪B,C) = αAζ(x;A,C) + αBζ(x;B,C) + βζ(x;A,B)

+ γ
∣

∣ζ(x;A,C)− ζ(x;B,C)
∣

∣ , (11)

4Note that the linkage between any partial observations and
the empty set is always defined to be zero, i.e. ζ(x; I, ∅) =

ζ(x; ∅, I) = 0 for all I ⊆ J and x ∈(Rm)J .
5Note that a non-degenerate hierarcy over the leaf set J
always has |J | − 1 interior nodes [33].

Table 2: Coefficients of the recurrence formula of
[25] for some common linkages

Linkage αA αB β γ

Single 0.5 0.5 0 −0.5
Complete 0.5 0.5 0 0.5

Average |A|
|A|+|B|

|B|
|A|+|B|

0 0

Ward |A|+|C|
|A|+|B|+|C|

|B|+|C|
|A|+|B|+|C|

− |C|
|A|+|B|+|C|

0

where ζ : (Rm)J ×P(J)×P(J)→ R≥0 is a linkage function
and αA, αB , β, γ ∈ R. Table 2 lists the coefficient of (11)
for some common linkages in (10). Although the minimax
linkage ζM (10d) can not be written in the form of the re-
currence formula [6], as many other linkage functions above
it satisfies

ζM (x;A ∪B,C) ≥ min
(

ζM (x;A,C) , ζM (x;B,C)
)

, (12)

which is known as the strong reducibility property, defined
in the following paragraph.

2.4.2 Reducibility & Monotonicity

Definition 2 ( [10, 29]). For a fixed finite index set J,

a linkage function ζ : (Rm)J ×P(J)×P(J)→ R≥0 is said to
be reducible if for any pairwise disjoint subsets A,B,C of J
and set of data points x ∈(Rm)J

ζ(x;A,B) ≤ min
(

ζ(x;A,C) , ζ(x;B,C)
)

(13a)

implies

ζ(x;A ∪B,C) ≥ min
(

ζ(x;A,C) , ζ(x;B,C)
)

. (13b)

Further, say ζ is strongly reducible6 if for any pairwise dis-
joint subsets A,B,C of J and x ∈(Rm)J it satisfies

ζ(x;A ∪B,C) ≥ min
(

ζ(x;A,C) , ζ(x;B,C)
)

. (14)

The well known examples of linkages with the strong re-
ducibility property are single, complete, average and mini-
max linkages in (10) [6, 29]. Even though Ward’s linkage is
not strongly reducible, it still has the reducibility property.

A property of clustering hierarchies (of great importance
in the sequel) consequent upon the reducibility property of
linkages is monotonicity:

Definition 3 ( [22]). A non-degenerate hierarchy τ ∈

BTJ associated with a set of data points x ∈ (Rm)J is said
to be ζ-monotone if all grandchildren, I ∈ G(τ ), are more
similar to their siblings, I−τ , than are their parents, P =
Pr (I, τ ), i.e.

ζ
(

x; I, I−τ
)

≤ ζ
(

x;P, P−τ
)

. (15)

Proposition 1 ( [22]). If linkage ζ is reducible, then
a cluster hierarchy τ ∈ BTJ in the relation HACζ (i.e. re-
sulting from procedure of Table 1 applied to some dataset
x ∈(Rm)J) is always ζ-monotone.

6Although [16] refers to strong reducibility of linkages as
the reducibility property, by definition, strong reducibility
is more restrictive than reducibility of linkages.

4
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3. HOMOGENEITY
We now introduce our new notion of homogeneity and

explore its relationships to previously developed structural
properties of trees.

Definition 4. (Homogeneity) A binary hierarchy τ ∈ BTJ

associated with a set of data points x ∈ (Rm)J is locally ζ-
homogeneous at grandchild cluster I ∈ G(τ ) if the siblings,
I and I−τ , are closer to each other than to their parent’s
sibling, P−τ = Pr (I, τ )−τ ,

ζ
(

x; I, I−τ
)

≤ min
(

ζ
(

x; I, P−τ
)

, ζ
(

x; I−τ
, P

−τ
))

. (16)

A tree is ζ-homogeneous if it is locally ζ-homogeneous at
each grandchild.

A useful observation when we focus attention on reducible
linkages is:

Proposition 2. If a tree, τ ∈ BTJ associated with a set
of data points x ∈ (Rm)J , is ζ-homogeneous for a reducible
linkage ζ, then it must be ζ-monotone as well.

Proof. The result directly follows from homogeneity of
τ and reducibility of ζ.

For any grandchild cluster I ∈ G(τ ) and its parent P =
Pr (I, τ ), using (13) and (16), one can verify the result as

ζ
(
x;I,I−τ

)
≤min

(
ζ
(
x;I,P−τ

)
, ζ

(
x;I−τ,P−τ

))
≤ζ

(
x;P,P−τ

)
,(17)

where P = I ∪ I−τ .

The converse of Proposition 2 only holds for single linkage:

Proposition 3. A clustering hierarchy τ ∈ BTJ associ-
ated with a set of data points x ∈(Rm)J is ζS-monotone for
single linkage ζS (10a) if and only if it is ζS-homogeneous
as well.

Proof. The sufficiency of ζS-homogeneity of a clustering
tree for its ζS-monotonicity directly follows from Proposition
2.

The other way of implication is evident from definitions
of monotonicity (Definition 3) and single linkage ζS (10a),
i.e. for any I ∈ G(τ ) and P = Pr (I, τ ),

ζS
(
x; I, I−τ

)
≤ ζS

(
x;P,P−τ

)
, (18)

= min
(
ζS

(
x; I, P−τ

)
, ζS

(
x; I−τ , P−τ

))
, (19)

where P = I ∪ I−τ .

A major significance of homogeneity is that it is a com-
mon characteristic feature of any clustering hierarchy result-
ing from agglomerative clustering using any strong reducible
linkage:

Proposition 4. If linkage ζ is strongly reducible then
any non-degenerate hierarchy τ ∈ BTJ in the relation HACζ
(i.e. resulting from the procedure of Table 1 applied to some

dataset x ∈(Rm)J ) is ζ-homogeneous.

