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Sensor-Based Reactive Navigation in Convex Sphere Worlds

Omur Arslan and Daniel E. Koditschek

Abstract—We construct a sensor-based feedback law that
solves the real-time collision free robot navigation problem in
a compact convex Euclidean subset cluttered with separated
and strongly convex obstacles. Our algorithm introduces a novel
use of separating hyperplanes for identifying the robot’s local
obstacle free convex neighborhood, affording a piecewise smooth
continuously varied closed loop vector field whose smooth flow
brings almost all configurations in the robot’s free space to a
designated goal location, with the guarantee of no collisions along
the way. We extend these provable properties to practically mo-
tivated limited range sensing models, and the nonholonomically
constrained kinematics of the standard differential drive vehicle.

I. INTRODUCTION

Agile navigation in dense human crowds [22, 50], or in

natural forests, such as now negotiated by rapid flying [26, 41]

and legged [25, 52] robots, strongly motivates the development

of sensor-based reactive motion planners. By the term reactive

[12, 34] we mean that motion is generated by a vector field

arising from some closed loop feedback policy issuing force or

velocity commands in real time as a function of instantaneous

state. By the term sensor-based we mean that information

about the location of the environmental clutter to be avoided is

limited to structure perceived within some local neighborhood

of the robot’s instantaneous position — its sensor footprint.

In this paper, we propose a new reactive motion planner

taking the form of a feedback law for a first-order (velocity-

controlled), perfectly sensed and actuated disk robot, relative

to a fixed goal location, that can be computed using only infor-

mation about the robot’s instantaneous position and structure

within its sensor footprint. We assume the a priori unknown

environment is a static topological sphere world [30], whose

obstacles are convex and have smooth boundaries whose cur-

vature is “reasonably” high relative to their mutual separation.

Under these assumptions, the proposed closed loop vector

field is guaranteed to bring almost all initial conditions to the

desired goal. To the best of our knowledge, this is the first

time a sensor-based reactive motion planner has been shown

to be provably correct w.r.t. a general class of environments.

A. Motivation and Prior Literature on Vector Field Planners

The simple, computationally efficient artificial potential

field approach to real-time obstacle avoidance [28] incurs

topologically necessary critical points [29], which, in prac-

tice, with no further remediation often include (topologically

unnecessary) spurious local minima. Even in topologically

simple settings such as the sphere worlds addressed here,

constructions that eliminate these spurious attractors — e.g.,
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Fig. 1. Exact navigation of a disk-shaped robot using separating hyperplanes
of the robot body (red at the goal) and convex obstacles (black solid shapes).
Separating hyperplanes between the robot and obstacles define an obstacle
free convex neighborhood (the yellow region when the robot at the goal) of
the robot, and the continuous feedback motion towards the metric projection
of a given desired goal (red) onto this convex set asymptotically steers almost
all robot configurations (green) to the goal without collisions along the way.
The grey regions represent the augmented workspace boundary and obstacles,
and the arrows show the direction of the resulting vector field.

navigation functions [45], or other methods [15] — have

largely come at the price of complete prior information.

Extensions to the navigation function framework partially

overcoming the necessity of global prior knowledge of (and

consequent parameter tuning for) a topologically and metri-

cally simple environment have appeared in the last decade

[18, 35]. Sequential composition [9] has been used to cover

metrically complicated environments with convex cell-based

local potential decompositions [13] (and extended to non-

holonomically constrained finite size robots [14]), but still

necessitating prior global knowledge of the environment.

B. Contributions and Organization of the Paper

This paper abandons the smooth potential field approach

to reactive planning, achieving an algorithm that is “doubly

reactive” in the sense that not merely the integrated robot

trajectory, but also its generating vector field can be con-

structed on the fly in real time using only local knowledge of

the environment. Our piecewise smooth vector field combines

some of the ideas of sensor-based exploration [11] with those

of hybrid reactive control [13]. We use separating hyperplanes

of convex bodies [6] to identify an obstacle free convex

neighborhood of a robot configuration, and build our safe robot

navigation field by control action towards the metric projection

of the designated point destination onto this convex set. 1

1 In prior work [2], a different construction based on power diagrams
[4] is proposed for navigating among spherical obstacles using knowledge
of Voronoi-adjacent10 obstacles to construct the robot’s local workspace [2,
Eqn. (9)]. This paper introduces a new construction for that set in (7) based on
separating hyperplanes, permitting an extension of the navigable obstacles to
the broader class of convex bodies specified by Assumption 2, while providing
the same guarantee of almost global asymptotic convergence (Theorem 3)
to a given goal location. From the view of applications, the new appeal
to separating hyperplanes permits the central advance of a purely reactive
construction from limited range sensors (23), e.g., in the planar case from
immediate line-of-sight appearance (29), with the same global guarantees.
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Our construction requires no parameter tuning and requires

only local knowledge of the environment in the sense that the

robot needs only locate those proximal obstacles determining

its collision free convex neighborhood. When the obstacles

are sufficiently separated (Assumption 1 stipulates that the

robot must be able to pass in between them) and sufficiently

strongly convex at their “antipode” (Assumption 2 stipulates

that they curve away from the enclosing sphere centered at

the destination which just touches their boundary at the most

distant point), the proposed vector field generates a smooth

flow with a unique attractor at the specified goal location along

with (the topologically necessary number of) saddles — at

least one associated with each obstacle. Since all of its critical

points are nondegenerate, our vector field is guaranteed to steer

almost all collision free robot configurations to the goal, while

avoiding collisions along the way, as illustrated in Fig. 1.

It proves most convenient to develop the theoretical proper-

ties of this construction under the assumption that the robot can

identify and locate those nearby obstacles whose associated

separating hyperplanes define the robot’s obstacle free convex

neighborhood (a capability termed Voronoi-adjacent obstacle

sensing in Section III-B). Thus, to accommodate more phys-

ically realistic sensors, we adapt the initial construction (and

the proof) to the case of two different limited range sensing

modalities. Similarly, in the interest of greater practicability we

further extend the construction (and the proof) to the case of

the commonly encountered kinematic differential drive vehicle

model (retaining the convergence and collision avoidance gua-

rantees, at the necessary cost of a discontinuous feedback law).

This paper is organized as follows. Section II continues with

a formal statement of the problem at hand. Section III briefly

summarizes a separating hyperplane theorem of convex bodies,

and introduces its use for identifying collision free robot confi-

gurations. Section IV, comprising the central contribution of

the paper, constructs and analyzes the reactive vector field

planner for safe robot navigation in a convex sphere world, and

provides its more practical extensions. Section V illustrates the

qualitative properties of the proposed vector field planner using

numerical simulations. Section VI concludes with a summary

of our contributions and a brief discussion of future work.

II. PROBLEM FORMULATION

Consider a disk-shaped robot, of radius r ∈ R>0 centered at

x ∈ W, operating in a closed compact convex environment W

in the n-dimensional Euclidean space Rn, where n ≥ 2, punc-

tured with m ∈ N open convex sets O := {O1, O2, . . . , Om}
with twice differentiable boundaries, representing obstacles.2

Hence, the free space F of the robot is given by

F :=
{
x ∈ W

∣∣∣ B(x, r) ⊆ W \
⋃m

i=1 Oi

}
. (1)

where B(x, r) :=
{
q ∈ Rn

∣∣‖q− x‖ < r
}

is the open ball

centered at x with radius r, and B(x, r) denotes its closure,

and ‖.‖ denotes the standard Euclidean norm.

2 Here, N is the set of all natural numbers; R and R>0 (R≥0) denote the
set of real and positive (nonnegative) real numbers, respectively.

3Assumption 1 is equivalent to the “isolated” obstacles assumption of [45].

To maintain the local convexity of obstacle boundaries in

the free space F, we assume that our disk-shaped robot can

freely fit in between (and thus freely circumnavigate) any of

the obstacles throughout the workspace W: 3

Assumption 1 Obstacles are separated from each other by

clearance of at least d(Oi, Oj) > 2r for all i 6= j, and from the

boundary ∂W of the workspace W as d(Oi, ∂W) > 2r for all

i = 1 . . .m, where d(A,B) := inf
{
‖a− b‖

∣∣ a ∈ A, b ∈ B
}

.

Before formally stating our navigation problem, it is useful

to recall the well known topological limitation of reactive

planners: if a continuous vector field planner on a generalized

sphere world has a unique attractor, then it must have at least

as many saddles as obstacles [30]. In consequence, the robot

navigation problem that we seek to solve is stated as:

Reactive Navigation Problem. Assuming the first order (com-
pletely actuated single integrator) robot dynamics,

ẋ = u(x), (2)

find a Lipschitz continuous controller, u : F → Rn, that leaves

the robot’s free space F positively invariant and asymptotically

steers almost all configurations in F to any given goal x∗ ∈ F.

III.ENCODING COLLISIONS VIA SEPARATING HYPERPLANES

A. Separating Hyperplane Theorem

A fundamental theorem of convex sets states that any two

disjoint convex sets can be separated by a hyperplane such

that they lie on opposite sides of this hyperplane:

Theorem 1 (Separating Hyperplane Theorem [6, 51]) For any

two nonintersecting convex sets A,B ∈ Rn (i.e., A∩B = ∅),

there exists a ∈ Rn and b ∈ R such that aTx ≥ b for all

x ∈ A and aTx ≤ b for all x ∈ B.

For example, a usual choice of such a hyperplane is [6]:

Definition 1 The maximum margin separating hyperplane of
any two disjoint convex sets A,B ⊂ Rn, with d(A,B) > 0,
is defined to be

H(A,B):=
{

x∈Rn
∣
∣
∣‖x−a‖=‖x−b‖, ‖a−b‖=d(A,B), a∈A,b∈B

}

,(3)

where d(x, H(A,B)) ≥ d(A,B)
2 for all x ∈ A ∪B.

Another useful tool for finding a separating hyperplane

between a point and a convex set is metric projection:

Theorem 2 ([51]) Let A ⊂ Rn be a closed convex set and

x ∈ Rn. Then there exists a unique point a∗ ∈ A such that

a∗ = ΠA(x) := arg min
a∈A

‖a− x‖, (4)

and one has (x−ΠA(x))
T
(ΠA(x)− a) ≥ 0 for all a ∈ A.

The map ΠA(x) is called the metric projection of x onto set A.

Lemma 1 The maximum margin separating hyperplane of a

convex set A ⊂ Rn and the ball B(x, r) of radius r ∈ R>0

centered at x ∈ Rn, satisfying d(x, A) ≥ r, is given by

H(A,B(x,r))=
{
y∈Rn

∣∣∣
∥∥∥y−(Π

B(x,r)
◦ΠA)(x)

∥∥∥=‖y−ΠA(x)‖
}
,(5)

where (Π
B(x,r) ◦ΠA)(x) = x− r

x−Π
A
(x)

‖x−Π
A
(x)‖

.
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Proof: See Appendix I-A.

