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Abstract
In this paper we introduce and study three new measures for efficient discriminative comparison of
phylogenetic trees. The NNI navigation dissimilarity $d_{nav}$ counts the steps along a “combing” of the
Nearest Neighbor Interchange (NNI) graph of binary hierarchies, providing an efficient approximation to the
(NP-hard) NNI distance in terms of “edit length”. At the same time, a closed form formula for $d_{nav}$
presents it as a weighted count of pairwise incompatibilities between clusters, lending it the character of an
edge dissimilarity measure as well. A relaxation of this formula to a simple count yields another measure on all
trees — the crossing dissimilarity $d_{CM}$. Both dissimilarities are symmetric and positive definite (vanish
only between identical trees) on binary hierarchies but they fail to satisfy the triangle inequality. Nevertheless,
both are bounded below by the widely used Robinson–Foulds metric and bounded above by a closely related
true metric, the cluster-cardinality metric $d_{CC}$. We show that each of the three proposed new
dissimilarities is computable in time O($n^2$) in the number of leaves $n$, and conclude the paper with a
brief numerical exploration of the distribution over tree space of these dissimilarities in comparison with the
Robinson–Foulds metric and the more recently introduced matching-split distance.
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Abstract

In this paper we introduce and study three new measures for efficient discriminative comparison of phylogenetic trees. The NNI

navigation dissimilarity dnav counts the steps along a “combing” of the Nearest Neighbor Interchange (NNI) graph of binary

hierarchies, providing an efficient approximation to the (NP-hard) NNI distance in terms of “edit length”. At the same time, a

closed form formula for dnav presents it as a weighted count of pairwise incompatibilities between clusters, lending it the character

of an edge dissimilarity measure as well. A relaxation of this formula to a simple count yields another measure on all trees — the

crossing dissimilarity dCM . Both dissimilarities are symmetric and positive definite (vanish only between identical trees) on binary

hierarchies but they fail to satisfy the triangle inequality. Nevertheless, both are bounded below by the widely used Robinson-

Foulds metric and bounded above by a closely related true metric, the cluster-cardinality metric dCC . We show that each of the

three proposed new dissimilarities is computable in time O(n2) in the number of leaves n, and conclude the paper with a brief

numerical exploration of the distribution over tree space of these dissimilarities in comparison with the Robinson-Foulds metric

and the more recently introduced matching-split distance.

Keywords:

Phylogenetic Trees, Evolutionary Trees, Nearest Neighbor Interchange, Comparison of Classifications, Tree Metric.

1. Introduction

1.1. Motivation

A fundamental classification problem common to both computational biology and engineering is the efficient

and informative comparison of hierarchical structures. In bioinformatics settings, these typically take the form of

phylogenetic trees representing evolutionary relationships within a set S of taxa. In pattern recognition and data

mining settings, hierarchical trees are often used to encode nested sequences of groupings of a set of observations.

Dissimilarity between combinatorial trees has been measured in the past literature largely by recourse to one of two

separate approaches: comparing edges and counting edit distances. Representing the former approach, a widely used

tree metric is the Robinson-Foulds (RF) distance, dRF , [1] whose count of the disparate edges between trees requires

linear time, O(n), in the number of leaves, n, to compute [2]. Empirically, dRF offers only a very coarse measure

of disparity, and among its many proposed refinements, the recent matching split distance dMS , [3, 4] offers a more

discriminative metric albeit with considerably higher computational cost, O(n2.5 log n). Alternatively, various edit

distances have been proposed [5–8] but the most natural variant, the Nearest Neighbor Interchange (NNI) distance

dNNI , entails an NP-complete computation for both labelled and unlabelled trees [9].
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Email addresses: omur@seas.upenn.edu (Omur Arslan), guralnik@seas.upenn.edu (Dan P. Guralnik), kod@seas.upenn.edu

(Daniel E. Koditschek)

1

elsevier-logo-3p.eps
SDlogo-3p.eps


Arslan, Guralnik, Koditschek / Discrete Applied Mathematics 00 (2017) 1–25 2

1.2. Results

Our main contribution is the introduction of a dissimilarity measure on the space BTS of labelled binary trees

which bridges the above approaches by what is, effectively, a solution to the NNI navigation problem in BTS :

Problem 1 (NNI Navigation Problem). Given a target τ ∈ BTS , provide an efficient algorithm Aτ which, for any σ ∈

BTS , computes a Nearest Neighbor Interchange to be performed on σ while guaranteeing that successive application

of Aτ terminates in τ.

This problem is motivated by applications in coordinated robot navigation [10–13], where a group of robots is re-

quired to reconfigure reactively in real time their (structural) adjacencies while navigating towards a desired goal

configuration. Thus, our particular formulation of the problem is inspired by the notion of reactive planning [14], but

may likely hold value for researchers interested in tree consensus and averaging as well.

Of course, since computation of dNNI is NP-hard, one cannot hope for repeated applications of Aτ to produce

NNI geodesics without incurring prohibitive complexity in each iteration. However, as we will show, constructing

an efficient navigation scheme is possible if we allow the algorithm to produce less restricted paths: for |S | = n, our

navigation algorithms require O(n) time for each iteration and produce paths of length O(n2) (as compared to the

O(n log n) diameter of dNNI — see (19)).