Proof. Let (Jk)0≤k≤|J|−1 be a sequence of nested parti-

tions of J , defining τ as in (7), resulting from agglomerative
ζ-clustering of x. Further, for 0 ≤ k ≤ |J | − 2 let (A∗

k, B
∗
k)

be a pair of clusters of Jk in (9a) with the minimum linkage
value.

For 0 ≤ k ≤ |J | − 3 and any (grandchild) cluster Ck ∈
Jk \ {A

∗
k, B

∗
k}, from (9a), we have

ζ(x;A∗
k, B

∗
k) ≤ ζ(x;A∗

k, Ck) , (20)

ζ(x;A∗
k, B

∗
k) ≤ ζ(x;B∗

k , Ck) . (21)

Now, observe that the parent’s sibling (A∗
k ∪B∗

k)
−τ of A∗

k

and B∗
k can be written as the union of elements of a subset

D of Jk \(A
∗
k, B

∗
k),

(A∗
k ∪B

∗
k)

−τ
=
⋃

D∈D

D. (22)

That is to say, the elements of D are merged in a way de-
scribed by the sequence of nested partitions(Jk)0≤k≤|J|−1 of

J such that their union finally yields (A∗
k ∪B∗

k)
−τ .

Hence, using strong reducibility of ζ and (20), one can
verify that

ζ
(

x;A∗
k,(A

∗
k ∪B

∗
k)

−τ
)

= ζ

(

x;A∗
k,
⋃

D∈D

D

)

, (23)

≥ min
D∈D

ζ(x;A∗
k, D) , (24)

≥ ζ(x;A∗
k, B

∗
k) , (25)

which, by symmetry, also holds for B∗
k ,

ζ
(

x;B∗
k ,(A

∗
k ∪B

∗
k)

−τ
)

≥ ζ(x;A∗
k, B

∗
k) . (26)

Thus, since G(τ ) =
⋃|J|−3

k=0 {A
∗
k, B

∗
k} (8), the result follows.

In particular, a critical observation for single linkage is:

Theorem 1. A non-degenerate hierarchy τ ∈ BTJ is in
the relation HACζS (i.e. results from the procedure of Table

1 applied to some dataset x ∈ (Rm)J using ζS (10a) as the
linkage) if and only if τ is ζS-homogeneous (or, equivalently,
ζS-monotone).

Proof. The sufficiency, of being a single linkage cluster-
ing hierarchy, for homogeneity is evident from Proposition
4.

To see the necessity of homogeneity, we will first prove
that if τ is ζS-homogeneous, then for any I ∈ G(τ ) and
nonempty subset Q ⊆ J \ Pr (I, τ ) the following holds

ζS
(

x; I, I−τ
)

≤ ζS(x; I,Q) . (27)

Observe that (27) states that the cost of merging any one of I
and I−τ with another cluster Q ⊆ J \Pr (I, τ ) is greater and
equal to the cost of merging I and I−τ . Then, by induction,
we conclude that τ is a possible outcome of agglomerative
single linkage clustering of x.

Let Anc (I, τ ) denote the set of ancestors of cluster I ∈
C (τ ) of τ , except the root J ,

Anc (I, τ ) : =
{

A ∈ C (τ ) \ {J}
∣

∣I ( A
}

. (28)

Using the definition of ζS (10a) and monotonicity of τ , one
can verify that for any grandchild I ∈ G(τ ) and its ancestor
A ∈ Anc (I, τ )

ζS
(

x; I, I−τ
)

≤ ζS
(

x;A,A
−τ
)

≤ ζS
(

x; I,A−τ
)

. (29)

Now observe that the global complement of Pr (I, τ ) can be
written as

J \ Pr (I, τ ) =
⋃

A∈Anc(I,τ)

A
−τ

. (30)

5
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As a result, combining (29) and (30) yields

ζS(x; I, J \ Pr (I, τ )) = ζS



x, I,
⋃

A∈Anc(I,τ)

A
−τ



 (31)

= min
A∈Anc(I,τ)

ζS
(

x; I ;A−τ
)

(32)

≥ ζS
(

x; I, I−τ
)

, (33)

from which one can conclude (27) for single linkage ζS.
Finally, using a proof by induction, the result of the the-

orem can be shown as follows:

• (Base Case) if I, I−τ ∈ C (τ ) are singleton clusters,
then, since they satisfy (27), they can be merged at an
appropriate step of the agglomerative clustering when
the minimum cluster distance is equal to ζS

(

x; I, I−τ
)

.

Note that, due to (27), neither I nor I−τ can be merged
with any other cluster Q ⊆ J \Pr (I, τ ) at a lower link-
age value than ζS

(

x; I, I−τ
)

.

• (Induction) Otherwise, suppose that I and I−τ are al-
ready constructed since their children also satisfy (27)
and, by monotonicity, children {IL, IR} = Ch(I, τ ) of I
satisfies ζS(x; IL, IR) ≤ ζS

(

x; I, I−τ
)

as do children of

I−τ . Thus, since clusters I and I−τ satisfy (27), they
can be directly aggregated when the merging cost, i.e.
the value of minimum cluster distance in (9a), reaches
ζS
(

x; I, I−τ
)

.

4. ANYTIME HIERARCHICAL CLUSTER-
ING

Given a choice of linkage, ζ : (Rm)J ×P(J)×P(J)→ R≥0,
Table 3 presents the formal specification of our central con-
tribution, the associated Anytime Hierarchical ζ-Clustering
method. Once again, this method defines a new relation
from datasets to hierarchies, AHCζ ⊂ (Rm)J × BTJ that is
generally not a function but rather a multi-function (i.e. all
datasets yield some hierarchy, but not necessarily a unique
one).

Because the procedure defining AHCζ in Table 3 does not
entail any obvious gradient-like greedy step as do many pre-
viously proposed iterative clustering methods, demonstrat-
ing that it terminates requires some analysis that we now
present.