A common application of separating hyperplanes of a set

of convex bodies is to discover their organizational structure.

For instance, to model its topological structure, we define

the generalized Voronoi diagrams V = {V1, V2, . . . , Vm} of a

convex environment W in Rn populated with disjoint convex

obstacles O = {O1, O2, . . . , Om} (i.e., d(Oi, Oj)>0 ∀i 6= j),

based on maximum margin separating hyperplanes, to be4 5

Vi :=
{
q∈W

∣∣∣‖q−pi‖ ≤ ‖q−pi‖, ‖pi−pj‖=d(Oi, Oj),

pi∈Oi, pj∈Oj ∀j 6= i
}
, (6)

which yields a convex cell decomposition of a subset of W

such that, by construction, each obstacle is contained in its

Voronoi cell, i.e., Oi ⊂ Vi, see Fig. 2. Note that for point

obstacles, say Oi = {pi} for some pi ∈ Rn, the generalized

Voronoi diagram of W in (6) simplifies back to the standard

Voronoi diagram of W, generated by points {p1, . . . , pm} [40].

B. The Safe Neighborhood of a Disk-Shaped Robot

Throughout the sequel, we consider a disk-shaped robot,

centered at x ∈ W with radius r ∈ R>0, moving in a

closed compact convex environment W ⊆ Rn populated with

open convex obstacles, O = {O1, O2, . . . , Om}, satisfying

Assumption 1. Since the workspace, obstacles, and the robot

radius are fixed, we suppress all mention of the associated

terms wherever convenient, in order to simplify the notation.

Using the robot body and obstacles as generators of a

generalized Voronoi diagram of W, we define the robot’s local

workspace, LW(x), illustrated in Fig. 2(left), as,6

LW(x):=

{
q∈W

∣∣∣∣
∥∥∥∥q−x+r

x−Π
Oi

(x)
∥

∥

∥
x−Π

Oi
(x)

∥

∥

∥

∥∥∥∥≤
∥∥q−ΠOi

(x)
∥∥, ∀i

}
.(7)

Note that we here take the advantage of having a disk-

shaped robot and construct the maximum margin separating

hyperplane between the robot and each obstacle using the

robot’s centroid (Lemma 1).

A critical property of the local workspace LW is:

Proposition 1 A robot placement x ∈ W\
⋃m

i=1 Oi is collision

free, i.e., x ∈ F, if and only if the robot body is contained in

its local workspace LW(x), i.e., 7

x ∈ F ⇐⇒ B(x, r) ⊆ LW(x). (8)

Proof: See Appendix I-B.

Accordingly, we define the robot’s local free space, LF(x),
by eroding LW(x), removing the volume swept along its

4Generalized Voronoi diagrams and cell decomposition methods are tradi-
tionally encountered in the design of roadmap methods [11, 34, 39]. A major
distinction between our construction and these roadmap algorithms is that the
latter typically seek a global, one-dimensional graphical representation of a
robot’s environment (independent of any specific configuration), whereas our
approach uses the local open interior cells of the robot-centric Voronoi dia-
gram to determine a locally safe neighborhood of a given free configuration.

5It seems worth noting that our use of generalized Voronoi diagrams is
motivated by another application of Voronoi diagrams in robotics for coverage
control of distributed mobile sensor networks [1, 16, 33, 44].

6Here, to solve the indeterminacy, we set x
‖x‖

= 0 whenever x = 0.
7Note that F ( W \

⋃m
i=1 Oi for a disk-shaped robot of radius r > 0.

Fig. 2. Local workspace LW (yellow) and local free space LF (green) of
a disk-shaped robot (blue) for different sensing modalities: (left) Voronoi-
adjacent10 obstacle sensing, (middle) a fixed radius sensory footprint (red),
(right) a limited range line-of-sight sensor (red). The boundary of each
generalized Voronoi cell is defined by the maximum margin separating
hyperplanes of the robot body (blue) and obstacles (black).

boundary, ∂LW(x), by the robot body radius, illustrated on

the left in Fig. 2, as [21] 8

LF(x) := LW(x) \
(
∂LW(x)⊕B(0, r)

)
, (9a)

=
{
q ∈ LW(x)

∣∣∣B(q, r)⊆LW(x)
}
. (9b)

Note that, for any x ∈ F, LF(x) is a nonempty closed convex

set, because x ∈ LF(x) and the erosion of a closed convex

set by an open ball is a closed convex set.9

An immediate consequence of Proposition 1 is:

Corollary 1 Any robot placement in the local free space

LF(x) of a collision free robot location x ∈ F is also collision

free, i.e., LF(x) ⊆ F for all x ∈ F.

Finally, it is useful to emphasize that to construct its local

workspace, the robot requires only local knowledge of the

environment in the sense that the robot only needs to locate

proximal obstacles — those whose Voronoi cells are adjacent10

to the robot’s (local workspace). This can be achieved by

assuming an adjustable radius sensory footprint and gradually

increasing its sensing range until the set of obstacles in the

sensing range satisfies a certain geometric criterion guaran-

teeing that the detected obstacles exactly define the robot’s

local workspace [16]. We will refer to this sensing model as

Voronoi-adjacent obstacle sensing.

IV. ROBOT NAVIGATION VIA SEPARATING HYPERPLANES

In this section, first assuming Voronoi-adjacent obstacle

sensing, we introduce a new provably correct vector field

controller for safe robot navigation in a convex sphere world,

and list its important qualitative properties. Then we present

its extensions for two more realistic sensor models (illustrated,

respectively, in the middle and the right panels of Fig. 2): a

fixed radius sensory footprint and a limited range line-of-sight

sensor. We further adapt our construction to the widely used

nonholonomically constrained differential drive vehicle.

8Here, 0 is a vector of all zeros with the appropriate size, and A ⊕ B
denotes the Minkowski sum of sets A and B defined as A ⊕ B =
{a+ b | a ∈ A, b ∈ B}.

9The erosion of a closed half-space by an open ball is a closed half-space.
Hence, since the erosion operation is distributed over set intersection [21],
and a closed convex set can be defined as (possibly infinite) intersection of
closed half-spaces [6], and an arbitrary intersection of closed sets is closed
[38], the erosion of a closed convex set by an open ball is a closed convex set.

10 A pair of Voronoi cells in Rn is said to be adjacent if they share a n−1
dimensional face.
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A. Feedback Robot Motion Planner

Assuming the fully-actuated single-integrator robot dynam-

ics in (2), for a choice of a desired goal location x∗ ∈ F,

we propose a robot navigation strategy, called the “move-

to-projected-goal” law, u : F → Rn that steers the robot

at location x ∈ F towards the global goal x∗ through the

“projected goal”, ΠLF(x)(x
∗), as follows: 11

u(x) = −k
(
x−ΠLF(x)(x

∗)
)
, (10)

where k ∈ R>0 is a fixed control gain and ΠA (4) is the

metric projection onto a closed convex set A ⊂ Rn, and LF(x)
is continuously updated using the Voronoi-adjacent obstacle

sensing and its relation with LW(x) in (9).

B. Qualitative Properties

Proposition 2 The “move-to-projected-goal” law in (10) is

piecewise continuously differentiable.

Proof: An important property of generalized Voronoi

diagrams in (6) inherited from the standard Voronoi diagrams

of point generators is that the boundary of each Voronoi

cell is a piecewise continuously differentiable function of

generator locations [8, 46]. In particular, for any x ∈ F the

boundary of the robot’s local workspace LW(x) is piecewise

continuously differentiable since it is defined by the boundary

of the workspace and separating hyperplanes between the

robot and obstacles, parametrized by x and ΠOi
(x), and metric

projections onto convex cells are piecewise continuously dif-

ferentiable [32]. Hence, the boundary of the local free space

LF(x) is also piecewise continuously differentiable because

LF(x) is the nonempty erosion of LW(x) by a fixed open

ball. Therefore, one can conclude using the sensitivity analysis

of metric projections onto moving convex sets [36, 47] that

the “move-to-projected-goal” law is Lipschitz continuous and

piecewise continuously differentiable.

Proposition 3 The robot’s free space F in (1) is positively

invariant under the “move-to-projected” law (10).

Proof: Since x and ΠLF(x)(x
∗) are both in LF(x) for any

x ∈ F, and LF(x) is an obstacle free convex neighborhood of

x (Corollary 1), the line segment joining x and ΠLF(x)(x
∗)

is free of collisions. Hence, at the boundary of F, the robot

under the “move-to-projected-goal” law either stays on the

boundary or moves towards the interior of F, but never crosses

the boundary, and so the result follows.

Proposition 4 For any initial x ∈ F, the “move-to-projected-

goal” law (10) has a unique continuously differentiable flow

in F (1) defined for all future time.

11In general, the metric projection of a point onto a convex set can be
efficiently computed using a standard convex programming solver [6]. If W

is a convex polytope, then the robot’s local free space, LF(x), is also a
convex polytope and can be written as a finite intersection of half-spaces.
Hence, the metric projection onto a convex polytope can be recast as quadratic
programming and can be solved in polynomial time [31]. In the case of a
convex polygonal environment, LF(x) is a convex polygon and the metric
projection onto a convex polygon can be solved analytically because the
solution lies on one of its edges, unless the input point is inside the polygon.

Proof: The existence, uniqueness and continuous differ-

entiability of its flow follow from the Lipschitz continuity of

the “move-to-projected-goal” law in its compact domain F

since a piecewise continuously differentiable function is lo-

cally Lipschitz on its domain[10], and a locally Lipschitz func-

tion on a compact set is globally Lipschitz on that set [27].

Proposition 5 The set of stationary points of the “move-to-

projected-goal” law (10) is {x∗} ∪
⋃m

i=1 Si, where

Si :=

{
x∈F

∣∣∣∣ d(x, Oi)=r,
(x−Π

Oi
(x))T(x−x∗)

‖x−Π
Oi

(x)‖‖x−x∗‖ =1

}
. (11)

Proof: It follows from (4) that the goal location x∗ is a

stationary point of (10), because x∗ ∈ LF(x∗). In fact, for

any x ∈ F, one has ΠLF(x)(x
∗) = x∗ whenever x∗ ∈ LF(x).

Hence, in the sequel of the proof, we only consider the set of

robot locations satisfying x∗ 6∈ LF(x).
Let x ∈ F such that x∗ 6∈ LF(x). Recall from (7) and (9)

that LW(x) is determined by the maximum margin separating

hyperplanes of the robot body and obstacles, and LF(x)
is obtained by eroding LW(x) by an open ball of radius

r. Hence, x lies in the interior of LF(x) if and only if

d(x, Oi) > r for all i. As a result, since x∗ 6∈ LF(x), one

has x = ΠLF(x)(x
∗) only if d(x, Oi) = r for some i.