Additional insight into the geometry of the space (BTS , dNNI ) is gained by recognizing a significant degree of

freedom with which our navigation algorithm may select the required tree restructuring operation at each stage. As

it turns out, for any given target τ, the repeated application of Aτ to a tree σ until reaching τ will yield paths of

equal lengths regardless of any choices made along the way. This length, by definition, is the navigation dissimilarity

dnav (σ, τ) (and is obtained, in the manner described, in O(n3) time, though more efficient implementations will guar-

antee O(n2)). At the same time, a closed form formula we derive for dnav allows us to avoid computing a navigation

path when only the value of dnav is needed, and computes it in O(n2) time. Surprisingly, despite the asymmetric

character of its construction, dnav is a symmetric (and positive definite) dissimilarity on BTS , though it fails to be a

metric.

Although dnav does not satisfy the triangle inequality, it is related to the well accepted Robinson-Foulds distance

by the following tight bounds:

dRF ≤ dnav ≤
1

2
d2

RF +
1

2
dRF , (1)

We find it useful to introduce a “relaxation” of dnav, the crossing dissimilarity dCM . This dissimilarity simply counts

all the pairwise cluster incompatibilities between two trees, hence it is symmetric, positive-definite, and computable

in O(n2) time. In fact, the two dissimilarities are commensurable, leading to similar bounds in terms of dRF :

dRF ≤ dnav ≤
3

2
dCM , dRF ≤ dCM ≤ d2

RF . (2)

Finally, we introduce a true metric whose spatial resolution and computational complexity is comparable to those

our new dissimilarities. Exploiting a well known relation between trees and ultrametrics [15], we also introduce the

cluster-cardinality distance dCC — constructed as the pullback of a matrix norm along an embedding of hierarchies

into the space of matrices and computable in O(n2) time — which is a true metric bounding dCM from above (and

hence also dnav, up to a constant factor). Thus, cumulatively we obtain:

2

3
dRF ≤

2

3
dnav ≤ dCM ≤ dCC . (3)

We have surveyed some of the new features of our tree proximity measures that might hold interest for pattern

classification and phylogeny analysis relative to the diverse alternatives that have appeared in the literature. Closest

among these many alternatives [16–18], dnav has some resemblance to an early NNI graph navigation algorithm, dra

[18] which used a divide-and-conquer approach with a balancing strategy to achieve an O(n log n) computation of tree

dissimilarity. Notwithstanding its lower computational cost, in contrast to dnav, the recursive definition of dra, as with

many NNI distance approximations [16–18], does not admit a closed form expression.

It is often of interest to compare more than pairs of hierarchies at a time, and the notion of a “consensus” tree has

accordingly claimed a good deal of attention in the literature [19]. For instance, the majority rule tree [20] of a set of

2
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trees is a median tree respecting the RF distance and provides statistics on the central tendency of trees [21]. When

dnav and dCM are extended to degenerate trees they fail to be positive definite, and thus their behavior over (typically

degenerate) consensus trees departs still further from the properties of a true metric. However, it turns out that both

notions of a consensus tree (strict [22], and loose/semi-strict [23]) behave as median trees with respect to both our

dissimilarities. In fact, the loose consensus tree is the maximal (finest) median tree with respect to inclusion for both

dnav and dCM .

The paper is organized as follows. Section 2 briefly summarizes the necessary background while introducing the

notation used throughout the sequel. Section 3 introduces and studies the cluster-cardinality distance dCC and the

crossing dissimilarity dCM . In Section 4 we present a solution of the NNI navigation problem and study properties

of the resulting NNI navigation dissimilarity dnav and its relations with other tree dissimilarity measures. Section

5 discusses the relation between commonly used consensus models and our tree dissimilarities dCM and dnav, and

compares our proposed tree measures with dRF and dMS based on some frequently used empirical distributions of tree

measures. A brief discussion of future directions follows in Section 6.

2. Preliminaries

2.1. Hierarchies

By a hierarchy τ over a fixed non-empty finite index set S we shall mean a rooted tree with labeled leaves (see

Figure 1). Formally, τ is a finite connected acyclic graph with leaves (vertices of degree one) bijectively labelled by

S , and edges oriented in such a way that (i) all interior vertices have out-degree at least two, and (ii) there is a vertex,

referred to as the root of τ, such that every edge is oriented away from the root. Under these assumptions all the

vertices of τ are reachable from the root through a directed path in τ [24].

The cluster C (v) of a vertex v ∈ Vτ of a hierarchy τ is defined to be the set of leaves reachable from v by a directed

path in τ. Singleton clusters and the root cluster S are common to all trees, and we refer to them as the trivial clusters.

We denote by C (τ) (respectively Cint (τ)) the set of all clusters (resp. non-trivial clusters) of τ:

C (τ) :=
{
C (v)

∣∣∣ v ∈ Vτ
}
⊆ P (S ) , Cint (τ) :=

{
I ∈ C (τ) \ {S }

∣∣∣∣ |I| ≥ 2

}
, (4)

where P (S ) denotes the power set of S .