4.1 Proof of Convergence
For any non-degenerate hierarchy τ ∈ BTJ associated

with a set of data points x ∈ (Rm)J and a linkage func-
tion ζ, we consider the sum of linkage values as an objective
function to assess the quality of clustering,

Hx,ζ(τ ) : =
1

2

∑

I∈C(τ)

ζ
(

x; I, ILC
)

. (36)

Intuitively, one might expect that hierarchical agglomerative
clustering methods yield clustering hierarchies minimizing
(36). However, they are generally known to be step-wise
optimal greedy methods [16] with an exception that single
linkage clustering always returns a globally optimal cluster-
ing tree in the sense of (36) due to its close relation with
a minimum spanning tree of the data set [17]. In contrast,

Table 3: Anytime Hierarchical ζ-Clustering

For any given clustering hierarchy τ ∈ BTJ associated
with a set of data points x ∈(Rm)J , and linkage function

ζ : (Rm)J × P(J)× P(J)→ R≥0,

1. If τ is ζ-homogeneous, then terminate and return τ .

2. Otherwise,

(a) Find a grandchild cluster I ∈ G(τ ) at which τ
violates local homogeneity, i.e.

ζ
(
x; I, I−τ

)
>min

(
ζ
(
x;I,P−τ

)
, ζ

(
x;I−τ,P−τ

))
, (34)

where P = Pr (I, τ ).

(b) Then perform an NNI restructuring on τ at
grandchild G∗ ∈ Ch(P, τ ) with the maximum
dissimilarity to P−τ , i.e. swap G∗ with P−τ ,

G
∗ = arg max

G∈Ch(P,τ)

ζ
(

x;G, P
−τ
)

, (35a)

τ ← NNI(τ,G∗) , (35b)

and go to Step 1.

for example, as witness to the general sub-optimality of ag-
glomerative clustering relative to (36), for Ward’s linkage
ζW (10e) Hx,ζW is constant and equal to the sum of squared
error of x (see Appendix A), i.e. for any τ ∈ BTJ

Hx,ζW (τ ) =
∑

i∈J

‖xi − c(x|J)‖22 , (37)

where c(x|J) (1) denotes the centroid of x|J .

Let (σ, τ ) be a pair of NNI-adjacent (Definition 1) hierar-
chies in BTJ and(A,B,C) be the NNI-triplet (Lemma 1) of
common clusters of σ and τ . Recall that A∪B ∈ C (σ)\C (τ )
and B ∪ C ∈ C (τ ) \ C (σ) are only unshared clusters of σ
and τ , respectively. Hence, one can write the change in the
objective function Hx,ζ (36) after the NNI transition from
σ to τ as

Hx,ζ(τ )−Hx,ζ(σ)=ζ(x;B,C)+ζ(x;B∪C,A)

−ζ(x;A,B)−ζ(x;A∪B,C) . (38)

Here we find it useful to define a new class of linkages:

Definition 5. A linkage ζ : (Rm)J ×P(J)×P(J)→ R≥0

is NNI-reducible if for any set of data points x ∈(Rm)J and
pairwise disjoint subsets A,B,C of J

ζ(x;B,C) ≤ min
(

ζ(x;A,B) , ζ(x;A,C)
)

. (39a)

implies

min

(
ζ(x;A,B)+ζ(x;A∪B,C),
ζ(x;A,C)+ζ(x;A∪C,B)

)

≥ζ(x;B,C)+ζ(x;B∪C,A). (39b)

Using (10), (11) and Table 2 one can verify that single, com-
plete, minimax and Ward’s linkages are examples of NNI-
reducible linkages. Note that a reducible linkage is not neces-
sarily NNI-reducible; for instance, average linkage ζA (10c).

We now proceed to investigate the termination of anytime
hierarchical clustering for NNI-reducible linkages:

Lemma 2. For any set of data points x ∈ (Rm)J and
NNI-reducible linkage ζ, the value of objective function Hx,ζ

6



ESE Technical Report - June 26, 2018

(36) is nonincreasing at each iteration of anytime hierarchi-
cal clustering in Table 3 from any initial hierarchy σ ∈ BTJ

towards τ ∈ BTJ ,

Hx,ζ(τ )−Hx,ζ(σ) ≤ 0. (40)

Proof. If σ is ζ-homogeneous, then τ = σ, and so the
result directly follows.

Otherwise, let (A,B,C) be the NNI-triplet (Lemma 1) as-
sociated with (σ, τ ). Recall that A ∪ B ∈ C (σ) \ C (τ ) and
B∪C ∈ C (τ )\C (σ). To put it another way, anytime hierar-
chical clustering performs an NNI move on σ at grandchild
A ∈ G(τ ) towards τ , and so

ζ(x;A,B) > ζ(x;B,C) , (41)

ζ(x;A,C) ≥ ζ(x;B,C) . (42)

Therefore, since ζ is NNI-reducible (Definition 5), the change
in the objective function Hx,ζ (38) is nonnegative,

Hx,ζ(τ )−Hx,ζ(σ) ≤ 0, (43)

which completes the proof.

Theorem 2. If ζ is an NNI-reducible linkage, then it-
erated application of the Anytime Hierarchical ζ-Clustering
procedure of Table 3 initiated from any hierarchy in BTJ for
a fixed set of data points x ∈(Rm)J must terminate in finite
time at a tree in BTJ , that is ζ-homogeneous.

Proof. For a fixed finite index set J , the number of non-
degenerate hierarchies in BTJ (5) is finite. Hence, for the
proof of theorem, we shall show that the anytime clustering
procedure in Table 3 can not yield any cycle in BTJ .