Note that if d(x, Oi) = r, then, since d(Oi, Oj) > 2r (As-

sumption 1), d(x, Oj) > r for all j 6= i. Therefore, there can

be only one obstacle index i such that x = ΠLW(x)(x
∗) and

d(x, Oi) = r. Further, given d(x, Oi) = r, since ΠLF(x)(x
∗)

is the unique closest point of the closed convex set LF(x)
to the goal x∗ (Theorem 2), its optimality [6] implies that

one has x = ΠLW(x)(x
∗) if and only if the maximum margin

separating hyperplane between the robot and obstacle Oi is

tangent to the level curve of the squared Euclidean distance to

the goal, ‖x− x∗‖2, at ΠOi
(x), and separates x and x∗, i.e.,

(x−ΠOi
(x))

T
(x− x∗)

‖x−ΠOi
(x)‖‖x− x∗‖

= 1. (12)

Thus, one can locate the stationary points of the “move-to-

projected-goal” law in (10) associated with obstacle Oi as in

(11), and so the result follows.

Note that, for any equilibrium point si ∈ Si associated with

obstacle Oi, one has that the equilibrium si, its projection

ΠOi
(si) and the goal x∗ are all collinear.

Lemma 2 The “move-to-projected-goal” law (10) in a small

neighborhood of the goal x∗ is given by

u(x) = −k(x− x∗), ∀ x ∈ B(x∗, ǫ), (13)

for some ǫ > 0; and around any stationary point si ∈ Si (11),

associated with obstacle Oi, it is given by

u(x)=−k

(
x−x∗+

(
x−ΠOi

(x)
)T
(x∗−hi)∥∥x−ΠOi
(x)
∥∥2

(
x−ΠOi

(x)
)
)
, (14)

for all x∈B(si, ε) and some ε>0, where

hi :=
x + ΠOi

(x)

2
+

r

2

x−ΠOi
(x)∥∥x−ΠOi
(x)
∥∥ . (15)
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Proof: See Appendix I-C.

Since our “move-to-projected-goal” law strictly decreases

the (squared) Euclidean distance to the goal x∗ away from its

stationary points (Proposition 7), to guarantee the existence

of a unique stable attractor at x∗ we require the following

assumption12, whose geometric interpretation is discussed in

detail in Appendix II.

Assumption 2 (Obstacle Curvature Condition) The Jacobian

matrix JΠ
Oi

(si) of the metric projection of any stationary

point si ∈ Si onto the associated obstacle Oi satisfies13

JΠ
Oi

(si) ≺

∥∥x∗−ΠOi
(si)
∥∥

r +
∥∥x∗−ΠOi

(si)
∥∥ I ∀i, (16)

where I is the identity matrix of appropriate size.

Proposition 6 If Assumption 2 holds for the goal x∗ and for

all obstacles, then x∗ is the only locally stable equilibrium of

the “move-to-projected-goal” law (10), and all the stationary

points, si ∈ Si (11), associated with obstacles, Oi, are

nondegenerate saddles.

Proof: It follows from (13) that the goal x∗ is a locally

stable point of the “move-to-projected-goal” law, because its

Jacobian matrix, Ju(x
∗), at x∗ is equal to −k I.

Now, to determine the type of any stationary point si ∈ Si

associated with obstacle Oi, define

g(x) :=

(
x∗−ΠOi

(x)
)T(

x−ΠOi
(x)
)

∥∥x−ΠOi
(x)
∥∥2 −

r

2
∥∥x−ΠOi

(x)
∥∥ −

1

2
, (17)

and so the “move-to-projected-goal” law in a small neighbor-

hood of si in (14) can be rewritten as

u(x) = −k
(
x− x∗ + g(x)

(
x−ΠOi

(x)
))
. (18)

Hence, using
∥∥si−ΠOi

(si)
∥∥ = r, one can verify that its

Jacobian matrix at si is given by

Ju(si)=−kg(si)

( ∥

∥

∥
x∗−Π

Oi
(si)

∥

∥

∥

r+
∥

∥

∥
x∗−Π

Oi
(si)

∥

∥

∥

Q−JΠ
Oi

(si)

)
− k

2 (I−Q),(19)

where g(si) = −

∥

∥

∥
x∗−Π

Oi
(si)

∥

∥

∥

r
−1 < −2, and

Q = I−

(
si−ΠOi

(si)
)(
si−ΠOi

(si)
)T

∥∥si−ΠOi
(si)
∥∥2 . (20)

Note that JΠ
Oi

(x)
(
x−ΠOi

(x)
)

= 0 for all x ∈ Rn \ Oi

[19, 24]. Hence, if Assumption 2 holds, then one can con-

clude from g(si) < −2 and (19) that the only negative

eigenvalue of Ju(si) and the associated eigenvector are −k
2

and
(
si −ΠOi

(si)
)
, respectively; and all other eigenvalues of

Ju(si) are positive. Thus, si is a nondegenerate saddle point

of the “move-to-projected-goal” law associated with Oi.

12A similar obstacle curvature condition is necessarily made in the design
of navigation functions for spaces with convex obstacles in [42].

13For any two symmetric matrices A,B ∈ RN×N , A ≺ B (and A 4 B)
means that B−A is positive definite (positive semidefinite, respectively).

Proposition 7 Given that the goal location x∗ and obstacles

satisfy Assumption 2, the goal x∗ is an asymptotically stable

equilibrium of the “move-to-projected-goal” law (10), whose

basin of attraction includes F, except a set of measure zero.

Proof: Consider the squared Euclidean distance to

the goal as a smooth Lyapunov function candidate, i.e.,

V (x) := ‖x− x∗‖2, and it follows from (4) and (10) that

V̇ (x) = −k 2(x− x∗)
T(

x−ΠLF(x)(x
∗)
)

︸ ︷︷ ︸
≥‖x−ΠLF(x)(x

∗)‖2

since x∈LF(x) and ‖x−x∗‖2≥‖ΠLF(x)(x
∗)−x∗‖2

, (21)

≤ −k
∥∥x−ΠLF(x)(x

∗)
∥∥2 ≤ 0, (22)

which is zero iff x is a stationary point. Hence, we have from

LaSalle’s Invariance Principle [27] that all robot configurations

in F asymptotically reach the set of equilibria of (10). There-

fore, the result follows from Proposition 2 and Proposition 6,

because, under Assumption 2, x∗ is the only stable stationary

point of the piecewise continuous “move-to-projected-goal”

law (10), and all other stationary points are nondegenerate

saddles whose stable manifolds have empty interiors [23].

Finally, we find it useful to summarize important qualitative

properties of the “move-to-projected-goal” law as:

Theorem 3 The piecewise continuously differentiable “move-

to-projected-goal” law in (10) leaves the robot’s free space

F (1) positively invariant; and if Assumption 2 holds, then its

unique continuously differentiable flow, starting at almost any

configuration x ∈ F, asymptotically reaches the goal location

x∗, while strictly decreasing the squared Euclidean distance

to the goal, ‖x− x∗‖2, along the way.

C. Extensions for Limited Range Sensing Modalities

1) Navigation using a Fixed Radius Sensory Footprint: A

crucial property of the “move-to-projected-goal” law (10) is

that it only requires the knowledge of the robot’s Voronoi-

adjacent10 obstacles to determine the robot’s local workspace

and so the robot’s local free space. We now exploit that prop-

erty to relax our construction so that it can be put to practical

use with commonly available sensors that have bounded radius

footprint.14 We will present two specific instances, pointing

out along the way how they nevertheless preserve the sufficient

conditions for the qualitative properties listed in Section IV-B.

Suppose the robot is equipped with a sensor with a fixed

sensing range, R ∈ R>0, whose sensory output, denoted by

SR(x) := {S1, S2, . . . , Sm}, at a location, x ∈ W, returns

some computationally effective dense representation of the

perceptible portion, Si:=Oi∩B(x, R), of each obstacle, Oi, in

its sensory footprint, B(x, R). Note that Si is always open and

might possibly be empty (if Oi is outside the robot’s sensing

range), see Fig. 2(middle); and we assume that the robot’s

sensing range is greater than the robot body radius, i.e., R > r.

14 This extension results from the construction of the robot’s local
workspace (7) in terms of the maximum margin separating hyperplanes of
convex sets. In consequence, because the intersection of convex sets is a
convex set [6], perceived obstacles in the robot’s (convex) sensory footprint
are, in turn, themselves always convex.
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As in (7), using the maximum margin separating hyper-

planes of the robot and sensed obstacles, we define the robot’s

sensed local workspace, illustrated in Fig. 2(middle), as,

LWS(x):=
{
q∈W ∩B

(
x, r+R

2

)∣∣∣
∥∥∥q−x+r

x−Π
Si
(x)

‖x−Π
Si
(x)‖

∥∥∥≤
∥∥q−ΠSi

(x)
∥∥, ∀i s.t. Si 6=∅

}
. (23)

Note that B
(
x, r+R

2

)
is equal to the intersection of the closed

half spaces containing the robot body and defined by the

maximum margin separating hyperplanes of the robot body,

B(x, r), and all individual points, q ∈ Rn \ B(x, R), outside

its sensory footprint.

An important observation revealing a critical connection

between the robot’s local workspace LW in (7) and its sensed

local workspace LWS in (23) is:

Proposition 8 LWS(x)=LW(x) ∩B
(
x, r+R

2

)
for all x∈W.

Proof: See Appendix I-D.

In accordance with its local free space LF(x) in (9), we

define the robot’s sensed local free space LFS(x) by eroding

LWS(x) by the robot body, illustrated in Fig. 2(middle), as,

LFS(x) :=
{
q ∈ LWS(x)

∣∣∣B(q, r)⊆LWS(x)
}
, (24a)

= LF(x) ∩B
(
x, R−r

2

)
, (24b)

where the latter follows from Proposition 8 and that the erosion

operation is distributed over set intersection [21]. Note that, for

any x ∈ F, LFS(x) is a nonempty closed convex set containing

x as is LF(x).
To safely steer a single-integrator disk-shaped robot towards

a given goal location x∗∈F using a fixed radius sensory foot-

print, we propose the following “move-to-projected-goal” law,

u(x) = −k
(
x−ΠLFS(x)(x

∗)
)
, (25)

where k > 0 is a fixed control gain, and ΠLFS(x) (4) is

the metric projection onto the robot’s sensed local free space

LFS(x), and LFS(x) is assumed to be continuously updated.

Due to the nice relations between the robot’s different local

neighborhoods in Proposition 8 and (24b), the revised “move-

to-projected-goal” law for a fixed radius sensory footprint

inherits all qualitative properties of the original one presented

in Section IV-B, summarized as:

Proposition 9 The “move-to-projected-goal” law of a disk-

shaped robot equipped with a fixed radius sensory footprint in

(25) is piecewise continuously differentiable; and if Assump-

tion 2 holds, then its unique continuously differentiable flow

asymptotically steers almost all configurations in its positively

invariant domain F towards any given goal location x∗ ∈ F,

while strictly decreasing the (squared) Euclidean distance to

the goal along the way.