2.1.1. Compatibility

Definition 1 ([8, 25]). Subsets A, B ⊂ S are said to be compatible, A ⊲⊳ B, if

A ∩ B = ∅ ∨ A ⊆ B ∨ B ⊆ A . (5)

If A 6⊲⊳ B, then we say that A and B cross. We further extend the compatibility relation (⊲⊳) as follows:

• For A,B ⊆ P (S ), write A ⊲⊳ B if A ⊲⊳ B for all A ∈ A and B ∈ B;

• For a cluster I ⊆ S and a tree τ over the leaf set S , write I ⊲⊳ τ if {I} ⊲⊳ C (τ);

• For two trees σ and τ over the leaf set S , write σ ⊲⊳ τ if C (σ) ⊲⊳ C (τ).

By construction, any two elements of C (τ) are compatible for any tree τ. This motivates the following definition:

Definition 2 ([25]). A subset A of P (S ) is said to be nested — also referred to in the literature as a “laminar

family” — if any two elements of A are compatible. C (τ) is known as the laminar family associated with τ .

3
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I−τ

τ

root

I

Pr (I, τ )

Ch (I, τ ) Des (I, τ )

A
nc
(I
, τ
)

111 2 3 4 5 6 7 8 9 10 12 13

interior node

leaf node

Figure 1. Hierarchical Relations: ancestors - Anc (I, τ), parent - Pr (I, τ), children - Ch (I, τ), descendants - Des (I, τ), and local complement

(sibling) - I−τ of cluster I of a rooted binary phylogenetic tree, τ ∈ BT[13]. Filled and unfilled circles represent interior and leaf nodes, respectively.

An interior node is referred to by its cluster, the list of leaves below it; for example, I = {4, 5, 6, 7}. Accordingly, the cluster set of τ is C (τ) ={
{1} , {2} , . . . , {13} , {1, 2} , {1, 2, 3} , {4, 5} , {6, 7} , {4, 5, 6, 7} , {1, 2, . . . , 7} , {9, 10} , {8, 9, 10} , {11, 12} , {11, 12, 13} , {8, 9, . . . , 13} , {1, 2, . . . , 13}

}
.

2.1.2. Hierarchical Relations

The cluster set C (τ) of a hierarchy τ completely determines its representation as a rooted tree with labeled leaves:

C (τ) stands in bijective correspondence with the vertex set of τ, and (v, v′) is an edge in τ if and only if C (v) ⊃ C (v′)

and there is no ṽ ∈ Vτ such that C (v) ⊃ C (ṽ) ⊃ C (v′). Consequently, the standard notions of ancestor, descendant,

parent and child of a vertex in common use for rooted trees carry over to the cluster representation as follows:

Anc (I, τ) =
{
V ∈C (τ)

∣∣∣ I ( V
}
, Des (I, τ) =

{
V ∈C (τ)

∣∣∣V ( I
}
, (6a)

Pr (I, τ) = min (Anc (I, τ)) , Ch (I, τ) =
{
V ∈ C (τ)

∣∣∣Pr (V, τ) = I
}
, (6b)

where min (Anc (I, τ)) is computed with respect to the inclusion order. Note that for the trivial clusters we have

Pr (S , τ) = ∅ and Ch ({s}, τ) = ∅ for s ∈ S .

Since the set of children partitions each parent, we find it useful to define the local complement I−τ of I ∈ C (τ) as

I−τ := Pr (I, τ) \ I , (7)

not to be confused with the standard (global) complement, IC = S \ I. Further, a grandchild in τ is a cluster G ∈ C (τ)

having a grandparent Pr2 (G, τ) := Pr
(
Pr (G, τ) , τ

)
in τ. We denote the set of all grandchildren in τ by G (τ),

G (τ) :=
{
G ∈ C (τ)

∣∣∣Pr2 (G, τ) , ∅
}
. (8)

If A, B are either elements of S or clusters of τ, it is convenient to have (A∧B)τ denote the smallest (in terms of

cardinality) common ancestor of A and B in τ. Finally, the depth ℓτ(I) of a cluster in a hierarchy τ is defined to equal

the number of distinct ancestors of I in τ.

2.1.3. Nondegeneracy

A rooted tree where every interior vertex has exactly two children is said to be binary or non-degenerate. All other

trees are said to be degenerate. We will denote the set of hierarchies over a finite leaf set S , by TS . The subset of

non-degenerate hierarchies will be denoted by BTS .

Note that the laminar family C (τ) of a degenerate tree τ may always be augmented with additional clusters while

remaining nested (Definition 2). This leads to the well known result:

Remark 1 ([25, 26]). Let τ ∈ TS . Then τ has at most 2 |S | − 1 vertices, with equality if and only if τ is nondegenerate,

if and only if C (τ) is a maximal laminar family in P (S ) with respect to inclusion.1

1In this paper we adopt the convention that a laminar family does not contain the empty set (as an element).

4
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2.1.4. Consensus

Definition 3 ([22, 23]). For any set of trees T in TS , the strict and loose consensus trees of T , denoted T∗ and T ∗

respectively, are defined by specifying their cluster sets as follows:

C (T∗) =
⋂

τ∈T

C (τ) , C (T ∗) =

I ∈
⋃

τ∈T

C (τ)

∣∣∣∣∣∣∀σ ∈ T I ⊲⊳ σ

 . (9)

Note that the loose consensus tree T ∗ of T refines the strict consensus tree T∗, that is C (T ∗) ⊇ C (T∗).