Let τk ∈ BTJ denote a clustering hierarchy visited at
k-th iteration of anytime clustering method, where k ≥ 0.
Since τk and τk+1 are NNI-adjacent, let

(

Ak, Bk, Ck
)

be

the associated NNI-triplet (Lemma 1) of the pair
(

τk, τk+1
)

satisfying Ak ∪ Bk ∈ C
(

τk
)

\ C
(

τk+1
)

and Bk ∪ Ck ∈

C
(

τk+1
)

\ C
(

τk
)

. Further, recall from Lemma 2 that for

any NNI-reducible linkage ζ, Hx;ζ

(

τk+1
)

−Hx;ζ

(

τk
)

≤ 0.

If Hx;ζ

(

τk+1
)

− Hx;ζ

(

τk
)

< 0, it is clear that anytime
clustering method never revisits any previously visited clus-
tering hierarchy.

Otherwise, Hx;ζ

(

τk+1
)

= Hx;ζ

(

τk
)

, we have

ζ
(

x;Ak,Bk
)

+ζ
(

x;Ak∪Bk,Ck
)

=ζ
(

x;Bk,Ck
)

+ζ
(

x;Bk∪Ck,Ak
)

,(44)

ζ
(

x;Ak,Bk
)

>ζ
(

x;Bk,Ck
)

, (45)

where the later is due to the anytime clustering rule in
Table 3. Hence, the construction cost of (grand)parent P k =
Ak ∪Bk ∪ Ck increases after the NNI move,

ζ
(

x;Ak ∪B
k
, C

k
)

< ζ
(

x;Bk ∪ C
k
, A

k
)

. (46)

Now, let ℓτ (I) denote the level of cluster I ∈ C (τ ) of
τ ∈ BTJ which is equal to the number of ancestors of I in
τ ,

ℓτ (I) : =
∣

∣

{

A ∈ C (τ )
∣

∣I ⊆ A
}
∣

∣ , (47)

and define L(τ ) to be an ordered (|J | − 1)-tuple of sum of
linkages of τ at each level,

L(τ ) : =
(

fτ (t)
)

1≤t≤|J|−1
,

=
(

fτ (1) , fτ (2) , . . . , fτ (|J | − 1)
)

, (48)

where a binary hierarchy over leaf set J might have at most
|J | − 1 levels, and

fτ (t) : =
1

2

∑

I∈C(τ)
ℓτ(I)=t

ζ
(

x; I, I−τ
)

. (49)

Note that if there is no cluster at level t of τ , then we set
fτ (t) = 0.

Have (|J |−1)-tuples of real numbers ordered lexicograph-
ically according to the standard order of reals. Then, since
NNI transition from τk to τk+1 might only change link-
ages between clusters below (grand)parent cluster P k =
Ak ∪Bk ∪ Ck, using (46), one can conclude that

L
(

τ
k
)

< L
(

τ
k+1
)

. (50)

Thus, it is also impossible to visit the same clustering hi-
erarchy at the same level of objective function Hx,ζ , which
completes the proof.

Even though average linkage ζA (10c) is not NNI-reducible,
as shown in Appendix B, anytime hierarchical clustering
based on average linkage still has the finite time termina-
tion property.

4.2 A Brief Discussion of Computational
Properties

Complexity analysis of any recursive algorithm will nec-
essarily engage two logically independent questions: (i) how
many iterations are required to convergence; and (ii) what
computational cost is incurred by application of the recur-
sive function at each step along the way? Accordingly, in
this section we address this pair of question in the context
of the anytime hierarchical clustering algorithm of Table 3.
Specifically we : (i) discuss (but defer to a subsequent pa-
per a complete treatment of) the problem of determining
bounds on the number of iterations of anytime clustering;
and (ii) present explicit bounds on the computational cost
of checking whether a cluster hierarchy violates local homo-
geneity at a given cluster (node) of tree or not. Prior work on
discriminative comparison of non-degenerate hierarchies [4]
and the results of experimental evaluation in Section 5 hint
at a bound on the number of iterations (i) that is O

(

n2
)

with the dataset cardinality, n. We leave a comprehensive
detailed study of algorithmic complexity of anytime hierar-
chical clustering to a future discussion of specific implemen-
tations. However, we still find it useful to give a brief idea
of the computational cost incurred by the determination of
tree homogeneity with respect to a number of commonly
used linkages.

A straightforward implementation to check (ii) local ho-
mogeneity of a clustering hierarchy at any cluster with re-
spect to any linkage function in (10) generally has time com-
plexity of O

(

n2
)

with the dataset size, n, with an exception
that local homogeneity of a clustering tree relative to Ward’s
linkage can be computed in linear, O(n), time.

Alternatively, following the CF(Clustering Feature) tree
of BIRCH [41], a simple tree data structure can be used
to store sufficient statistics, such as cluster sizes, means and
variances, of a clustering hierarchy associated with a dataset.
Such a data structure can be constructed in linear time, with
the dataset size, using a post-order traversal of a clustering
tree and the following recursion of cluster sizes, means and
variances. For any x ∈(Rm)J and disjoint subsets A,B ⊆ J
of a finite index set J , the sufficient statistics of x|A∪B can

7



ESE Technical Report - June 26, 2018

Table 4: Determining Local Homogeneity of a Clus-
tering Hierarchy at any Cluster

Linkage Single Complete Average Ward9 Minimax
Average9

with
(52)or(54)

Complexity O
(
n2

)
O
(
n2

)
O
(
n2

)
O(1) O

(
n2

)
O(1)

n: the number of data points

be written in terms of the sufficient statistics of x|A and x|B
as follows:7

|A ∪ B|= |A|+ |B| , (51a)

c(x|A∪B)= |A|
|A|+|B|

c(x|A)+ |B|
|A|+|B|

c(x|B), (51b)

v(x|A∪B)=
|A|

|A|+|B|
v(x|A)+

|B|
|A|+|B|

v(x|B)

+ |A||B|

(|A|+|B|)2

∥
∥c(x|A)−c(x|B)

∥
∥2

2
, (51c)

where for any I ⊆ J c(x|I)(1) and v(x|I)(2) denote the
centroid and variance of x|I , respectively. Note that any
singleton cluster i ∈ C (τ ) has |i| = 1, c(x|i) = xi and
v(x|i) = 0. Also, note that after an NNI restructuring of
a clustering tree, the data structure keeping cluster sizes,
means and variances can be updated in constant time using
(51). Therefore, given the sufficient statistics, local homo-
geneity of a clustering hierarchy at any cluster with respect
to Ward’s linkage can be determined in constant time.