Proof: The proof of the result follows patterns similar to

those of Proposition 2 - Proposition 7, because of the relations

between the robot’s local neighborhoods in Proposition 8 and

(24b), and so it is omitted for the sake of brevity.

2) Navigation using a 2D LIDAR Range Scanner: We now

present another practical extension of the “move-to-projected-

goal” law for safe robot navigation using a 2D LIDAR range

scanner in an unknown convex planar environment W ⊆ R2

populated with convex obstacles O = {O1, O2, . . . , Om},

satisfying Assumption 1. Assuming an angular scanning range

of 360 degrees and a fixed radial range of R ∈ R>0, we model

the sensory measurement of the LIDAR scanner at location

x∈W by a polar curve [48] ρx : (−π, π]→ [0, R], defined as,

ρx(θ):= min




R,

min
{
‖p−x‖

∣∣∣p∈∂W, atan2(p−x)=θ
}
,

min
i

{
‖p−x‖

∣∣∣p∈Oi, atan2(p−x)=θ
}


. (26)

We further assume that the LIDAR sensing range is greater

than the robot body radius, i.e., R > r.

Suppose ρi : (θli , θui
) → [0, R] is a convex curve segment

of the LIDAR scan ρx (26) at location x ∈ W (please refer to

Appendix V for the notion of convexity in polar coordinates

which we use to identify convex polar curve segments in a

LIDAR scan, corresponding to the obstacle and workspace

boundary), then we define the associated line-of-sight obstacle

as the open epigraph of ρi whose pole is located at x [48], 8 15

Li := {x} ⊕ e̊piρi, (27)

= {x}⊕
{
(̺ cos θ, ̺ sin θ)

∣∣∣θ∈(θli, θui
), ̺>ρi(θ)

}
, (28)

which is an open convex set. Accordingly, we assume the

availability of a sensor model LR(x) :={L1, L2, . . . , Lt} that

returns the list of convex line-of-sight obstacles detected by the

LIDAR scanner at location x, where t denotes the number of

detected obstacles and changes as a function of robot location.

Following the lines of (7) and (9), we define the robot’s

line-of-sight local workspace and line-of-sight local free space,

illustrated in Fig. 2(right), respectively, as

LWL(x):=
{
q ∈ Lft(x) ∩B

(
x, r+R

2

)∣∣∣
∥∥∥q−x+r

x−Π
Li

(x)

‖x−Π
Li
(x)‖

∥∥∥≤
∥∥q−ΠLi

(x)
∥∥, ∀i

}
. (29)

LFL(x) :=
{
q ∈ LWL(x)

∣∣∣B(q, r)⊆LWL(x)
}
, (30)

where Lft(x) denotes the LIDAR sensory footprint at x, given

by the hypograph of the LIDAR scan ρx (26) at x, i.e.,

Lft(x) := {x} ⊕ hypρx, (31)

={x}⊕
{
(̺ cos θ, ̺ sin θ)

∣∣∣θ∈(−π, π], 0≤̺≤ρx(θ)
}
. (32)

Similar to Proposition 1 and Corollary 1, we have:

Proposition 10 For any x ∈ F, LWL(x) is an obstacle

free closed convex subset of W and contains the robot body

B(x, r). Therefore, LFL(x) is a nonempty closed convex

subset of F and contains x.

Proof: See Appendix I-E.

15Here, Å denotes the interior of a set A.

6



Accordingly, to navigate a fully-actuated single-integrator

robot using a LIDAR scanner towards a desired goal location

x∗ ∈ F, with the guarantee of no collisions along the way, we

propose the following “move-to-projected-goal” law

u(x) = −k
(
x−ΠLFL(x)(x

∗)
)
, (33)

where k > 0 is fixed, and ΠLFL(x) (4) is the metric projection

onto the robot’s line-of-sight free space LFL(x) (30), which

is assumed to be continuously updated.

We summarize important properties of the “move-to-

projected-goal” law for navigation using a LIDAR scanner as:

Proposition 11 The “move-to-projected-goal” law of a

LIDAR-equipped disk-shaped robot in (33) leaves the robot’s

free space F (1) positively invariant; and if Assumption 2

holds, then its unique, continuous and piecewise differentiable

flow asymptotically brings all but a mesure zero set of initial

configurations in F to any designated goal location x∗ ∈ F,

while strictly decreasing the (squared) Euclidean distance to

the goal along the way.

Proof: See Appendix I-F.

As a final remark, it is useful to note that the “move-to-

projected-goal” law in (33) might have discontinuities because

of possible occlusions between obstacles. If there is no occlu-

sion between obstacles in the LIDAR’s sensing range, then the

LIDAR scanner provides exactly the same information about

obstacles as does the fixed radius sensory footprint of Section

IV-C1, and so the “move-to-projected-goal” law in (33) is

piecewise continuously differentiable as is its version in (25).

In this regard, one can avoid occlusions between obstacles by

properly selecting the LIDAR’s sensing range: for example,

since d(x, Oi) ≥ r for any x ∈ F and d(Oi, Oj) > 2r for

any i 6= j (Assumption 1), a conservative choice of R that

prevents occlusions between obstacles is r < R ≤ 3r.

D. An Extension for Differential Drive Robots

Maintaining the specialization to the plane, W ⊂ R2, we

now consider a disk-shaped differential drive robot described

by state (x, θ) ∈ F × (−π, π], centered at x ∈ F with body

radius r ∈ R>0 and orientation θ ∈ (−π, π], moving in W.

The kinematic equations describing its motion are

ẋ = v

[
cos θ
sin θ

]
, and θ̇ = ω, (34)

where v ∈ R and ω ∈ R are, respectively, the linear

(tangential) and angular velocity inputs of the robot.

In contrary to the “move-to-projected-goal” law of a fully

actuated robot in (10), a differential drive robot can not

directly move towards the projected goal ΠLF(x)(x
∗) of a

given goal location x∗ ∈ F̊, unless it is perfectly aligned

with ΠLF(x)(x
∗), because it is underactuated due to the

nonholonomic constraint
[

− sin θ
cos θ

]T
ẋ = 0. 16 In consequence,

to determine the robot’s linear motion, we restrict the robot’s

local free space LF(x) (9) to conform to the nonholonomic

constraint as

LFv(x) := LF(x) ∩HN , (35)

where HN :=

{
q ∈ Rn

∣∣∣
[

− sin θ
cos θ

]T
(q− x) = 0

}
is the straight

line motion range due to the nonholonomic constraint. Note

that LF(x)∩HN is a closed line segment in W and contains x.

Similarly, to determine the robot’s angular motion, we define

LFω(x) := LF(x) ∩HG, (36)

where HG :=
{
ωx + (1− ω)x∗ ∈ Rn

∣∣ ω ∈ R
}

is the line

going through x and x∗.

Accordingly, based on a standard differential drive con-

troller [3], we propose the following “move-to-projected-goal”

law for a differential drive robot,17 18

v = −k
[

cos θ
sin θ

]T(
x−ΠLFv(x)(x

∗)
)
, (37a)

ω = k atan




[
− sin θ
cos θ

]T(
x−

ΠLFω(x)(x
∗)+ΠLF(x)(x

∗)

2

)

[
cos θ
sin θ

]T(
x−

ΠLFω(x)(x∗)+ΠLF(x)(x∗)

2

)


, (37b)

where k > 0 is fixed, and LFv(x), LFω(x) and LF(x) are

assumed to be continuously updated.

We summarize some important properties of the “move-to-

projected-goal” law of a differential drive robot as:

Proposition 12 Given the goal and obstacles satisfy Assump-

tion 2, the “move-to-projected-goal” law of a disk-shaped

differential drive robot in (37) asymptotically steers almost all

configurations in its positively invariant domain F × (−π, π]
towards any given goal location x∗ ∈ F̊, without increasing

the Euclidean distance to the goal along the way.

Proof: See Appendix I-G.

Note that the “move-to-projected-goal” law of a differential

drive robot in (37) can be extended to limited range sensing

models by using the robot’s sensed local free space LFS (24)

or the robot’s line-of-sight local free space LFL (30) instead

of the local free space LW (9), and the resulting vector field

planner maintains qualitative properties.

V. NUMERICAL SIMULATIONS

To demonstrate the motion pattern generated by our “move-

to-projected-goal” law around and far away from the goal,

we consider a 10 × 10 and a 50 × 10 environment cluttered

with convex obstacles and a desired goal located at around

the upper right corner, as illustrated in Fig. 3 and Fig. 4,

respectively. 19 We present in these figures example navigation

trajectories of the “move-to-projected-goal” law for different

sensing and actuation modalities. We observe a significant

16Here, we require the goal to be in the interior F̊ of F to guarantee that
the robot can nearly align its orientation with the (local) goal in finite time.

17We follow [3] by resolving the indeterminacy through setting ω = 0

whenever x =
ΠLFω(x)(x

∗)+ΠLF(x)(x
∗)

2
. Note that this introduces the

discontinuity necessitated by Brockett’s condition [7].
18In the design of angular motion we particularly select a local target

location,
ΠLFω(x)(x

∗)+ΠLF(x)(x
∗)

2
∈ F̊ given x∗ ∈ F̊, in the interior

F̊ of F to increase the convergence rate of the resulting vector field. One can
consider other convex combinations of ΠLFω(x)(x

∗) and ΠLF(x)(x
∗), and

the resulting vector field retains qualitative properties.
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(a) (b) (c) (d) (e) (f)
Fig. 3. Example navigation trajectories of the “move-to-projected-goal” law starting at a set of initial configurations (green) towards a designated point goal
(red) for different sensing and actuation models: (a,b,c) a fully actuated robot, (d,e,f) a differential drive robot, (a,d) Voronoi-adjacent10 obstacle sensing, (b,e)
a fixed radius sensory footprint, (c,f) a limited range LIDAR sensor.

consistency between the resulting trajectories of the “move-to-

projected-goal” law and the boundary of the Voronoi diagram

of the environment, where the robot balances its distance to

all proximal obstacles while navigating towards its destination

— a desired autonomous behaviour for many practical settings

instead of following the obstacle boundary tightly. In our sim-

ulations, we avoid occlusions between obstacles by properly

selecting the LIDAR’s sensing range, and in so doing both

limited range sensing models provide the same information

about the environment away from the workspace boundary and

the associated “move-to-projected-goal” laws yield almost the

same navigation paths. As observed in Fig. 3, although they are

initiated at the same location, a fully actuated and a differential

drive robot may follow significantly different trajectories due

to their differences in system dynamics and controller design.

It is also useful to note that the “move-to-projected-goal” law

decreases not only the Euclidean distance, ‖x− x∗‖, to the

goal, but also the Euclidean distance,
∥∥ΠLF(x)(x

∗)− x∗
∥∥,

between the projected goal, ΠLF(x)(x
∗), and the global goal,

x∗, illustrated in Fig. 5.