2.2. Some Operations on Trees

2.2.1. The NNI Graph

The standard definition of NNI walks on unrooted binary trees [5, 6] conveniently restricts to the space BTS of

rooted binary trees as follows:

Definition 4. Let σ ∈ BTS . We say that τ ∈ BTS is the result of performing a Nearest Neighbor Interchange (NNI)

move on σ at a grandchild G ∈ G (σ) (8) if

C (τ) =
(
C (σ) \

{
Pr (G, σ)

})
∪
{
Pr2 (G, σ) \G

}
. (10)

We often indicate this by writing τ = NNI(σ,G).

Note that the NNI move at cluster G on σ swaps cluster G with its parent’s sibling Pr (G, σ)−σ to yield τ, depicted in

Figure 2(left); and after an NNI move at cluster G of σ, grandchild G of grandparent P = Pr2 (G, σ) with respect to σ

becomes child G of parent P = Pr (G, τ) with respect to τ.

It is standard to say that σ, τ ∈ BTS are NNI-adjacent if and only if one can be obtained from the other by a single

move. Figure 2(left) illustrates the moves on BTS and their inverses.

A

AA

B

BB

C

CC

σ

τ

γ

(σ,A)

(τ, C)

(σ, B)

(γ, C)

(τ,B)

(γ,A)

1

1

1

11

1

1

1

1

1

1

1

11 1

2

2

2

22

2

2

2

2

2

2

2

22 2

3

3

3

33

3

3

3

3

3

3

3

33 3

4

4

4

44

4

4

4

4

4

4

4

44 4

Figure 2. NNI moves (arrows, left) between binary trees, each move is labeled by its source tree and the grandchild defining the move, and the NNI

Graph for S = [4] = {1, 2, 3, 4} (right). These figures are adapted from [12].

The NNI-graph is formed over the vertex set BTS by declaring two trees to be connected by an edge if and only if

they are NNI-adjacent, see e.g. Figure 2(right). We will work with a directed version of this graph:

Definition 5. The directed NNI graph NS = (BTS ,ES ) is the directed graph on BTS with (σ, τ) ∈ ES iff τ results

from applying an NNI move to σ. We will henceforth identify the notation for an NNI move (σ,G), G ∈ G (σ) with the

directed edge (σ,NNI(σ,G)) ∈ ES wherever there is no danger of confusion.

The (directed) NNI-graph on n leaves is a regular graph of out-degree 2(n − 2) [5]. Our description clarifies this

by parametrizing the set of neighbors of τ ∈ BTS with its grandchildren, |G (τ)| = 2(|S | −2). The vertex set of the NNI

graph is known to grow super exponentially with the number of leaves [24, 27, 28], 2

∣∣∣BT[n]

∣∣∣ = (2n − 3)!!
def.

= (2n − 3)(2n − 5) · · ·3 · 1 , n ≥ 2 . (11)

2In enumerative combinatorics, the double factorial is commonly encountered for counting combinatorial objects, such as binary trees [27, 28].

5
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As a result, exploration of the NNI-graph (for example, searching for the shortest path between hierarchies or an

optimal phylogenetic tree model) rapidly becomes impractical and costly as the number of leaves increases. A useful

observation for NNI-adjacent trees is:

Lemma 1. An ordered pair of hierarchies (σ, τ) is an edge in NS if and only if there exists an ordered triple (A, B,C)

of common clusters of σ and τ such that {A ∪ B} = C (σ) \ C (τ) and {B ∪ C} = C (τ) \ C (σ). The triple (A, B,C) is

uniquely determined by (σ, τ) and will be referred to as the NNI-triplet associated with (σ, τ).

Proof. The proof amounts to a formal restatement of the observations made in Figure 2(left). See Appendix A.1. �

Observe that the triplet in reverse order (C, B, A) is the NNI-triple associated with the edge (τ, σ). Also note that the

NNI moves on σ at A and on τ at C yield τ and σ, respectively.

2.2.2. Tree Restriction

Definition 6. Let S be a fixed finite set and K ⊆ S . The restriction map resK : P (S )→ P (K) is defined to be

resK (A) :=
{
A ∩ K

∣∣∣ A ∈ A , A ∩ K , ∅
}

(12)

for any A ⊆ P (S ). It is convenient to have A
∣∣∣
K

denote resK (A). For σ ∈ TK and τ ∈ TS we will write:

σ = resK (τ) = τ
∣∣∣
K
⇐⇒ C (σ) = C (τ)

∣∣∣
K
. (13)

Remark 2. Let τ ∈ BTS and denote {L,R} := Ch (S , τ) . Then one has C (τ) = C
(
τ
∣∣∣
L

)
∪
{
S
}
∪ C
(
τ
∣∣∣
R

)
.

Lemma 2. For any finite set S and K ⊆ S with |K| ≥ 2, resK (BTS ) = BTK .