To demonstrate another computationally efficient setting
of anytime hierarchical clustering, consider the squared Eu-
clidean distance as a dissimilarity measure, i.e. for any
x, y ∈ Rm

d(x, y) = ‖x− y‖22 . (52)

As shown in Appendix C, for any x ∈ (Rm)J and disjoint
subsets A,B ⊆ J , the average linkage ζA (10c) between par-
tial patterns x|A and x|B, based on the squared Euclidean
distance, can be rewritten in terms of sufficient statistics of
x|A and x|B as 8

ζA(x;A,B)=v(x|A) + v(x|B) + ‖c(x|A)− c(x|B)‖22 . (53)

Therefore, as in the case of Ward’s linkage, given the suffi-
cient statistics of a clustering hierarchy its local homogene-
ity at any cluster with respect to average linkage with the
squared Euclidean distance (52) can be determined in con-
stant time.

A similar computational improvement for average linkage
is also possible with the cosine dissimilarity — another com-
monly used dissimilarity, in information retrieval and text
mining [34]: for any x,y ∈ Rm,

d(x, y) = 1−
x · y

‖x‖2 ‖y‖2
, (54)

where · denote the Euclidean dot product. For any dataset of

unit length vectors x ∈
(

Sm−1
)J

and disjoint subsets A,B ⊆
J , the average linkage ζA (10c) between x|A and x|B, based
on the cosine dissimilarity, is given by

ζA(x;A,B) = 1− c(x|A) · c(x|B) . (55)

7A slightly different form of (51) is known as the additivity
theorem of CF trees of [41].
8This is generally known as the “bias-variance” decomposi-
tion of squared Euclidean distance [21].
9Assuming the availability of sufficient statistics.

Table 4 briefly summaries the discussion on computational
complexity of the determination of local homogeneity of a
clustering hierarchy at any cluster.

4.3 Application: Incremental Clustering
As an application of anytime clustering, given a choice

of linkage ζ, we now propose an incremental hierarchical
clustering method consisting of the following steps: (i) insert
a new data point to existing clustering hierarchy based on
a specific tree traversal and local homogeneity criterion as
described in Table 5, and then (ii) apply anytime clustering
of Table 3 to obtain a homogeneous clustering hierarchy of
the updated data set with respect to ζ.

Table 5: Incremental Hierarchical ζ-Clustering:
Data Insertion Using Local Homogeneity

Let τ ∈ BTJ be a clustering hierarchy associated with a
set of data points x ∈(Rm)J and ζ be a linkage function.
Let i 6∈ J denote the label of a new data point xi ∈ Rm

to be inserted, and Ĵ = J ∪ {i} and x̂ = (xj)j∈Ĵ
be

the updated index and data sets after data insertion,
respectively.
To insert xi into the existing clustering hierarchy τ asso-
ciated with x:

1. Start with K = J .

2. For {KL,KR} = Ch(K, τ ),

(a) If ζ(x̂;KL,KR)≤min
(
ζ(x̂;KL,{i}), ζ(x̂;KR,{i})

)
,

then5 attach leaf i as the sibling of K in the
new clustering tree τ̂ ∈ BTĴ .

(b) Otherwise, set K=arg minD∈Ch(K,τ) ζ(x̂;D, {i}),
and go to step 2.

Note that, given the linkage values of a clustering hierar-
chy, for any linkage function satisfying the recurrence for-
mula (11) of Lance and Williams [25] a data insertion, de-
scribed in Table 5, can be performed in linear, O(n), time
with the dataset size, n. This follows because the linkage
distance between the new data point and clusters of an ex-
isting hierarchy can be efficiently computed in linear time
using a post-order traversal of the clustering hierarchy and
(11).

5. EXPERIMENTAL EVALUATION
This section presents a preliminary comparative numerical

study of three different hierarchical clustering methods using
both simulated and real datasets. We compare: (a) the
standard agglomerative batch method (HACζ , Table 1); with
(b) the new anytime method (AHCζ , Table 3) and (c) its
specialization to the incremental “data insertion” problem
setting (IHCζ ,Table 5).

5.1 Datasets
Very high dimensional and sparse data sets generally have

simple structure and, specifically, are known to tend toward
ultrametricity11 with the increasing dimensionality and/or

11A metric d : X ×X → R≥0 is said to be a ultrametric if it
satisfies the strong triangle inequality, i.e. for any x, y, z ∈
X, d(x, y) ≤ max(d(x, z) , d(z, y)).

8
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Figure 3: Average number of iterations of anytime
(left) and incremental (right) hierarchical cluster-
ings of simulated data points. Shaded regions illus-
trate the sample variance for the single linkage.13

sparsity [30]. In this context, the fact that a monotone clus-
tering hierarchy associated with a dataset defines an ultra-
metric between data points (as we will briefly review in the
next section) [11], motivates the intuition that hierarchical
methods may enjoy particular efficacy in clustering problems
involving high dimensional and sparse data. In the following
preliminary study we will compare the results of hierarchi-
cal clustering on a low dimensional synthetic dataset and a
higher dimensional dataset of physical origin. In both cases
we will use a validation measure (introduced below) that
quantifies the loss of information incurred by approximating
the underlying pairwise dissimilarities between points with
the coarsened measure arising from the ultrametric induced
by the resulting cluster hierarchy.

A challenging dataset for any hierarchical clustering method
consists of uniformly distributed low dimensional data points.
We generate our synthetic data by uniformly sampling the
planar unit cell, [0, 1] × [0, 1], thereby generating similar
populations of varied cardinality. In contrast, for real data
points, we use the MNIST collection of handwritten digits,
where each data sample is a black and white 28×28 image of
a human produced numeral [26]. We generate test datasets
of varied size by randomly sampling an equal number of im-
ages for each digit in the MNIST dataset.

