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On the Optimality of Napoleon Triangles

Abstract
An elementary geometric construction, known as Napoleon’s theorem, produces an equilateral triangle,
obtained from equilateral triangles erected on the sides of any initial triangle: The centers of the three
equilateral triangles erected on the sides of the arbitrarily given original triangle, all outward or all inward, are
the vertices of the new equilateral triangle. In this note, we observe that two Napoleon iterations yield
triangles with useful optimality properties. Two inner transformations result in a (degenerate) triangle, whose
vertices coincide at the original centroid. Two outer transformations yield an equilateral triangle, whose
vertices are closest to the original in the sense of minimizing the sum of the three squared distances.
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Abstract An elementary geometric construction, known as Napoleon’s the-
orem, produces an equilateral triangle, obtained from equilateral triangles
erected on the sides of any initial triangle: the centres of the three equilat-
eral triangles erected on the sides of the arbitrarily given original triangle, all
outward or all inward, are the vertices of the new equilateral triangle. In this
note, we observe that two Napoleon iterations yield triangles with useful opti-
mality properties. Two inner transformations result in a (degenerate) triangle,
whose vertices coincide at the original centroid. Two outer transformations
yield an equilateral triangle, whose vertices are closest to the original in the
sense of minimizing the sum of the three squared distances.

Keywords Napoleon Triangle · Optimality · Torricelli Configuration ·
Fermat Problem · Torricelli Point
Mathematics Subject Classification (2000) 51-XX · 90-XX

1 Introduction

In elementary geometry, one way of constructing an equilateral triangle from
any given triangle is as follows: in a plane the centres of equilateral triangles
erected, either all externally or all internally, on the sides of the given triangle
form an equilateral triangle (see [1, Chapter 3.3] and the survey [2]). This result
is generally referred to as Napoleon’s theorem, notwithstanding its dubious

Omur Arslan, Corresponding author
University of Pennsylvania
Philadelphia, USA
omur@seas.upenn.edu

Daniel E. Koditschek
University of Pennsylvania
Philadelphia, USA
kod@seas.upenn.edu



2 Omur Arslan, Daniel E. Koditschek

origins — see [2] and [3] for a detailed history of the theorem. We will refer to
these constructions as the outer and inner Napoleon transformations, and the
associated equilateral triangles as the outer and inner Napoleon triangles of the
original triangle, respectively. Conversely, given its outer and inner Napoleon
triangles in position (i.e., they are oppositely oriented and have the same
centroid), the original triangle is uniquely determined; for this and related
results we refer to [4] and [5]. In other words, the converse of Napoleon’s
theorem offers a parametrization of a triangle in terms of equilateral triangles.
A fascinating application of Napoleon triangles is the planar tessellation used
by Escher: a plane can be tiled using congruent copies of the hexagon, defined
by the vertices of any triangle and its uniquely paired outer Napoleon triangle,
known as Escher’s theorem [6].

Equilaterals built on the sides of a triangle make a variety of appearances
in the classical literature. Torricelli uses this construction to solve Fermat’s
problem: locate a point minimizing the sum of distances to the vertices of a
given triangle — one of the first problems of location science [7]. The unique
solution of this problem is known as the Torricelli point of the given triangle,
located as follows [8]. If an internal angle of the triangle is greater than 120◦,
then the Torricelli point is at that obtuse vertex. Otherwise, the three lines
joining opposite vertices of the original triangle and externally erected triangles
are concurrent, and they intersect at the Torricelli point. The figure, defined
by the original triangle and the erected equilateral triangles, is referred to as
the Torricelli configuration (see [9,10]), and the new vertices of this figure form
the so-called vertex set of the Torricelli configuration. It also bears mentioning
that explicit solutions in nonlinear optimization are very rare. The Fermat
problem for three points is such a special case, and its generalization to more
points has no explicit solution [7].

In this paper, we demonstrate some remarkable, but not immediately ob-
vious, optimality properties of twice iterated Napoleon triangles. First, two
composed inner Napoleon transformations of a triangle collapse the original
one to a point located at its centroid which, by definition, minimizes the sum
of squared distances to the vertices of the given triangle. Surprisingly, two
composed outer Napoleon transformations yield an equilateral triangle, opti-
mally aligned with the original triangle by virtue of minimizing the sum of
squared distances between the paired vertices (Theorem 3.1). It is important
to emphasize that this is another rare instance of a nonlinear optimization
problem that admits an explicit solution.