Proof. See Appendix A.2. �

2.3. Dissimilarities, Metrics and Ultrametrics

Recall that a dissimilarity measure on X, or simply a dissimilarity, is a real-valued nonnegative symmetric function

d on X × X satisfying d(x, x) = 0 for all x ∈ X. Recall that a dissimilarity d on X is positive definite if d (x, y) = 0

implies x = y for all x, y ∈ X. Many approximations of the (NP-hard) NNI metric are positive definite dissimilarities

[16–18]. A dissimilarity d is a metric if it satisfies the triangle inequality, d (x, y) ≤ d (x, z) + d (z, y) for all x, y, z ∈ X.

For example:

Definition 7 ([1] and[3, 4]). The Robinson-Foulds distance dRF on TS is defined by: 3

dRF (σ, τ) =
1

2

∣∣∣C (σ) ⊖ C (τ)
∣∣∣ , σ, τ ∈ TS . (14)

The matching split distance dMS between a pair of hierarchies σ and τ in BTS is defined to be the value of

a minimum-weighted perfect matching in the graph GS (σ, τ) obtained from σ, τ ∈ BTS as the complete bipartite

graph with sides Cint (σ) and Cint (τ) with each edge (I, J) ∈ Cint (σ) × Cint (τ) carrying the weight 4 AS (I, J) =

min

(∣∣∣∣I ⊖ J
∣∣∣∣ ,
∣∣∣I ⊖ JC

∣∣∣
)
.

It is known that dRF ≤ dMS ≤
|S |+1

2
dRF [3], which explains the improvement of dMS over dRF in discrimina-

tive power. At the same time, the cost of computing a minimum weighted perfect matching in any GS (σ, τ) is

O(|S |2.5 log |S |), which motivates the search for dissimilarities producing similar improvement in discriminative power

(bounding dRF from above) yet having a lower computational cost than that of dMS .

Recall that an ultrametric d on X is a metric on X satisfying the strengthened triangle inequality, d (x, y) ≤

max
(
d (x, z) , d (z, y)

)
for all x, y, z ∈ X. The following is a restatement of a well known fact (see, e.g. [15, 29, 30])

revealing the relation between hierarchies and ultrametrics:

3Here, ⊖ denotes the symmetric set difference, i.e. A ⊖ B = (A \ B) ∪ (B \ A) for any sets A and B.
4This corresponds to the Hamming distance of clusters.

6
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Lemma 3. Let τ ∈ TS and hτ : C (τ)→ R≥0. For any i, j ∈ S let (i∧ j)τ denote the smallest cluster in C (τ) containing

the pair {i, j}. Then the dissimilarity on S given by

dτ (i, j) := hτ
(

(i∧ j)τ
)
, i, j ∈ S , (15)

is an ultrametric if and only if the following are satisfied for any I, J ∈ C (τ):

(a) if I ⊆ J, then hτ (I) ≤ hτ (J) ,

(b) hτ (I) = 0 if and only if |I| = 1 .

Proof. See Appendix A.3. �

Recall that a set X may always inherit a metric from a metric space (Y, dY) by pullback: any injective map f of

X into Y yields a metric dX on X defined by dX (x1, x2) := dY ( f (x1) , f (x2)) and known as the pullback of dY along

f . For example, the RF metric is a pullback: it is common knowledge that the set F (X) of all finite subsets of a set

X forms a metric space under the metric d (A, B) = |A ⊖ B|, which is one of the ways of defining Hamming distance;

thus, the RF distance is (one half times) the pullback of this metric on F (P (S )) under the map τ 7→ C (τ).

3. Quantifying Incompatibility

3.1. The Cluster-Cardinality Distance

We now introduce an embedding of hierarchies into the space of matrices based on the relation between hierarchies

and ultrametrics, summarized in Lemma 3:

Definition 8. The ultrametric representation is the map U : TS → R|S |×|S | defined by U(τ)i j := h
(
(i∧ j)τ

)
, where

h : P (S )→ N is set to be h (I) := |I| − 1, I ⊆ S .

Lemma 4. The map U is injective.

Proof. To see the injectivity of U (Definition 8), we shall show that U (σ) , U (τ) for any σ , τ ∈ TS .

Two trees σ, τ ∈ TS are distinct if and only if they have at least one unshared cluster. Accordingly, for any

σ , τ ∈ TS consider a common cluster I ∈ C (σ) ∩ C (τ) with distinct parents Pr (I, σ) , Pr (I, τ). Depending on the

cardinality of parent clusters:

• If |Pr (I, σ)| = |Pr (I, τ)|, then observe that there exists some j ∈ Pr (I, σ) such that j < Pr (I, τ) because Pr (I, σ) ,

Pr (I, τ). In fact, notice that j ∈ I−σ and j < I−τ (recall (7)). Hence, for any i ∈ I we have (i∧ j)σ = Pr (I, σ) and

Pr (I, τ) ( (i∧ j)τ. Thus, it follows from Definition 8 that for any i ∈ I

U (σ)i j =
∣∣∣Pr (I, σ)

∣∣∣ − 1 < U (τ)i j =
∣∣∣ (i∧ j)τ

∣∣∣ − 1 . (16)

• Otherwise, without loss of generality, let |Pr (I, σ)| < |Pr (I, τ)|. Then, observe that for any i ∈ I and j ∈ I−σ,

U (σ)i j = |Pr (I, σ)| − 1 < U (τ)i j =
∣∣∣ (i∧ j)τ

∣∣∣ − 1 , (17)

since (i∧ j)τ ⊇ Pr (I, τ).