Fig. 5. The Euclidean distance,
∥

∥ΠLF(x)(x
∗)− x∗

∥

∥, between the projected

goal, ΠLF(x)(x
∗), and the global goal, x∗, for different sensing modalities:

(left) Voronoi-adjacent10 obstacle sensing, (middle) a fixed radius sensory
footprint, (right) a limited range line-of-sight sensor.

19For all simulations we set r = 0.5, R = 2 and k = 1, and all
simulations are obtained through numerical integration of the associated
“move-to-projected-goal” law using the ode45 function of MATLAB.

VI. CONCLUSIONS

In this paper we construct a sensor-based feedback law that

solves the real-time collision free robot navigation problem

in a domain cluttered with convex obstacles. Our algorithm

introduces a novel use of separating hyperplanes for identi-

fying the robot’s local obstacle free convex neighborhood, af-

fording a piecewise smooth velocity command instantaneously

pointing toward the metric projection of the designated goal

location onto this convex set. Given separated and appropri-

ately “strongly” convex obstacles, we show that the resulting

vector field has a smooth flow with a unique attractor at the

goal location (along with the topologically inevitable saddles

— at least one for each obstacle). Since all of its critical

points are nondegenerate, our vector field asymptotically steers

almost all configurations in the robot’s free space to the goal,

with the guarantee of no collisions along the way. We also

present its practical extensions for two limited range sensing

models and the widely used differential drive model, while

maintaining formal guarantees. We illustrate the effectiveness

of the proposed navigation algorithm in numerical simulations.

Work now in progress targets a fully smoothed version of

the move-to-projected-goal law (by recourse to logarithmic

barrier functions [6]), permitting its lift to more complicated

dynamical models such as force-controlled (second order)

and more severely underactuated systems. This will enable

its empirical demonstration for safe, high-speed navigation

in a forest-like environments and in human crowds. We are

also investigating the extension of these ideas for coordinated,

decentralized feedback control of multirobot swarms. More

generally, we seek to identify fundamental limits on navigable

environments for a memoryless greedy robotic agent with a

limited range sensing capability.

20 Please refer to Appendix VII and see the accompanying video submission
for additional figures illustrating the navigation pattern far away from the goal
for different sensing and actuation models.

Fig. 4. Example navigation trajectories of the “move-to-projected-goal” law in (10) starting at a set of initial positions (green) far away from the goal (red).20
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APPENDIX I

PROOFS

A. Proof of Lemma 1

Proof: By definition (4), the metric projection ΠA(x) of

the ball’s centroid x onto the convex set A is the unique closest

point of A to x. Hence, due to the symmetry of the ball,

the closest point of B(x, r) to A lies on the line segment

joining x and ΠA(x), and is given by (Π
B(x,r) ◦ ΠA)(x) =

x − r
x−Π

A
(x)

‖x−Π
A
(x)‖

, and so the closest point of A to B(x, r) is

ΠA(x). Thus, the result follows.

B. Proof of Proposition 1

Proof: To prove the result, it is convenient to rewrite (7)

as LW(x) = W ∩
⋂
i

HSi, where

HSi :=
{
q∈Rn

∣∣∣
∥∥∥q−x+r

x−Π
Oi

(x)

‖x−Π
Oi

(x)‖

∥∥∥≤
∥∥q−ΠOi

(x)
∥∥
}
. (38)

Note that for any x ∈ F, HSi is the half space defined by

the maximum margin separating hyperplane between the robot

body B(x, r) and obstacle Oi (Lemma 1), and contains the

robot. Moreover, since Oi is open, we have Oi ∩ HSi = ∅

for any x ∈ F.

Hence, using (1), one can verify the result as follows:

x ∈ F ⇐⇒

{
B(x, r) ⊆ W,

B(x, r) ∩Oi = ∅ ∀i,
(39)

⇐⇒





B(x, r) ⊆ W,

B(x, r) ⊆ HSi ∀i,
Oi ∩HSi = ∅ ∀i,

(40)

⇐⇒

{
B(x, r) ⊆ LW(x),
Oi ∩ LW(x) = ∅ ∀i,

(41)

which completes the proof.

C. Proof of Lemma 2

Proof: The result for the goal location x∗ follows from

the continuity of Voronoi diagrams in (6) and x∗ ∈ LF(x∗).
To see the result for any stationary point si ∈ Si, recall

from the proof of Proposition 5 that si lies on the boundary

segment of LF(si) defined by the separating hyperplane

between the robot and ith obstacle, and si has a certain nonzero

clearance from the boundary segment of LF(si) defined by

the separating hyperplane between the robot and any other

obstacle. Hence, using the continuity of Voronoi diagrams,

for any x ∈ B(si, ε) the “projected-goal” ΠLF(x)(x
∗) can be

located by taking the projection of x∗ onto (a shifted version

of) the maximum margin separating hyperplane between the

robot and ith obstacle as

ΠLF(x)(x
∗) = x∗−

(
x−ΠOi

(x)
)T
(x∗−hi)∥∥x−ΠOi
(x)
∥∥2

(
x−ΠOi

(x)
)
, (42)

where hi is defined as in (15), and so this completes the proof.

D. Proof of Proposition 8

Proof: As discussed in the proof of Proposition 1, for any

x ∈ W we have LW(x) = W∩
⋂
i

HSi, where HSi is defined

as in (38). Similarly, one can rewrite (23) as LWS(x) = W∩

B
(
x, r+R

2

)
∩
⋂
i

ĤSi, where

ĤSi :=
{
q∈Rn

∣∣∣
∥∥∥q−x+r

x−Π
Si
(x)

‖x−Π
Si
(x)‖

∥∥∥≤
∥∥q−ΠSi

(x)
∥∥
}
. (43)

Note that if Si = ∅, then the predicate in (43) is trivially

holds and so ĤSi = Rn; otherwise, since Si=Oi ∩B(x, R),

we have ΠSi
(x) = ΠOi

(x) and so ĤSi = HSi. Moreover, if

Si = ∅ (i.e., d(x, Oi) > R), then we also have from Definition

1 and Lemma 1 that B
(
x, r+R

2

)
⊂ HSi. Thus, we obtain that

ĤSi ∩B
(
x, r+R

2

)
=HSi ∩B

(
x, r+R

2

)
, ∀i. (44)

Therefore, one can verify the result as follows:

LWS(x) = W ∩B
(
x, r+R

2

)
∩
⋂

i

ĤSi, (45)

= W ∩
⋂

i

(
ĤSi ∩B

(
x, r+R

2

))
, (46)

= W ∩
⋂

i

(
HSi ∩B

(
x, r+R

2

))
, (47)

=

(
W ∩

⋂

i

HSi

)
∩B

(
x, r+R

2

)
, (48)

= LW(x) ∩B
(
x, r+R

2

)
. (49)

E. Proof of Proposition 10

Proof: For any x ∈ F the LIDAR sensory footprint in

(31) can be equivalently rewritten using the global knowledge

of the robot’s workspace as

Lft(x) = W ∩B(x, R) \
⋃

i

Ai. (50)

where Ai is the augmented line-of-sight obstacle associated

with obstacle Oi, defined as

Ai :=
{
α(p− x) + p

∣∣∣p ∈ Oi, α ∈ [0,∞)
}
. (51)

Hence, since R > r, it follows from (29) that

LWL(x) = L̂WL(x) \
⋃

i

Ai, (52)

where

L̂WL(x):=
{
q ∈ W ∩B

(
x, r+R

2

)∣∣∣
∥∥∥q−x+r

x−Π
Li
(x)

‖x−Π
Li
(x)‖

∥∥∥≤
∥∥q−ΠLi

(x)
∥∥, ∀i

}
. (53)

Note that, as discussed in the proof of Proposition 1, since

x ∈ F, L̂WL(x) is a closed convex set and free of any line-

of-sight obstacle Li, i.e., L̂WL(x) ∩ Li = ∅ for all i; and it

contains the robot body, i.e., B(x, r) ⊆ L̂WL(x).

9



Now observe that if obstacle Oi is in the LIDAR’s sensing

range, i.e, Oi ∩ B(x, R) 6= ∅, then Ai ∩ B(x, R) = Lj ∩

B(x, R) for some j. Hence, since L̂WL(x) is free of line-of-

sight obstacles, we have from (52) that LWL(x) = L̂WL(x).
Thus, the result follows since LFL(x) is the erosion of

LWL(x) by the robot body radius r.

F. Proof of Proposition 11

Proof: As discussed in the proof of Proposition 3,

the positive invariance of F under the “move-to-projected-

goal” law in (33) follows from that for any x ∈ F the

robot’s line-of-sight local free space LFL(x) (30) is an ob-

stacle free closed convex subset of F, and contains both x
and ΠLWL(x)(x

∗) (Proposition 10 and Theorem 2). Hence,

−k
(
x−ΠLWL(x)(x

∗)
)
∈ TxF is either interior directed or, at

worst, tangent to the boundary of F.

The existence, uniqueness and continuity of its flow can

be observed using a partitioning of F such that the “move-to-

projected-goal” law is piecewise continuously differentiable in

each connected component of any partition element. Let Dt

denote the set of collision free robot locations at which the

number of detected line-of-sight obstacles is equal to t ∈ N,

i.e.,

Dt :=
{
x ∈ F

∣∣ ∣∣LR(x)
∣∣ = t

}
. (54)

Recall that LR(x) = {L1, L2, . . . , Lt} is our sensor model

that returns the list of convex line-of-sight obstacles detected

by the LIDAR at location x. Hence, the collection of Dt’s

defines a partition of F.

Now observe that Dt is generally disconnected and the

“move-to-projected-goal” law is piecewise continuously dif-

ferentiable when its domain is restricted to any connected

component of Dt since each line-of-sight obstacle is associated

with an open convex segment of a LIDAR scan and each

connected component of Dt is uniquely associated with a cer-

tain collection of obstacles and workspace boundary segments.

Hence, since a piecewise continuously differentiable function

is Lipschitz continuous on a compact set [10, 27], the “move-

to-projected-goal” law has a unique continuously differentiable

flow in every connected component of Dt. Further, when

the robot enters a connected component of Dt, it stays in

that connected component for a nonzero time since a line-of-

sight obstacle Li is an open set and can not instantaneously

appear or disappear under any continuous motion. Thus, the

unique, continuous and piecewise differentiable flow of the

move-to-projected-goal” law in F is constructed by piecing

together its unique, continuously differentiable trajectories in

every connected component of Dt’s.

Finally, using a similar pattern to the proofs of Proposition

5 and Proposition 6, one can verify that the set of stationary

points of (33) is {x∗} ∪
m⋃
i=1

Si, where Si is defined as

in (11); and if Assumption 2 holds, then the goal x∗ is

the only locally stable point of (33), and all the stationary

points, Si, associated with obstacles, Oi, are nondegenerate

saddles. Moreover, as discussed in the proof of Proposition

7, the “move-to-projected-goal” law in (33) strictly decreases

the (squared) Euclidean distance to x∗ away from its stationary

points, and so x∗ is the unique attractor of (33) whose basin

of attraction includes all but a measure zero set of F.