5.2 Validation Measure
To evaluate the accuracy and effectiveness of different hi-

erarchical clustering methods, we use the cophenetic cor-
relation coefficient — a widely accepted validation crite-
rion that measures how well a clustering hierarchy preserves
the underlying pairwise dissimilarities between points in a
dataset [37]. In order to interpret this criterion we find
it helpful to briefly review the manner in which a mono-
tone hierarchy induces an ultrametric between points in a
dataset [11].

For any set of data points x ∈ (Rm)J and a clustering
hierarchy τ ∈ BTJ associated with x and a linkage ζ, let
D(x) ∈ RJ × RJ and Uτ (x) ∈ RJ × RJ denote the original
distance matrix of x and induced ultrametric of τ , respec-
tively. Namely, for any I ∈ C (τ ), i ∈ I and j ∈ I−τ

D(x)ij = ‖xi − xj‖2 , (56)

Uτ (x)ij = ζ
(

x; I, I−τ
)

, (57)

13To prevent cluttered figures and give some idea of how the
sample variance changes with the cardinality of dataset, we
only include the results for single linkage .
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Figure 4: Average number of iterations of anytime
(left) and incremental (right) hierarchical cluster-
ings for the MNIST dataset. Shaded regions illus-
trate the sample variance for the single linkage.13

and for any i ∈ J set D(x)ii = U(τ )ii = 0. The cophenetic
correlation coefficient between D(x) and Uτ (x) is defined
as

ρc =

∑

i,j∈J

(

Dij −D
)(

Uij −U
)

√

∑

i,j∈J

(

Dij −D
)2
√

∑

i,j∈J

(

Uij −U
)2

, (58)

where D and U denote the average of the elements of D and
U, respectively, i.e. D = 1

|J|2

∑

i,j∈J
Dij .

Finally, it is useful to note that Ward’s linkage ζW (10e)
quantifies the change in the sum of squared error after merg-
ing clusters [38], and so ζW and the standard Euclidean
norm do not have the same units. To resolve this unit mis-
match, for any clustering hierarchy τ resulting from hierar-
chical clustering of x based on Ward’s linkage ζW we find
it convenient to use average linkage ζA (10c) to define the
induced dissimilarity U(τ ) of τ .

5.3 Preliminary Numerical Results
Using an empirical evaluation of anytime and incremen-

tal hierarchical clustering methods we aim to statistically
explore: (1) the number of iterations of anytime and incre-
mental clusterings, and (2) their effectiveness compared to
the traditional agglomerative clustering methods.

As expected, the number of iterations to homogeneous ter-
mination of any anytime clustering depends strongly on the
initial conditions (i.e, the initial pair of dataset and tree). To
challenge the proposed clustering method, we always start
anytime clustering of a dataset at a random initial clus-
tering hierarchy uniformly sampled from the space of non-
degenerate hierarchies [36]. To give some preliminary idea
of performance as a function of data size we run the vari-
ous methods on datasets of cardinality 10, 20, . . . , 100, and
report statistics from the results of 1000 different randomly
selected pairings of initial data set and tree using both syn-
thetic and real data collections generated as described in
Section 5.1.

For each linkage function discussed in Section 2.4.1, Fig-
ure 3 and Figure 4 present the average number of iterations
of anytime and incremental clusterings versus the dataset
size. Regardless of linkage and size, incremental clustering
generally requires an order of magnitude fewer iterations
than does anytime clustering. This is a consequence of our
experimental design whereby anytime clustering is always
initialized from a random clustering tree while incremental
clustering takes the advantage of local homogeneity for ef-
fective insertion of a new datum into an existing clustering

9
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Figure 5: Average cophenetic correlation coefficient for agglomerative (left), anytime (middle) and incremen-
tal (right) hierarchical clusterings of simulated data points. Shaded regions illustrate the sample variance for
the single linkage.13
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Figure 6: Average cophenetic correlation coefficient for agglomerative (left), anytime (middle) and incremen-
tal (right) hierarchical clusterings for the MNIST dataset. Shaded regions illustrate the sample variance for
the single linkage.13

tree. The next clearest pattern that emerges from these fig-
ures is that the number of iterations for both anytime and
incremental clustering methods seems to grow quite differ-
ently for single linkage (where it appears quadratic in the size
of the dataset) than for other familiar linkages (relative to
which these preliminary statistics are not inconsistent with
linear growth) - but more exploration with larger cardinal-
ity datasets will be required before more specific conjectures
are possible.

Figure 5 and Figure 6 illustrate how cophenetic corre-
lation coefficient (58) changes with the dataset size for ag-
glomerative, anytime and incremental hierarchical clustering
methods. Recall from Theorem 1 that a clustering hierar-
chy resulting from agglomerative single linkage clustering of
a dataset is uniquely characterised by its homogeneity rela-
tive to single linkage. Hence, it must be the case (as is indeed
reflected in these figures) that the clustering performance of
single linkage clustering is the same for all agglomerative,
anytime and incremental methods. Here, assuming the re-
sults of agglomerative clustering as the ground truth, any-
time and incremental clusterings using complete and mini-
max linkages is observed to perform relatively poorly, which
is probably due to their overestimation of cluster dissimilar-
ities. On the other hand, for average and Ward’s linkages
anytime and incremental hierarchical clusterings perform as
well as agglomerative clustering. Further, as expected, in-
cremental clustering generally performs better than anytime
clustering since it uses local homogeneity to properly insert
each new data point and calls anytime clustering starting at
a clustering tree which is far better than a random hierar-

chy. Finally, one can notice that the clustering performance
of all hierarchical methods is better on real datasets than
synthetic datasets, which is likely due to increased dimen-
sionality and sparsity of data as discussed in Section 5.1.