Therefore, for any σ , τ ∈ BTS one has U (σ) , U (τ), and the result follows. �

Using the embedding U of TS into R|S |×|S |, we can construct tree metrics by pulling back metrics induced from

matrix norms, such as the one below:

Definition 9. The cluster-cardinality metric, dCC : TS × TS → R≥0, on TS is defined to be 5

dCC (σ, τ) :=
1

2

∥∥∥U (σ) − U (τ)
∥∥∥

1
, σ, τ ∈ TS . (18)

5Here ‖.‖1 denotes the 1-norm of a matrix, i.e. ‖U‖1 :=
∑n

i=1

∑n
j=1

∣∣∣Ui j

∣∣∣ for U ∈ Rn×n. Our choice of the 1-norm was guided by the resulting

relationships between dCC and the dissimilarity measures dCM and dnav introduced below. Other choices of norm on RS×S may prove useful.

7
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Proposition 1. The cluster-cardinality distance dCC on TS is computable in O(|S |2) time.

Proof. The 1-norm of the difference of a pair of |S |× |S |matrices obviously requires O(|S |2) time to compute, giving a

lower bound on the computation cost of dCC . It remains to show that the embedding U (Definition 8) may be obtained

at this cost. We proceed by induction based on a post-order traversal of the trees involved, τ ∈ TS . For the base case,

consider the two-leaf tree τ ∈ BT[2], i.e. |S | = 2: then we simply assign U (τ) =
[

0 1
1 0

]
. For the induction step, assume

|S | ≥ 3 and denote Ch (S , τ) = {S k}1≤k≤K , where K ≥ 2 is the number of children of the root S in τ. We observe:

• For every singleton child {i} of S in τ (if any), then set U (τ)ii = 0, which takes up O(1) time.

• Note that all clusters of τ and their sizes can be obtained in O(|S |2) time by a single post-order traversal, as each

individual cluster (as well as its cardinality) takes at most linear time to compute from those of its children.

• Suppose that for any 1 ≤ k ≤ K and |S k | ≥ 2 the elements of U (τ) associated with the subtree rooted at S k can

be computed in O(|S k |
2) time. Then, the total number of updates associated with the root S is

∑K
k=1

∑K
l=1 |S k | |S l|

and corresponds to setting U (τ)i j = U (τ) ji = |S | − 1 for all i ∈ S k, j ∈ S l and 1 ≤ k, l ≤ K.

In total, the cost of obtaining U (τ) is
∑K

k=1 O(|S k |
2) +
∑K

k=1

∑K
l=1 |S k | |S l| + O(|S |2) = O(|S |2), as required. �

The diameter, diam (X, d) := max
{
d (x, y)

∣∣∣ x, y ∈ X
}
, of a finite metric space (X, d) is always of interest in algo-

rithmic applications. Some known diameters for hierarchies [3, 4, 31] are:

diam (TS , dRF) = |S | − 2 , diam (BTS , dMS ) = O(|S |2) , diam (BTS , dNNI ) = O(|S | log |S |) (19)

For the cluster-cardinality distance, we have:

Proposition 2. diam (TS , dCC) = O(|S |3) .

Proof. From Definition 8, the minimum and maximum ultrametric distances between two distinct elements of S are,

respectively, 1 and |S | − 1, implying the bound

max
i, j∈S

(
U (σ)i j − U (τ)i j

)
≤ |S | − 2 ∀σ, τ ∈ TS . (20)

Hence, it follows from (18) that the diameter of TS with respect to dCC is bounded above as follows:

diam (TS , dCC) ≤
1

2
|S | (|S | − 1) (|S | − 2) . (21)

Now consider two NNI-adjacent binary trees σ, τ ∈ BTS such that the NNI triple (A, B,C) associated with (σ, τ)

(see Lemma 1) satisfies |A| = |B| = |C| =
⌊
|S |

3

⌋
. It is straightforward to observe that for |S | ≥ 3, there always exists

such a pair of NNI-adjacent trees, because A, B, and C are disjoint and |A| + |B| + |C| = 3
⌊
|S |

3

⌋
≤ |S |. Hence, we have

from Proposition 3 that dCC (σ, τ) = 2 |A| |B| |C| = 2
⌊
|S |

3

⌋3
, which yields the following lower bound on the diameter of

TS with respect to dCC ,

2

⌊
|S |

3

⌋3
≤ diam (TS , dCC) . (22)

Note that these bounds on diam (TS , dCC) in (21) and (22) hold for all |S | ≥ 2. Thus, the result follows. �

A common question regarding any distance being proposed for the space of trees is how it behaves with respect to

certain tree rearrangements. For instance, any pair of NNI-adjacent trees, σ, τ ∈ BTS , are known to satisfy [3] 6

dNNI (σ, τ) = 1⇐⇒ dRF (σ, τ) = 1 , (23)

dNNI (σ, τ) = 1 =⇒ 2 ≤ dMS (σ, τ) ≤

⌊
|S |

2

⌋
. (24)

Similarly for dCC we have:

6⌊.⌋ denotes the floor operator returning the largest integer not greater than its operand.