G. Proof of Proposition 12

Proof: The positive invariance of F × (−π, π] under

the “move-to-projected-goal” law (37) and the existence and

uniqueness of its flow can be established using similar patterns

of the proofs of Proposition 2, Proposition 3 and Proposition

4, and the flow properties of the differential drive controller

in [3].

As in the proof of Proposition 7, using the squared distance

to goal, V (x) = ‖x− x∗‖2, as a smooth Lypunov function,

one can verify the stability properties from (4), (34), and (37)

as follows: for any (x, θ) ∈ F × (−π, π]

V̇ (x) = −k 2(x− x∗)
T(

x−ΠLFv(x)(x
∗)
)

︸ ︷︷ ︸
≥‖x−ΠLFv(x)(x

∗)‖2

since x∈LFv(x) and ‖x−x∗‖2≥‖ΠLFv(x)(x
∗)−x∗‖2

, (55)

≤ −k
∥∥x−ΠLFv(x)(x

∗)
∥∥2 ≤ 0. (56)

Hence, it follows from LaSalle Invariance Principle [27] that

all configurations in F× (−π, π] asymptotically reach the set

of configurations where robots are located at the associated

projected goal ΠLFv(x)(x
∗) at any arbitrary orientation,

{
(x, θ) ∈ F × (−π, π]

∣∣∣x = ΠLFv(x)(x
∗)
}
. (57)

Note that for any fixed ΠLFv(x)(x
∗), ΠLFω(x)(x

∗) and

ΠLF(x)(x
∗) the standard differential drive controller asymp-

totically aligns the robot with
ΠLFω(x)(x

∗)+ΠLF(x)(x
∗)

2 , i.e.,[
− sin θ
cos θ

]T(
x−

ΠLFω(x)(x
∗)+ΠLF(x)(x

∗)

2

)
= 0. Hence, using the

optimality of metric projection in (4) one can conclude that

ΠLFv(x)(x
∗) = ΠLFω(x)(x

∗) = ΠLF(x)(x
∗) whenever x =

ΠLFv(x)(x
∗) and

[
− sin θ
cos θ

]T(
x−

ΠLFω(x)(x
∗)+ΠLF(x)(x

∗)

2

)
=0.

Therefore, using a similar approach as the proofs of Propo-
sition 5, Lemma 2 and Proposition 6, one can verify that the
set of stationary points of (37) is given by

{x∗}×(−π, π]
⋃

{

(si, θ)∈F×(−π, π]

∣
∣
∣
∣
si∈Si,

[
− sin θ
cos θ

]T

(si−x∗)=0

}

,(58)

where Si is defined as in (11); and every robot configuration

located at x∗ is locally stable and all stationary points asso-

ciated with obstacles are nondegenerate saddles with stable

manifolds of measure zero. Thus, the result follows.

APPENDIX II

GEOMETRIC INTERPRETATION OF THE CURVATURE CONDITION

A convenient way of characterizing metric limitations, such

as the obstacle curvature condition in Assumption 2, of the

“move-to-projected-goal” law is in terms of the enclosing balls

of the goal x∗, defined as:

Definition 2 The enclosing ball, Bx :=B(x∗, ‖x−x∗‖−r), of

the goal x∗ associated with a robot location x ∈ Rn\B(x∗, r)
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is the largest open ball, centered at x∗, that does not intersect

with the robot body B(x, r).

In other words, the enclosing ball Bx is the largest ball

centered at the goal x∗ such that a disk-shaped robot of radius

r starting at location x can go around it without increasing the

Euclidean distance to the goal.

Observe that for any stationary point si ∈ Si (11) associated

with obstacle Oi, one has Bsi = B
(
x∗,
∥∥x∗ −ΠOi

(si)
∥∥)

and ΠBsi
(si) = ΠOi

(si), because si, ΠOi
(si) and x∗ are all

collinear (Proposition 5). That is to say, Bsi is tangent to (i.e,

the osculating ball of) Oi at ΠOi
(si). Hence, we have

ΠBsi
(x) =

∥∥x∗ −ΠOi
(si)
∥∥ x− x∗

‖x− x∗‖
∀x ∈ Rn \Bsi , (59)

and so the Jacobian matrix JΠ
Bsi

(si) of the metric projection

of si onto the associated enclosing ball Bsi is given by

JΠ
Bsi

(si)=

∥∥x∗−ΠOi
(si)
∥∥

r+
∥∥x∗−ΠOi

(si)
∥∥Qi(si), (60)

where

Qi(x) := I−

(
x−ΠOi

(x)
)(
x−ΠOi

(x)
)T

∥∥x−ΠOi
(x)
∥∥2 , ∀x∈Rn \Oi. (61)

Therefore, since Qi(si) 4 I, one can conclude that the upper

bound in (16) of Assumption 2 is due to the enclosing ball

Bsi of the goal x∗ associated with si. Because any path

starting at x ∈ Rn along which the distance to the goal x∗

is strictly decreasing should stay in Bx for all future time;

and the “move-to-projected-goal” law yields such navigation

paths (Theorem 3).

More precisely, the geometric connection between enclosing

balls of the goal and the curvature condition in Assumption 2

can be established as follows:

Proposition 13 Let si ∈ Si (11) be a critical point associated

with obstacle Oi. If Oi \ΠOi
(si) ⊂ Bsi , then

JΠ
Oi

(si) ≺

∥∥x∗ −ΠOi
(si)
∥∥

∥∥x∗ −ΠOi
(si)
∥∥+ r

I. (62)

Therefore, if Oi \ΠOi
(si) ⊂ Bsi for all i ∈ {1, 2, . . . ,m} and

si ∈ Si, then Assumption 2 holds.

Proof: Since ΠBsi
(si) = ΠOi

(si), the result can be

verified using a similar pattern of the proof of Lemma 8; here

the only difference is that the entire Oi, except ΠOi
(si), is

strictly contained in Bsi .

Alternatively, using functional representations of obstacles,

one can verify Assumption 2 as follows:

Proposition 14 Let each obstacle Oi be associated with a

convex function fi : Rn → R such that Oi = f−1
i (−∞, ci)

for some ci ∈ R. Then, Assumption 2 holds if

∇2fi
(
ΠOi

(si)
)

∥∥∇fi
(
ΠOi

(si)
)∥∥ ≻

1∥∥x∗ −ΠOi
(si)
∥∥ , (63)

for all i ∈ {1, 2, . . . ,m} and si ∈ Si (11).

Proof: Consider the enclosing ball Bsi of the goal x∗

associated with si ∈ Si. We have from Definition 2 that Bsi =
β−1

(
−∞,

∥∥x∗−ΠOi
(si)
∥∥), where β(x) := ‖x−x∗‖2. Hence,

it follows that

∇2β
(
ΠBsi

(si)
)

∥∥∥∇β
(
ΠBsi

(si)
)∥∥∥

=
1∥∥x∗ −ΠOi

(si)
∥∥ . (64)

Thus, since ΠBsi
(si) = ΠOi

(si), one can conclude the result

from Lemma 6 and Lemma 7.

Two immediate corollaries of Proposition 13 and Proposi-

tion 14 for the case of spherical and ellipsoidal obstacles are:

Corollary 2 If all obstacles are open balls, then Assumption

2 holds for any goal x∗ ∈ F.

Corollary 3 Let each obstacle Oi be an open ellipsoid

defined as Oi = f−1
i (−∞, ci) for some ci ∈ R, where

fi := (x− pi)
T
Ai(x− pi) and Ai ∈ Rn×n is symmetric

positive definite. Then, Assumption 2 holds if

λmin(Ai)

λmax(Ai)
>

∥∥pi −ΠOi
(si)
∥∥

∥∥x∗ −ΠOi
(si)
∥∥ , (65)

for all i ∈ {1, 2, . . .m} and si ∈ Si, where λmin(Ai)
and λmax(Ai) are, respectively, the minimum and maximum

eigenvalues of Ai.

Proof: The results follows from Proposition 14 and

∇2fi
(
ΠOi

(si)
)

∥∥∇fi
(
ΠOi

(si)
)∥∥ =

A∥∥A
(
pi − ΠOi

(si)
)∥∥ , (66)

<
λmin(Ai)

λmax(Ai)

1∥∥pi −ΠOi
(si)
∥∥ I. (67)

In consequence, one can briefly conclude that it is easier

for a robot to navigate around obstacles more spherical (i.e.,

not too flat) and towards goal locations away from obstacles,

while strictly decreasing the Euclidean distance to the goal.

APPENDIX III

UNIQUENESS OF MAXIMUM MARGIN

SEPARATING HYPERPLANES

For any two disjoint convex sets A,B ∈ Rn, there can

be more than one pair of points a ∈ A and b ∈ B

achieving ‖a− b‖ = d(A,B); however, they all have the same

maximum margin separating hyperplane:

Lemma 3 Let A,B ⊂ Rn be two disjoint convex sets, and

a1, a2 ∈ A and b1, b2 ∈ B be points with ‖a1−b1‖ =
‖a2−b2‖ = d(A,B). Then, for any x ∈ Rn, the following

equality always holds

(a1−b1)
T

(
x−

a1+b1
2

)
= (a2−b2)

T

(
x−

a2+b2
2

)
. (68)
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Proof: First, to see that a1 − b1 = a2 − a2, consider

(a1−b1)
T(a2−b2) = (a1−b1)

T

(

a2−
a1+b1

2

)

+ (b1−a1)
T

(

b2−
a1+b1

2

)

, (69)

= d(A,B)2 +
1

2
(a1−b1)

T(a2−a1)
︸ ︷︷ ︸

≥0, by Theorem 2

+
1

2
(b1−a1)

T(b2−b1)
︸ ︷︷ ︸

≥0, by Theorem 2

, (70)

≥ d(A,B)2. (71)

where the inequality follows from Theorem 2 since

‖a1 − b1‖ = d(A,B) = d(a1, B) = d(A, b1). Moreover, it

follows from the Cauchy-Schwartz inequality that

(a1−b1)
T
(a2−b2) ≤ ‖a1−b1‖‖a2−b2‖ = d(A,B)2. (72)

Hence, since (a1−b1)
T
(a2−b2) = ‖a1−b1‖

2 = ‖a2−b2‖
2,

one always has

a1 − b1 = a2 − b2. (73)

Also observe from (70) that

(a1 − b1)
T(a1 − a2) = 0, (74a)

(a1 − b1)
T
(b1 − b2) = 0. (74b)

Therefore, the result can be verified as follows:

(a2−b2)
T

(

x−
a2+b2

2

)

= (a1−b1)
T

(

x−
a2+b2

2

)

, (75)

= (a1−b1)
T

(

x−
a1+b1

2

)

+ (a1−b1)
T

(
a1+b1

2
−
a2+b2

2

)

︸ ︷︷ ︸

=0, by (74)

, (76)

= (a1−b1)
T

(

x−
a1+b1

2

)

. (77)

APPENDIX IV

ON THE JACOBIAN OF METRIC PROJECTION

A well known property of metric projections is being

nonexpansive:

Lemma 4 ([51]) The metric projection onto a closed convex

set A ⊆ Rn is Lipschitz continuous with Lipschitz constant 1,

i.e. ‖ΠA(x)−ΠA(y)‖ ≤ ‖x− y‖ for all x, y ∈ Rn.