2 Torricelli and Napoleon Transformations

For any ordered triple x = [x1, x2, x3]
T ∈ R

3d of vectors of the d-dimensional
Euclidean space R

d, let Rx denote the rotation matrix corresponding to a
counter-clockwise rotation by π/2 in the plane, defined by orthonormal vectors
n and t, in which the triangle△x formed by x is positively oriented (i.e., its ver-
tices in counter-clockwise order follow the sequence . . .→1→2→3→1→ . . .),
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Rx : = [ n, t ]
[

0 −1
1 0

]

[ n, t ]
T
, (1)

where

n : =

{

x2−x1

‖x2−x1‖ , if x1 6= x2,
x3−x2

‖x3−x2‖ , otherwise,
t : =

{∈
{

z ∈ S
d−1
∣

∣nTz=0
}

, if x is collinear,
P(n) x3−x1

‖x3−x1‖ , otherwise.
(2)

Here, ‖.‖ denotes the standard Euclidean norm on R
d, and P(n) : = Id − nnT

is the projection onto TnS
d−1 (the tangent space of the (d−1)-sphere S

d−1

at point n ∈ S
d−1), and Id is the d × d identity matrix, and AT denotes the

transpose of a matrix A. For any trivial triangle △x, all of whose vertices
are located at the same point, we fix Rx = 0 by setting x

‖x‖ = 0 whenever

x = 0. Note that △x is both positively and negatively oriented if x is collinear.
Consequently, to define a plane containing such x, we select an arbitrary vector
t perpendicular to n in (2). It is also convenient to denote by c(x) the centroid

of △x, i.e., c(x) : = 1
3

∑3

i=1 xi.

In general, the Torricelli and Napoleon transformations of three points in
Euclidean d-space can be defined based on their original planar definitions in
a 2-dimensional subspace of Rd containing x. That is to say, for any x ∈ R

3d,
select a 2-dimensional subspace of Rd containing x, and then construct the
erected triangles on the side of △x in this subspace to obtain the Torricelli
and Napoleon transformations of x, as illustrated in Figure 1. Accordingly,
let T± : R3d → R

3d and N± : R3d → R
3d denote the Torricelli and Napoleon

Fig. 1: An illustration of (left) the Torricelli point T , the outer
Torricelli configuration with △

ATBT CT and the outer Napoleon tri-
angle △

ANBNCN , and (right) the inner Torricelli configuration with
△AT BT CT

and the inner Napoleon triangle △ANBNCN
of a trian-

gle △ABC . Note that centroids of the vertices of Torricelli configu-
rations, Napoleon triangles and the original triangle all coincide, i.e.,
c(△ABC)=c(△

AT BT CT )=c(△
ANBNCN )=c

(

△AT BT CT

)

=c
(

△ANBNCN

)

.
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transformations where the sign, + and −, determines the type of the transfor-
mation, inner and outer, respectively. Denoting by ⊗ the Kronecker product
[11], one can write closed form expressions of the Torricelli and Napoleon
transformations as follows.

Lemma 2.1 The Torricelli and Napoleon transformations of any triple
x ∈ R

3d on a plane containing x are, respectively, given by

T±(x) =

(

1

2
K±

√
3

2
(I3 ⊗Rx)L

)

x, (3)

N±(x) =
1

3

(

Kx+ T±(x)
)

, (4)

where

K =

[ 0 1 1
1 0 1
1 1 0

]

⊗ Id and L =

[ 0 −1 1
1 0 −1

−1 1 0

]

⊗ Id. (5)

Proof One can locate the new vertex of an equilateral triangle, inwardly or
outwardly, constructed on one side of △x in the plane containing x using
different geometric properties of equilateral triangles. We find it convenient
to use the perpendicular bisector of the corresponding side of △x, the line
passing through its midpoint and being perpendicular to it, such that the new
vertex is on this bisector and at a proper distance away from the side of △x.

For instance, let y = [y1, y2, y3]
T = T+(x). Consider the side of △x joining

x1 and x2, using the midpoint m12 : = 1
2
(x1 + x2), to locate the new vertex,

y3, of inwardly erected triangle on this side as

y3 = m12 +

√
3

2
Rx(x2 − x1) , (6)

where Rx (see (1)) is a counter-clockwise rotation by π
2
in the plane where x

is positively oriented. Note that the height of an equilateral triangle from any

side is
√
3
2

times its side length. Hence, by symmetry, one can conclude (3).