8
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Proposition 3. Let (σ, τ) be an edge of the NNI-graph NS = (BTS ,E) and (A, B,C) be the associated NNI triplet

(Lemma 1). Then

2 ≤ dCC (σ, τ) = 2 |A| |B| |C| ≤

⌊
2

27
|S |3
⌋
, (25)

and both bounds are tight.

Proof. Let P = A∪ B∪C and recall from Lemma 1 that A∪ B ∈ C (σ) and B∪C ∈ C (τ). Note that P ∈ C (σ) ∩ C (τ)

is a common (grand)parent cluster, and A, B and C are pairwise disjoint.

Since the NNI moves between σ and τ only change the relative relations of clusters A, B and C, the distance

between σ and τ can be rewritten as

dCC (σ, τ) =
1

2

∥∥∥U (σ) − U (τ)
∥∥∥

1
, (26)

=
∑

i∈A
j∈B

∣∣∣U (σ)i j − U (τ)i j

∣∣∣ +
∑

i∈A
j∈C

∣∣∣U (σ)i j − U (τ)i j

∣∣∣ +
∑

i∈B
j∈C

∣∣∣U (σ)i j − U (τ)i j

∣∣∣ , (27)

=
∑

i∈A
j∈B

|h (A ∪ B) − h (P)|︸                ︷︷                ︸
=|C|

+
∑

i∈A
j∈C

|h (P) − h (P)|︸          ︷︷          ︸
=0

+
∑

i∈B
j∈C

|h (P) − h (B ∪ C)|︸                 ︷︷                 ︸
=|A|

, (28)

= 2 |A| |B| |C| . (29)

Clearly, the lower bound in (25) is realized when |A| = |B| = |C| = 1. Since the maximum product of three numbers

with a prescribed sum occurs when all the numbers are equal — in our case, |A| + |B| + |C| ≤ |S | — we must have

|A| |B| |C| ≤

⌊
|S |3

27

⌋
, as
∣∣∣.
∣∣∣ is integer-valued. The result follows. �

Inequalities of the above form allow one to take advantage of the combinatorial nature of dNNI through repeated

application of the triangle inequality:

Corollary 1. Over BTS one has dRF ≤ dNNI .

Proof. Let σ, τ ∈ BTS and let Γ = (γk)0≤k≤K be shortest path in the NNI graph NS = (BTS ,E) from σ = γ0 to τ = γK .

This means that (γk−1, γk) ∈ E – or, equivalently, dNNI (γk−1, γk) = 1 – for all 1 ≤ k ≤ K, and that K = dNNI (σ, τ).

Repeatedly applying the triangle inequality for dRF and then equation (23), we obtain:

dRF (σ, τ) ≤

K∑

k=1

dRF (γk−1, γk) =

K∑

k=1

dNNI (γk−1, γk) = K = dNNI (σ, τ) , (30)

which completes the proof. �

Indeed, the length of a path in NS produces a bound on the RF distance between its endpoints by repeatedly

applying the triangle inequality to (23). A similar argument yields:

Corollary 2. Let d be a dissimilarity on BTS with the property that d (σ, τ) ≤ 1 for any pair of NNI-adjacent

hierarchies σ, τ ∈ BTS . If d (σ, τ) > dNNI (σ, τ) for some σ, τ ∈ BTS , then d is not a metric.

Proof. Assume, on the contrary, that d is a metric. Then the argument of the proof of Corollary 1 may be repeated,

replacing dRF with d and reaching the conclusion that d (σ, τ) ≤ dNNI (σ, τ) for all σ, τ ∈ BTS – contradiction. �

3.2. The Crossing Dissimilarity

Definition 10. Let σ, τ ∈ TS . We define their compatibility matrix C (σ, τ) and their crossing matrix X (σ, τ) to be7

C (σ, τ)I,J := 1 (I ⊲⊳ J) and X (σ, τ)I,J := 1 − C (σ, τ)I,J , (31)

7C (σ, τ) and X (σ, τ) can be defined only in terms of nontrivial clusters of σ and τ since any trivial cluster of σ and τ is compatible with any

cluster K ⊆ S . As a result, we are required to separately consider the special case in which one of the trees has only trivial clusters whenever C or

X are used to reason about degenerate trees.

9
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where I ∈ C (σ) , J ∈ C (τ) and 1 (.) denotes the indicator function returning unity if its argument holds true and zero

otherwise. The crossing dissimilarity dCM is defined by dCM (σ, τ) :=
∥∥∥X (σ, τ)

∥∥∥
1

, counting8 the pairs of incompatible

clusters in C (σ) ∪ C (τ).

We list some useful properties of dCM:

Remark 3. The crossing dissimilarity dCM on BTS is positive definite and symmetric, but it is not a metric (apply

Corollary 2 to the observations of Figure 3).

1 11 2 22 3 33 4 44

σ τ γ
dnav (σ, τ)=1 dnav (τ, γ)=1

dnav (σ, γ)=3

dCM (σ, τ) =1 dCM (τ, γ) =1

dCM (σ, γ) =3

Figure 3. dCM and dnav are not metrics: an example of the triangle inequality failing for both dissimilarities.

Proposition 4. The crossing dissimilarity dCM over TS can be computed in O(|S |2) time.