6. CONCLUSIONS
In this paper, we introduce a new homogeneity criterion

(Definition 4), for a clustering tree associated with a data
set applicable to a reasonably broad subclass of the familiar
linkage functions. We show that homogeneity is a charac-
teristic property of trees resulting from any such standard
(linkage based) hierarchical clustering methods (Proposition
4). In particular, homogeneity uniquely characterizes the
single linkage clustering tree of a data set (Theorem 1).

We propose an anytime hierarchical clustering method in
Table 3 that iteratively transforms any initial clustering hi-
erarchy into a homogeneous clustering tree of a dataset rela-
tive to a user-specified linkage function. For the subclass of
linkages (specified in Definition 5 — including single, com-
plete, minimax and Ward’s linkages) we demonstrate that
this iterative clustering procedure must terminate in finite
time (Theorem 2). Finally , we discuss certain settings for
computationally efficient anytime clustering and describe an
incremental hierarchical clustering method based on local
homogeneity of cluster trees and anytime clustering.

The“anytime”nature of our method enables users to choose
between accuracy and efficiency. In contrast to batch meth-
ods, any intermediate stage of anytime hierarchical clus-
tering returns a valid clustering tree and incrementally im-
proves the homogeneity at each iteration. Thus, at any time
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a user can stop clustering and continue it later with or with-
out updating the data set. Further, since our method is
based on local tree restructuring (the familiar NNI-walk,
Definition 1 [28, 33]), it provides an opportunity for dis-
tributed/parallel implementation and reactive tracking. The
experimental evaluation of sample anytime and incremental
hierarchical clustering approaches suggested by these new
ideas suggests their value relative to the standard “batch”
methods.

Work is presently in progress to establish bounds on the
number of iterations of anytime and incremental hierarchical
clustering methods, and to develop specific implementations
for efficient computation of anytime clustering. In the longer
term, we believe these ideas will extend to a randomized
algorithm for anytime single linkage clustering as well as to
settings where simultaneous distance metric learning must
take place in parallel with the hierarchical clustering process.
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APPENDIX

A. SUM OF WARD’S LINKAGES & SUM OF
SQUARED ERROR

Although sums of linkage values Hx,ζ (36) of distinct clus-
tering hierarchies associated with a set of data points x ∈
(Rm)J and a linkage function ζ generally differ, Hx,ζW is
constant for Ward’s linkage ζW (10e):

Lemma 3. The sum of linkage values Hx,ζW (36) of any

clustering hierarchy associated with a data set x ∈ (Rm)J

and Ward’s linkage ζW (10e) is constant and equal to the
sum of squared errors of x, i.e. for any τ ∈ BTJ

Hx,ζW (τ ) = SSE(x) , (59)

where

SSE(x) : =
∑

i∈J

‖xi − c(x|J)‖22 . (60)

Proof. Recall from [22,38] that Ward’s linkage quantifies
the change in the sum of squared errors after merging a
group of data points, i.e. for any x ∈ (Rm)J and disjoint
subsets A,B ⊆ J

ζW (x;A,B) = SSE(x|A∪B)−SSE(x|A)−SSE(x|B). (61)

Let τ ∈ BTJ be a binary hierarchy with the root split
{JL, JR} = Ch(J, τ ). Proof by induction.

• (Base Case) if |J | = 2, then there is only one clustering
hierarchy τ ∈ BT[2], i.e.

∣

∣BT[2]

∣

∣ = 1. Note that τ
only has one Ward’s linkage joining two data points of
x =(x1, x2) whose value equals to the sum of squared
errors of x,

Hx,ζW (τ ) = ζW (x; {1} , {2}) =
1

2
‖x1 − x2‖

2
2 , (62)

=
∑

i∈{1,2}

‖xi − c(x| {1, 2})‖22 = SSE(x). (63)

• (Induction) Let τL and τR denote the subtrees of τ

rooted at JL and JR, respectively. Suppose that

H
x|JL,ζW

(τL) = SSE(x|JL) , (64)

H
x|JR,ζW

(τR) = SSE(x|JR) . (65)

Note that if any of subtrees only has one leaf, e.g.
|JL| = 1 , then we set the associated sum of linkage
values to zero, H

x|JL,ζW
(τL) = 0.

Hence, using (61), one can obtain the result as follows:

Hx,ζW(τ )=H
x|JL,ζW

(τL)+H
x|JR,ζW

(τR)+ζW(x;JL,JR), (66)

=SSE(x|JL)+SSE(x|JR) + ζW(x;JL,JR), (67)

=SSE(x) . (68)

B. TERMINATION ANALYSIS FOR
AVERAGE LINKAGE

Lemma 4. Iterated application of Anytime Hierarchical
ζA-Clustering procedure in Table 3 initiated from any clus-
tering tree in BTJ for a fixed set of data points x ∈ (Rm)J

terminates in finite time at a clustering hierarchy in BTJ

that is homogeneous relative to average linkage ζA (10c).

Proof. As in the proof of more general result in Theorem
2, we shall show that the anytime clustering rule does not
cause any cycle in BTJ before terminating at a structurally
homogeneous clustering hierarchy. Consequently, the finite
time termination of the anytime clustering method is simply
due to finiteness of tree space BTJ (5).

Let S(τ ) denote the ordered set of linkage values of a
binary clustering hierarchy τ ∈ BTJ associated with x and
ζA in ascending order, i.e.

S(τ ) : =
(

ζA
(

x; I, I−τ
)

)

I∈C(τ)
, (69)

S(τ )
i
≤ S(τ )

j
, ∀ 1 ≤ i ≤ j ≤ 2 |J | − 1, (70)

12
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where S(τ ) =
(

S(τ )1, S(τ )2, . . . , S(τ )2|J|−1

)

and note that

the number of clusters of a binary tree over leaf set J is
2 |J |−1 [35]. Further, have the set of (2 |J | − 1)-tuple of real
numbers ordered lexicographically according to the standard
order of reals.