Given a Torricelli configuration y = [y1, y2, y3]
T

= T±(x), by definition,

the vertices of the associated Napoleon triangle z = [z1, z2, z3]
T = N±(x) are

given by

z1 =
1

3
(y1 + x2 + x3) , z2 =

1

3
(x1 + y2 + x3) and z3 =

1

3
(x1 + x2 + y3) , (7)

which is equal to (4), and so the result follows. ⊓⊔

Note that the Torricelli and Napoleon transformations of x are unique if and
only if x ∈ R

3d is non-collinear. If, contrarily, x is collinear, then △x is both
positively and negatively oriented, and for d ≥ 3 there is more than one 2-
dimensional subspace of Rd containing x.
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Remark 2.1 ([4]) For any x = [x1, x2, x3]
T ∈ R

3d, the centroid of the Tor-

ricelli configuration y = [y1, y2, y3]
T

= T±(x), the Napoleon configuration
z = N±(x) and the original triple x all coincide, i.e.,

c(x) = c(y) = c(z) , (8)

and the distances between the associated elements of x and y are all the same,
i.e., for any i 6= j ∈ {1, 2, 3}

‖yi − xi‖2 = ‖yj − xj‖2 . (9)

An observation key to all further results is that Napoleon transformations
of equilateral triangles are very simple.

Lemma 2.2 The inner Napoleon transformation N+ of any triple

x = [x1, x2, x3]
T ∈ R

3d comprising the vertices of an equilateral triangle △x

collapses it to the trivial triangle all of whose vertices are located at its cen-
troid c(x),

N+(x) = 13 ⊗ c(x) , (10)

whereas the outer Napoleon transformation N− reflects the vertices of △x with
respect to its centroid c(x),

N−(x) = 2 · 13 ⊗ c(x)− x. (11)

Here, 13 is the R
3 column vector of all ones, and · denotes the standard en-

trywise (or Hadamard [12, Section 5.7]) product.

Proof Observe that the inwardly erected triangle on any side of an equilateral
triangle is equal to the equilateral triangle itself, i.e., T+(x) = x, and so, by
definition, one has (10). Alternatively, using (4), one can obtain

N+(x) =
1

3

(

Kx+T+(x)
)

=
1

3
(Kx+ x) = 13 ⊗ c(x) , (12)

where K is defined as in (5).

Now consider outwardly erected equilateral triangles on the sides of an
equilateral triangle, and let y = [y1, y2, y3]

T
= T−(x). Note that each erected

triangle has a common side with the original triangle. Since △x is equilat-
eral, observe that the midpoint of the unshared vertices of an erected triangle
and the original triangle is equal to the midpoint of their common sides, i.e.,
1
2
(y1 + x1) =

1
2
(x2 + x3) and so on. Hence, we have T−(x) = Kx − x. Thus,

one can verify the result using (4) as

N−(x) =
1

3

(

Kx+T−(x)
)

=
1

3
(Kx+Kx− x) = 2 · 13 ⊗ c(x)− x. (13)

⊓⊔
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Since the Napoleon transformation of any triangle results in an equilateral
triangle, motivated from Lemma 2.2, we now consider the iterations of the
Napoleon transformation. For any k ≥ 0, let Nk

± : R3d → R
3d denote the k-th

Napoleon transformation defined to be

Nk+1
± : = N± ◦Nk

±, (14)

where we set N0
± : = id, and id : R3d → R

3d is the identity map on R
3d.

It is evident from Lemma 2.2 that the following lemma holds.

Lemma 2.3 For any x ∈ R
3d and k ≥ 1,

Nk+1
+ (x) = 13 ⊗ c(x) , and Nk+2

− (x) = Nk
−(x) . (15)

As a result, the basis of iterations of the Napoleon transformations consists of
N± and N2

±, whose explicit forms, except N2
−, are given above. Using (4) and

(11), the closed form expression of the double outer Napolean transformation
N2

− can be obtained as

Lemma 2.4 An arbitrary triple x = [x1, x2, x3]
T ∈ R

3d gives rise to the double
outer Napoleon triangle, N2

− : R3d → R
3d, according to the formula

N2
−(x) =

2

3
x+

1

3
T+(x) . (16)

Proof By Napoleon’s theorem, N−(x) is an equilateral triangle. Using (4) and
Lemma 2.2, one can obtain the result as follows:

N2
−(x)=N−

(

N−(x)
)

=2·13⊗c(x)−N−(x)=2·13⊗c(x)− 1

3

(

Kx+T−(x)
)

, (17)

=
2

3
(Kx+x)− 1

3

(

Kx+T−(x)
)

=
2

3
x+

1

3

(

Kx−T−(x)
)

=
2

3
x+

1

3
T+(x), (18)

where K is defined as in (5). ⊓⊔

Note that N2
−(x) is a convex combination of x and T+(x), see Figure 2.

3 Optimality of Napoleon Transformations

To best of our knowledge, the Napoleon transformation N± is mostly recog-
nized as being a function into the space of equilateral triangles. In addition to
this inherited property, N2

± has an optimality property that is not immediately
obvious. Although the double inner Napoleon transformation N2

+ is not really
that interesting to work with, it gives a hint about the optimality of N2

−: for
any given triangle N2

+ yields a trivial triangle, all of whose vertices are located
at the centroid of the given triangle which, by definition, minimizes the sum
of squared distances to the vertices of the original triangle. Surprisingly, one
has a similar optimality property for N2

−:
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Fig. 2: (left) Outer, △
ANBNCN , and double outer, △

ADBDCD , Napoleon
transformations of a triangle △ABC . (right) The double outer Napoleon tri-
angle △

ADBDCD is a convex combination of the original triangle △ABC and
the vertex set of its inner Torricelli configuration △AT BT CT

.

Theorem 3.1 The double outer Napoleon transformation N2
−(x) given in (16)

yields the equilateral triangle most closely aligned with △x in the sense that it
minimizes the total sum of squared distances between corresponding vertices.
That is to say, for any x = [x1, x2, x3]

T ∈ R
3d, N2

−(x) is an optimal solution
of the following problem:

minimize
3
∑

i=1

‖xi − yi‖2

subject to ‖y1 − y2‖2 = ‖y1 − y3‖2 = ‖y2 − y3‖2 ,
(19)

where y = [y1, y2, y3]
T ∈ R

3d. Furthermore, if x is non-collinear, then (19)
has a unique solution.

Proof Using the method of Lagrange multipliers [13], we first show that an
optimal solution of (19) lies in the plane containing the triangle △x. Then, to
show the result, we solve (19) using a proper parametrization of equilateral
triangles in R

2.
The Lagrangian formulation of (19) minimizes

L(y, λ1, λ2) =

3
∑

i=1

‖xi − yi‖22 + λ1

(

‖y1 − y2‖22 − ‖y1 − y3‖22
)

+ λ2

(

‖y1 − y2‖22 − ‖y2 − y3‖22
)

, (20)

where λ1, λ2 ∈ R are Lagrange multipliers. A necessary condition for optimal-
ity in (19) is that the gradient ∇yL(y, λ1, λ2) of the Lagrangian with respect
to y at any locally optimal solution is zero,

∇yL(y, λ1, λ2) = 2

[

(y1 − x1) + λ1(y3 − y2) + λ2(y1 − y2)
(y2 − x2) + λ1(y2 − y1) + λ2(y3 − y1)
(y3 − x3)− λ1(y3 − y1)− λ2(y3 − y2)

]

= 0, (21)
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from which one can conclude that an optimal solution of (19) lies in the plane
containing △x. Accordingly, without any loss of generality, suppose that △x

is a positively oriented triangle in R
2, i.e., its vertices are in counter-clockwise

order in R
2.

In general, an equilateral triangle △y in R
2 with vertices

y = [y1, y2, y3]
T ∈ R

6 can be uniquely parametrized using two of its vertices,
say y1 and y2, and a binary variable k ∈ {−1,+1} specifying the orientation of
△y; for instance, k = +1 if △y is positively oriented, and so on. Consequently,
the remaining vertex, y3, can be located as

y3 =
1

2
(y1 + y2) + k

√
3

2
Rπ/2(y2 − y1), (22)

where Rπ/2 =
[

0 −1
1 0

]

is the rotation matrix defining a rotation by π/2.