Note that a Lipschitz function in Rn is differentiable al-

most everywhere, and ΠA is piecewise continuously differen-

tiable [32].

Lemma 5 ([19, 24]) The Jacobian JΠK
(x) of the metric

projection onto a closed convex set K ⊆ Rn with twice

continuously differentiable (C2) boundary is a positive semi-

definite and symmetric operator of norm at most unity, i.e.,

0 4 JΠK
(x) 4 I, ∀x ∈ Rn \K, (78)

and one has JΠK
(x)(x−ΠK(x)) = 0.

The Jacobian matrix of the metric projection onto a convex

set can be analytically obtained using its functional represen-

tation in terms of a level set of a convex function:

Lemma 6 Let K ∈ Rn be a closed convex set associated

with a twice continuously differentiable (C2) convex function

f : Rn → R such that K = f−1(−∞, c] for some c ∈ R.

Then, the Jacobian JΠK
(x) of the metric projection of x ∈

Rn \K onto K is given by 21

JΠK
(x) = Q(I+QPQ)−1Q = Q−I+(I+QPQ)−1, (79)

where

Q := I−

(
x−ΠK(x)

)(
x−ΠK(x)

)T

‖x−ΠK(x)‖2
, (80)

P :=
‖x−ΠK(x)‖

‖∇f(ΠK(x))‖
∇2f(ΠK(x)). (81)

Proof: Using the relation between K and f , one can

rewrite the metric project onto K as

ΠK(x) = arg min
y∈K

‖y− x‖ = arg min
f(y)≤c

‖y− x‖. (82)

Further, due to the optimality of ΠK(x), the outward surface

normal of K at ΠK(x) is given by
x−ΠK(x)

‖x−ΠK(x)‖ = ∇f(ΠK(x))
‖∇f(ΠK(x))‖ ,

and we have

x = ΠK(x) + ‖x−ΠK(x)‖
∇f(ΠK(x))

‖∇f(ΠK(x))‖
. (83)

Hence, using JΠK
(x)(x−ΠK(x)) = 0 (Lemma 5), the

derivative of (83) yields

JΠK
(x) = (I−QP)−1Q. (84)

Note that it is not straightforward to observe that the

closed form of JΠK
(x) in (84) is positive definite and sym-

metric (Lemma 5). Alternatively, using the matrix identity

(I+AB)−1A = A(I+BA)−1 [43] and QQ = Q, a more

informative closed form of JΠK
(x) can be obtained as follows:

JΠK
(x) = (I−QP)−1Q = (I−QQP)−1Q︸ ︷︷ ︸

=Q(I−QPQ)−1

Q, (85)

= Q(I−QPQ)−1Q. (86)

Alternatively, using a special case of Woodbury matrix

identity (a.k.a. the matrix inversion lemma) [43],

(I+QP)−1 = I−Q(I+PQ)−1P, (87)

we also have

JΠK
(x) = (I−QP)−1Q =

(
I−Q(I+PQ)−1P

)
Q, (88)

= Q− I+ I−Q(I+PQQ)−1PQ︸ ︷︷ ︸
=(I+QPQ)−1

, (89)

= Q− I+ (I+QPQ)−1. (90)

Recall that QQ = Q. Thus, the lemma follows.

21Here, ∇f : Rn → Rn and ∇2f : Rn → Rn×n denote the gradient
and Hessian of a twice continuously differentiable function f : Rn → R,
respectively.
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Lemma 7 Let K1,K2 ∈ Rn be two closed convex sets asso-

ciated with twice differentiable convex functions f1 : Rn → R

and f2 : Rn → R, respectively, such that K1 = f−1
1 (−∞, c1]

and K2 = f−1
2 (−∞, c2] for some c1, c2 ∈ R. And let

x ∈ Rn \ (K1 ∪K2) with ΠK1(x) = ΠK2(x).

Then the following equivalence holds

∇2f1(ΠK1(x))

‖∇f1(ΠK1(x))‖
4

∇2f2(ΠK2(x))

‖∇f2(ΠK2(x))‖
⇐⇒JΠK1

(x)<JΠK2
(x). (91)

Proof: The result directly follows from Lemma 6 and the

following matrix relation of positive definite matrices, A and

B, [5]

A 4 B ⇐⇒ A−1
< B−1.

Lemma 8 Let K1,K2 ⊆ Rn be two convex sets with twice

continuously differentiable (C2) boundary.

If K1 ⊇ K2, then the Jacobians JΠK1
(x) and JΠK2

(x) of

metric projections onto K1 and K2, respectively, satisfy

JΠK1
(x) < JΠK2

(x), (92)

for all x ∈ Rn \K1 with ΠK1(x) = ΠK2(x).

Proof: For any x ∈ Rn \K1 with ΠK1(x) = ΠK2(x) and

y ∈ Rn, one can write the metric projection of x+y onto K1

and K2, respectively, as

ΠK1(x + y) = ΠK1(x) + JΠK1
(x)y + o(y), (93a)

ΠK2(x + y) = ΠK2(x) + JΠK2
(x)y + o(y), (93b)

where lim
‖y‖→0

o(y)
‖y‖ = 0. Further, since K1 ⊇ K2, by the

monotonicity of metric projections, we have

‖x + y −ΠK1(x + y)‖2 ≤ ‖x + y−ΠK2(x + y)‖2. (94)

Now it follows from (93), (94) and Lemma 5 that
∥∥(I−JΠK2

(x)
)
y
∥∥2

‖y‖2
−

∥∥(I−JΠK1
(x)
)
y
∥∥2

‖y‖2
≥

‖x−ΠK1(x)−o(y)‖2

‖y‖2
−
‖x−ΠK2(x)−o(y)‖2

‖y‖2

+
2yT

(
JΠK1

(x)−JΠK1
(x)
)
o(y)

‖y‖2
, (95)

where the right hand side converges to zero as ‖y‖ → 0.

Therefore, for any y ∈ Rn, one always has

∥∥(I−JΠK2
(x)
)
y
∥∥2 ≥

∥∥(I−JΠK1
(x)
)
y
∥∥2. (96)

Thus, the result follows since 0 4 JΠK1
(x),JΠK2

(x) 4 I

(Lemma 5).

APPENDIX V

CONVEXITY IN POLAR COORDINATES

Similar to the notion of convexity in Cartesian coordi-

nates, a polar curve ρ : (θl, θu) → R≥0 is said to be

Fig. 6. Convexity in polar coordinates. A polar curve is convex (concave) with
respect to the pole iff its epigraph (hypograph) is a convex set, as illustrated
on the right (left, respectively).

convex with respect to the pole if and only if its epigraph,22

epiρ :=
{
(θ, ̺)

∣∣θ∈(θl, θu), ̺ ≥ ρ(θ)
}

, is a convex set; and,

likewise, ρ is said to be concave if and only if its hypograph,

hypρ :=
{
(θ, ̺)

∣∣θ∈(θl, θu), 0 ≤ ̺ ≤ ρ(θ)
}

is a convex set

[17, 37], see Fig. 6.

Alternatively, like the first- and second-order conditions for

convexity of Cartesian functions, one can verify the convexity

of a polar curve as follows:

Theorem 4 (Second-Order Convexity Condition [37]) A twice

differentiable polar curve ρ : (θl, θu) → R>0 is said to be

convex with respect to the pole if 23

Γ := ρ2 + 2

(
dρ

dθ

)2
− ρ

d2ρ

dθ2
≤ 0. (99)

Theorem 5 (Three-Point Convexity Condition [17]) A polar

curve ρ : (θl, θu) → R>0 is convex to the pole if 24

det







1
ρ(θ1)

cos θ1 sin θ1
1

ρ(θ2)
cos θ2 sin θ2

1
ρ(θ3)

cos θ3 sin θ3





·det





1 cos θ1 sin θ1
1 cos θ2 sin θ2
1 cos θ3 sin θ3




≤0,(100)

for all θ1, θ2, θ3 ∈ (θl, θu).

22Note that here the epigraph and the hypograph of a polar curve are
given in polar coordinates, and one can equivalently write them in Cartesian
coordinates as

epiρ =
{

(̺ cos θ, ̺ sin θ)
∣

∣θ ∈ (θl, θu), ̺ ≥ ρ(θ)
}

, (97)

hypρ =
{

(̺ cos θ, ̺ sin θ)
∣

∣θ ∈ (θl, θu), 0 ≤ ̺ ≤ ρ(θ)
}

. (98)

23In [37], the convexity of a polar curve with respect to the pole is
characterized based on its tangent lines: a polar curve at a point is convex iff
the curve in a small neighborhood of that point lies on the opposite side of
the tangent at that point to the pole. Accordingly, the second-order convexity
condition in (99) is derived using the perpendicular distance p of the pole to
the tangent line of a polar curve ρ at point (θ, ρ(θ)), given by

1

p2
= u2 +

(

du

dθ

)2

, (101)

where u := 1
ρ

; and the polar curve ρ is said to be convex to the pole if and

only if
dp
dρ

is negative, where

dp

dρ
= p3u2

(

u+
d2u

dθ2

)

=
p3

ρ2

(

ρ2+2

(

dρ

dθ

)2

−ρ
d2ρ

dθ2

)

. (102)

24Let vt = (cos θt, sin θt) and pt = (ρ(θt) cos θt, ρ(θt) sin θt) for t =
1, 2, 3. Then, to have a geometric understanding of the three-point convexity
condition one can equivalently rewrite (100) as

(

(p2−p1)×(p3−p2)
)

·
(

(v2−v1)×(v3−v2)
)

≤ 0, (103)

where × and · denote the cross and dot products, respectively.
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Fig. 7. Segmentation of a LIDAR scan into convex polar curves using
convexity measures Γ (99) and Υ (100). 25 26

Note that the second determinant term in (100) quantifies the

circular order of θ1, θ2 and θ3, i.e., it is positive (negative)

if these angles are given in counter-clockwise (clockwise,

respectively) order.

In accordance with Theorem 5, since a LIDAR scanner has

a fixed angular resolution in practice, say ∆θ ∈ (0, π), to

check the convexity of a LIDAR scan in counter-clockwise

angular order, we find it convenient to define

Υ(θ) := det







1
ρ(θ−∆θ) cos(θ −∆θ) sin(θ +∆θ)

1
ρ(θ) cos(θ) sin(θ)
1

ρ(θ+∆θ) cos(θ +∆θ) sin(θ +∆θ)





. (104)

Therefore one can identify the convex polar curve segments

of a LIDAR scan using the convexity measures Γ (99) and Υ
(104) as illustrated in Fig. 7.