Let τk ∈ BTJ be a clustering hierarchy visited at k-th
iteration of anytime hierarchical clustering of x, where k ≥
0. To prove the result, we shall show the following

S
(

τ
k
)

> S
(

τ
k+1
)

. (71)

Since τk and τk+1 are NNI-adjacent, let
(

Ak, Bk, Ck
)

be

the NNI-triplet (Lemma 1) associated with the pair of
(

τk, τk+1
)

.

Recall that Ak ∪ Bk ∈ C
(

τk
)

\ C
(

τk+1
)

and Bk ∪ Ck ∈

C
(

τk+1
)

\ C
(

τk
)

.

Note that after the NNI transition from τk to τk+1 two el-
ements of S

(

τk
)

, ζA
(

x;Ak,Bk
)

and ζA
(

x;Ak∪Bk,Ck
)

, are re-

placed by another two reals, ζA
(

x;Bk, Ck
)

and ζA
(

x;Bk∪Ck,Ak
)

,

to yield S
(

τk+1
)

.
By construction of the anytime clustering rule, we have

ζA

(

x;Ak
, B

k
)

> ζA

(

x;Bk
, C

k
)

, (72)

ζA

(

x;Ak
, C

k
)

≥ ζA

(

x;Bk
, C

k
)

, (73)

and, using the definition of average linkage (10c), one can
verify that

ζA

(

x;Ak ∪B
k
, C

k
)

≥ ζ
(

x;Bk
, C

k
)

. (74)

If ζA
(

x;Ak ∪Bk, Ck
)

> ζA
(

x;Bk, Ck
)

, then it is clear
from (72) and (10c) that

min
(

ζA

(

x;Ak,Bk
)

, ζA

(

x;Ak∪Bk,Ck
))

>ζA

(

x;Bk ,Ck
)

, (75)

=min
(

ζA

(

x;Bk,Ck
)

, ζA

(

x;Bk∪Ck,Ak
))

. (76)

Otherwise
(

ζA
(

x;Ak ∪Bk, Ck
)

= ζA
(

x;Bk, Ck
))

, by def-

inition (10c), we have ζA
(

x;Bk, Ck
)

= ζA
(

x;Ak, Ck
)

, and

so ζA
(

x;Ak, Bk
)

> ζA
(

x;Bk ∪ Ck, Ak
)

.
In overall, the minimum of changed linkage values at each

iteration of anytime clustering strictly decreases, which proves
(71) and completes the proof.

C. SPECIAL CASES OF AVERAGE LINK-
AGE

We now consider certain settings of average linkage ζA
(10c) that enables efficient computation of linkage values
of a clustering hierarchy and its restructuring during online
clustering.

Consider the squared Euclidean distance as a dissimilarity
measure of a pair of data points, i.e. for any x, y ∈ Rm

d(x, y) = ‖x− y‖22 . (77)

For any x ∈
(

Rd
)J

and disjoint subsets A,B ⊆ J , the aver-
age linkage ζA (10c) between partial patterns x|A and x|B,

based on the squared Euclidean distance, is

ζA(x;A,B)=
1

|A| |B|

∑

a∈A
b∈B

d(xa, xb)=
1

|A| |B|

∑

a∈A
b∈B

‖xa−xb‖
2
2, (78)

=
1

|A| |B|

∑

a∈A
b∈B

‖xa − c(x|B) + c(x|B)− xb‖
2
2 . (79)

After expanding the norm, (79) simplifies to

ζA(x;A,B)=
1

|A|

∑

a∈A

‖xa−c(x|B)‖22+
1

|B|

∑

b∈B

‖xb−c(x|B)‖22,(80)

=
1

|A|

∑

a∈A

‖xa−c(x|A)+c(x|A)−c(x|B)‖22+v(x|B). (81)

Using a similar trick on (81), one can conclude that the
value of average linkage between x|A and x|B is a simple
function of their centroids and variances, 14

ζA(x;A,B)=v(x|A) + v(x|B) + ‖c(x|A)− c(x|B)‖22 . (82)

where for any I ⊆ J c(x|I)(1) and v(x|I)(2) denote the
centroid and variance of x|I , respectively.

A similar computational improvement for average linkage
is also possible with the cosine dissimilarity — another com-
monly used dissimilarity, in information retrieval and text
mining [34]: for any x,y ∈ Rm,

d(x, y) = 1−
x · y

‖x‖2 ‖y‖2
, (83)

where · denote the Euclidean dot product. For any dataset of

unit length vectors x ∈
(

Sm−1
)J

and disjoint subsets A,B ⊆
J , the average linkage ζA (10c) between x|A and x|B, based
on the cosine dissimilarity, can be rewritten as

ζA(x;A,B)=
1

|A||B|

∑

a∈A
b∈B

d(xa, xb)=
1

|A||B|

∑

a∈A
b∈B

1−
xa · xb

‖xa‖2‖xb‖2
︸ ︷︷ ︸

‖xa‖
2
=‖xb‖2=1

,

=1−
1

|A||B|

∑

a∈A
b∈B

xa · xb=1− c(x|A) · c(x|B) , (84)

which directly follows the linearity of the dot product.

D. SAMPLE VARIANCE AND MEAN
AFTER MERGING CLUSTERS

It is well know that for any x ∈
(

Rd
)J

and any disjoint
subsets A,B ⊆ J of a finite index set J , the centroid of
merged patterns x|A ∪ B is simply equal to the weighted
average, proportional to the cardinality of sets, of centroids
of partial patterns x|A and x|B,

c(x|A ∪ B) =
|A|

|A|+ |B|
c(x|A) +

|B|

|A|+ |B|
c(x|B) . (85)

Similarly, using (61), one can verify that for any disjoint

subsets A,B ⊆ J and x ∈
(

Rd
)J

, the variance of merged
patterns x|A ∪B is given by

v(x|A∪B)=
|A|

|A|+|B|
v(x|A)+

|B|

|A|+|B|
v(x|B)

+
|A| |B|

(|A|+|B|)2
∥
∥c(x|A)−c(x|B)

∥
∥2

2
. (86)

14This is generally referred to the “bias-variance” decompo-
sition of squared Euclidean distance [21].
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