Hence, one can rewrite the optimization problem (19) in terms of new
parameters as an unconstrained optimization problem: for y1, y2 ∈ R

2 and
k ∈ {−1, 1},

minimize ‖x1 − y1‖22 + ‖x2 − y2‖22 +
∥

∥x3 −My1 −MTy2
∥

∥

2

2
, (23)

where M : = 1
2
I − k

√
3
2
Rπ/2, and I is the 2 × 2 identity matrix. Note that

M+MT = I, MTM = MMT = I and M2 = −MT.

For a fixed k ∈ {−1, 1}, (23) is a convex optimization problem of y1 and
y2, because every norm on R

n is convex, and compositions of convex functions
with affine transformations preserve convexity [14]. Hence, a global optimal
solution of (23) occurs where the gradient of the objective function is zero at

[

(

I+MTM
) (

M2
)T

M2
(

I+MMT
)

]

[

y1
y2

]

=
[

x1 +MTx3
x2 +Mx3

]

, (24)

which simplifies to

[

2I −M
−MT 2I

] [

y1
y2

]

=
[

x1 +MTx3
x2 +Mx3

]

. (25)

Note that the objective function, f(y), is strongly convex, because its Hessian,
∇2f(y), satisfies

∇2f(y) =
[

2I −M
−MT 2I

]

� I, (26)

which means that for a fixed k ∈ {−1,+1} the optimal solution of (23) is
unique.

Now observe that

1

3

[

2I M
MT 2I

] [

2I −M
−MT 2I

]

=
[

I 0
0 I

]

, (27)
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hence the solution of the linear equation (25) is

[

y1
y2

]

=
1

3

[

2I M
MT 2I

][

x1+MTx3
x2+Mx3

]

=
1

3

[

2x1+2MTx3+Mx2+M2x3
MTx1+

(

M2
)T

x3+2x2+2Mx3

]

, (28)

=
1

3

[

2x1+MTx3+Mx2
2x2+MTx1+Mx3

]

=

[

1
2

(

x1+
x1+x2+x3

3

)

+k 1

2
√
3
Rπ/2(x3−x2)

1
2

(

x2+
x1+x2+x3

3

)

+k 1

2
√
3
Rπ/2(x1−x3)

]

. (29)

Here, substituting y1 and y2 back into (22) yields

y3 =
1

2

(

x3 +
x1 + x2 + x3

3

)

+ k
1

2
√
3
Rπ/2(x2 − x1) . (30)

Thus, overall, we have

y=
2

3
x+

1

3

(

1

2
Kx+k

√
3

2

(

I3 ⊗Rπ/2

)

Lx

)

=

{

2
3
x+ 1

3
T+(x), if k = +1,

2
3
x+ 1

3
T−(x), if k = −1,

(31)

whereK and L are defined as in (5). Recall that △x is assumed to be positively
oriented, i.e., Rx = Rπ/2, and so it is convenient to have the results in terms
of Torricelli transformations T±, see (3). As a result, the difference of y and
x is simply given by

y − x =

{

1
3

(

T+(x)− x
)

, if k = +1,
1
3

(

T−(x)− x
)

, if k = −1.
(32)

Finally, one can easily verify that the optimum value of k is equal to +1,
since the distance of x to the vertices of its inner Torricelli configuration T+(x)
is always less than or equal to its distance to the vertices of its outer Torricelli
configuration T−(x). Here, the equality only holds if x is collinear. Thus, an
optimal solution of (19) coincides with the double outer Napoleon transforma-
tion, N2

−(x) (16), and it is the unique solution of (19) if x is non-collinear. ⊓⊔

4 Conclusions

In this paper, we present an interesting, but not so obvious, optimality prop-
erty of Napoleon transformations: an optimally aligned equilateral triangle
with any given triangle that minimizes sum of squared distances between the
corresponding vertices of triangles is the double outer Napoleon transforma-
tion of the original triangle. An open question is whether any extension of
Napoleon’s theorem to higher dimensional simplices [9,10] has a similar opti-
mality property.

It is also useful to note that our particular interest in the optimality of
Napoleon triangles comes from our research on coordinated robot navigation,
where a group of robots require to interchange their (structural) adjacen-
cies through a minimum cost configuration, determined by the double outer
Napoleon transformation [15]. We are currently exploring the use of Napoleon
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transformations for optimal pattern formation control of multirobot systems
for applications such as search and rescue, area exploration, surveillance and
reconnaissance, and environment monitoring.
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