APPENDIX VI

AN EXTENSION FOR A DISCRETE-TIME ROBOT MODEL

Keeping in mind its potential application to online robot

navigation in a nonconvex environment when combined with

a standard (e.g., sampling based) motion planning algorithm

— a future research direction we will explore in a subsequent

paper, we now introduce a discrete-time version of the “move-

to-projected-goal” law in (10) to iteratively navigate towards

a designated goal location x∗ ∈ F as follows: for any xk ∈ F,

xk+1 = xk −
(
xk −ΠLF(xk)(x

∗)
)
∆t, (105)

where k ∈ N is a discrete time index, ∆t ∈ (0, 1] is a fixed

sample time (step size), and ΠLF(xk)(x
∗) (4) is the metric

projection of the goal x∗ onto the robot’s local free space

LF
(
xk
)

(9). Note that we here avoid collisions along the

line segment joining consecutive robot states, xk and xk+1, by

limiting the range of values of ∆t to (0, 1] since xk+1 becomes

a convex combination of the robot state xk and the projected

25 Here, we set the LIDAR’s angular resolution to ∆θ = π
100

, and
approximately compute the first- and second-order derivatives of a simulated
LIDAR range data, respectively, using its three-point first- and second-order
central differences [20] after smoothing with a five-point Gaussian moving
average filter with unit variance, σ2 = 1 [49].

26 A practical heuristic for identifying convex segments of a LIDAR scan is
its segmentation based on local maxima; however, such a heuristic approach
might detect some concave curve segments in addition to all convex segments
in a LIDAR scan.

goal ΠLF(xk)(x
∗), i.e., xk+1 = (1−∆t)x + ∆tΠLF(xk)(x

∗),
and the line segment joining them is always free of collisions

(Corollary 1).

Therefore, using the continuity of the move-to-projected-

goal law in (10) (Proposition 2) and the type of its stationary

points (Proposition 6), one can conclude that:

Corollary 4 If Assumption 2 holds for the goal and for all

obstacles, then the discrete-time “move-to-projected-goal” law

in (105) starting from almost any robot location in F (1) itera-

tively reaches a small neighborhood, B(x∗, ǫ) for some ǫ > 0,

of the goal x∗ in finite steps with the guarantee of no collisions

along the line segments joining two consecutive robot states,

while strictly decreasing the Euclidean distance to the goal.

Note that the discrete-time “move-to-projected-goal” law in

(105) can be simply adapted to limited range sensing models,

by using the robot’s sensed local free space LFS (24) or the

line-of-sight local free space LFL (30), as well as to the

differential drive model while retaining the convergence and

collision avoidance guarantees.

To demonstrate its motion pattern, we present in Fig. 8

the resulting navigation paths of the discrete-time “move-to-

projected-goal” law in (105) for different sampling times and

sensing models.

Fig. 8. Example navigation paths of the discrete-time “move-to-projected-
goal” law for different sampling times and sensing models: (left) ∆t = 1,
(middle) ∆t = 0.5, and (right) ∆t = 0.25; and (top) local Voronoi-adjacent10

obstacle sensing, and (bottom) a fixed radius sensory footprint.

APPENDIX VII

MOTION PATTERN FAR AWAY FROM THE GOAL

In Fig. 9 we present the motion pattern generated by the

“move-to-projected-goal” law starting at a set of initial robot

configurations far away from the goal, located at the upper

right conner of a 50× 10 environment populated with convex

obstacles, for different sensing and actuation models.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9. Example navigation trajectories of the “move-to-projected-goal” law starting at a set of initial conditions (green) far away from the goal (red) for
different sensing and actuation models: (a,b,c) a fully actuated robot, (d,e,f) a differential drive robot, (a,d) local Voronoi-adjacent10 obstacle sensing, (b,e) a
fixed radius sensory footprint, (c,f) a limited range line-of-sight sensor.

15



REFERENCES

[1] Omur Arslan and Daniel E. Koditschek. Voronoi-based

coverage control of heterogeneous disk-shaped robots.

In Robotics and Automation, 2016 IEEE International

Conference on, 2016.

[2] Omur Arslan and Daniel E. Koditschek. Exact robot

navigation using power diagrams. In Robotics and

Automation, 2016 IEEE International Conference on,

2016.

[3] Alessandro Astolfi. Exponential stabilization of a

wheeled mobile robot via discontinuous control. Journal

of Dynamic Systems, Measurement, and Control, 121(1):

121–126, 1999.

[4] Franz Aurenhammer. Power diagrams: Properties, algo-

rithms and applications. SIAM Journal on Computing,

16(1):78–96, 1987.

[5] Rajendra Bhatia. Positive Definite Matrices. Princeton

Series in Applied Mathematics. Princeton University

Press, 2007.

[6] Stephen Boyd and Lieven Vandenberghe. Convex Opti-

mization. Cambridge University Press, 2004.

[7] Roger W. Brockett. Asymptotic stability and feedback

stabilization. Defense Technical Information Center,

1983.

[8] Francesco Bullo, Jorge Cortés, and Sonia Martinez. Dis-

tributed Control of Robotic Networks: A Mathematical

Approach to Motion Coordination Algorithms. Princeton

University Press, 2009.

[9] Robert R. Burridge, Alfred A. Rizzi, and Daniel E.

Koditschek. Sequential composition of dynamically

dexte-rous robot behaviors. The International Journal

of Robotics Research, 18(6):535–555, 1999.

[10] Robin W. Chaney. Piecewise ck functions in nonsmooth

analysis. Nonlinear Analysis: Theory, Methods & Appli-

cations, 15(7):649 – 660, 1990.

[11] Howie Choset and Joel Burdick. Sensor-based explo-

ration: The hierarchical generalized voronoi graph. The

International Journal of Robotics Research, 19(2):96–

125, 2000.

[12] Howie Choset, Kevin M. Lynch, Seth Hutchinson,

George A. Kantor, Wolfram Burgard, Lydia E. Kavraki,

and Sebastian Thrun. Principles of Robot Motion:

Theory, Algorithms, and Implementations. MIT Press,

Cambridge, MA, 2005.

[13] David C. Conner, Howie Choset, and Alfred A. Rizzi.

Flow-through policies for hybrid controller synthesis

applied to fully actuated systems. Robotics, IEEE Trans-

actions on, 25(1):136–146, 2009.

[14] David C. Conner, Howie Choset, and Alfred A. Rizzi. In-

tegrating planning and control for single-bodied wheeled

mobile robots. Autonomous Robots, 30(3):243–264,

2011.

[15] Christopher I. Connolly and Roderic A. Grupen. The

applications of harmonic functions to robotics. Journal

of Robotic Systems, 10(7):931–946, 1993.

[16] Jorge Cortés, Sonia Martınez, Timur Karatas, and

Francesco Bullo. Coverage control for mobile sensing

networks. Robotics and Automation, IEEE Transactions

on, 20(2):243–255, 2004.

[17] Harold G. Eggleston. Convexity. Cambridge University

Press, 1958.

[18] Ioannis Filippidis and Kostas J. Kyriakopoulos. Ad-

justable navigation functions for unknown sphere worlds.

In Decision and Control and European Control Confer-

ence (CDC-ECC), 2011 50th IEEE Conference on, pages

4276–4281, 2011.

[19] Simon Fitzpatrick and Robert R. Phelps. Differentiability

of the metric projection in Hilbert space. Transactions

of the American Mathematical Society, 270(2):483–501,

1982.

[20] Bengt Fornberg. Generation of finite difference formulas

on arbitrarily spaced grids. Mathematics of Computation,

51(184):699–706, 1988.

[21] Robert M. Haralick, Stanley R. Sternberg, and Xinhua

Zhuang. Image analysis using mathematical morphol-

ogy. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 9(4):532–550, 1987.

[22] Peter Henry, Christian Vollmer, Brian Ferris, and Dieter

Fox. Learning to navigate through crowded environ-

ments. In Robotics and Automation (ICRA), 2010 IEEE

International Conference on, pages 981–986, 2010.

[23] Morris W. Hirsch, Stephen Smale, and Robert L. De-

vaney. Differential Equations, Dynamical Systems, and

an Introduction to Chaos. Academic press, 2nd edition,

2003.

[24] Richard B. Holmes. Smoothness of certain metric pro-

jections on Hilbert space. Transactions of the American

Mathematical Society, 184:87–100, 1973.

[25] Aaron M. Johnson, Matthew T. Hale, Galen C. Haynes,

and Daniel E. Koditschek. Autonomous legged hill and

stairwell ascent. In Safety, Security, and Rescue Robotics

(SSRR), 2011 IEEE International Symposium on, pages

134–142, 2011.

[26] Sertac Karaman and Emilio Frazzoli. High-speed flight in

an ergodic forest. In Robotics and Automation (ICRA),

2012 IEEE International Conference on, pages 2899–

2906, 2012.

[27] Hassan K. Khalil. Nonlinear Systems. Prentice Hall, 3rd

edition, 2001.

[28] Oussama Khatib. Real-time obstacle avoidance for ma-

nipulators and mobile robots. The International Journal

of Robotics Research, 5(1):90–98, 1986.

[29] Daniel E. Koditschek. Exact robot navigation by means

of potential functions: Some topological considerations.

In Robotics and Automation. Proceedings. 1987 IEEE

International Conference on, volume 4, pages 1–6, 1987.

[30] Daniel E. Koditschek and Elon Rimon. Robot navigation

functions on manifolds with boundary. Advances in

Applied Mathematics, 11(4):412 – 442, 1990.

[31] M.K. Kozlov, S.P. Tarasov, and L.G. Khachiyan. The

polynomial solvability of convex quadratic programming.

16



USSR Computational Mathematics and Mathematical

Physics, 20(5):223–228, 1980.

[32] Ludwig Kuntz and Stefan Scholtes. Structural analysis

of nonsmooth mappings, inverse functions, and metric

projections. Journal of Math. Analysis and Applications,

188(2):346–386, 1994.

[33] Andrew Kwok and Sonia Martnez. Deployment algo-

rithms for a power-constrained mobile sensor network.

International Journal of Robust and Nonlinear Control,

20(7):745–763, 2010.

[34] Steven M. LaValle. Planning Algorithms. Cambridge

University Press, Cambridge, U.K., 2006.

[35] Grigoris Lionis, Xanthi Papageorgiou, and Kostas J.

Kyriakopoulos. Locally computable navigation functions

for sphere worlds. In Robotics and Automation, 2007

IEEE International Conference on, pages 1998–2003,

2007.

[36] Jiming Liu. Sensitivity analysis in nonlinear programs

and variational inequalities via continuous selections.

SIAM Journal on Control and Optimization, 33(4):1040–

1060, 1995.

[37] James McMahon and Virgil Snyder. Elements of the

Differential Calculus. American Book Company, 1898.

[38] James Munkres. Topology. Pearson, 2nd edition, 2000.
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