Proof. The crossing matrix X (σ, τ) (31) of a pair of hierarchies σ, τ ∈ TS has at most 2 |S | − 1 rows and columns.

Hence, the 1-norm of X (σ, τ) requires O(|S |2) time to compute, bounding the cost of dCM from below. To obtain the

upper bound, we show that X (σ, τ) can be obtained in O(|S |2) time by post-order traversal.

Observe that for any cluster J ∈ C (τ) (and symmetrically, for any cluster of C (σ)) one can check whether J is

disjoint with or a superset of each cluster I of σ by a post-order traversal of σ in O(|S |) time using the following

recursion:

• If either I or J is a singleton then the cluster inclusions I ⊆ J, J ⊆ I and their disjointness can be determined in

constant time using a hash map.

• Otherwise (|I| ≥ 2 and |J| ≥ 2), we have

I ⊆ J ⇐⇒ ∀D ∈ Ch (I, σ) D ⊆ J, (32)

I ∩ J = ∅ ⇐⇒ ∀D ∈ Ch (I, σ) D ∩ J = ∅. (33)

Thus, it follows from Definition 1 that a complete list of compatibilities between σ and τ can be produced in

O(|S |2) time, and so X (σ, τ) can be obtained at the same cost, O(|S |2). �

Proposition 5. diam (TS , dCM) = (|S | − 2)2 .

Proof. Two clusters of a pair of trees can only be incompatible if they are both nontrivial. Recall from Remark 1

that the number of nontrivial clusters of a tree in TS is at most |S | − 2. Hence, by Definition 10, an upper bound on

diam (TS , dCM) is (|S | − 2)2. To observe that this upper bound is realized, see Figure 4. �

Proposition 6. Two nondegenerate trees σ, τ ∈ BTS are NNI-adjacent if and only if dCM (σ, τ) = 1.

Proof. The result is evident from Remark 1 and Definition 4. �

Despite the result of the last proposition, dCM does not provide a linear lower bound on dNNI since diam (BTS , dNNI ) =

O(|S | log |S |) < diam (BTS , dCM) = O(|S |2) (Proposition 5). This inequality provides us with an additional, more

conceptual, argument that dCM is not a metric, by applying Corollary 2.

8We find that choosing to use the 1-norm of the crossing matrix easily reveals combinatorial relations between dCM and dCC (18); of course,

one could use other matrix norms to construct alternative dissimilarities.

10
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..... ..... 11 22 33 n−1n−1 nn

σ τdRF (σ, τ)=n−2

dCM (σ, τ)= (n−2)2

dnav (σ, τ)= 1
2

(n−1) (n−2)

Figure 4. A pair of nondegenerate hierarchies realizing diam
(
T[n], dCM

)
= (n − 2)2 and diam

(
BT[n], dnav

)
= 1

2
(n − 1) (n − 2).

Proposition 7. Over TS one has dRF ≤ dCM ≤ d2
RF

. These bounds are tight.

Proof. The lower bound directly follows from Remark 1. Because a pair of distinct binary hierarchies always have

uncommon clusters whose count is equal to dRF , and an unshared cluster of one tree crosses at least one unshared

cluster of the other tree. This bound is tight since for any σ, τ ∈ BTS

dRF (σ, τ) = 1⇔ dNNI (σ, τ) = 1⇔ dCM (σ, τ) = 1. (34)

For any σ, τ ∈ BTS , the columns and rows of X (σ, τ) (31) associated with common clusters of σ, τ are necessarily

null. Hence, X (σ, τ)I,J , 0 implies I < C (τ) and J < C (σ). By the definition of dRF , there are no more than dRF (σ, τ)2

such pairs — hence the claimed upper bound. To observe that this bound is also tight, see Figure 4. �

Proposition 8. Over TS one has dCM ≤ dCC .

Proof. Given any σ, τ ∈ TS we claim that there is a function q : C (σ) × C (τ)→ S × S with the following properties:

(a) for any I ∈ C (σ) and J ∈ C (τ), I ⊲⊳ J if and only if (i, j) = q (I, J) with i = j,

(b) for any i , j ∈ S ,
∣∣∣q−1 (i, j)

∣∣∣ ≤
∣∣∣U (σ)i j − U (τ)i j

∣∣∣.

Observe that, if such a function does exist, then (a) implies:

⋃

i, j∈S

q−1 (i, j) =

{
(I, J) ∈ C (σ) × C (τ)

∣∣∣∣ I 6⊲⊳ J

}
. (35)

It is then evident from (35) and (b) that

dCM (σ, τ) ≤
∑

i, j∈S

∣∣∣q−1 (i, j)
∣∣∣ ≤ dCC (σ, τ) , (36)

proving our proposition.

We proceed to construct the function q. If I 6⊲⊳ J, then there exist i ∈ I ∩ J and j ∈ I \ J with the property that

(i∧ j)σ = I. Accordingly, define

Q (I, J) :=

{
(i, j) ∈ S × S

∣∣∣∣ i ∈ I ∩ J, j ∈ I \ J, (i∧ j)σ = I

}
, (37)

R (I, J) :=

{
(i, j) ∈ S × S

∣∣∣∣ i ∈ I ∩ J, j ∈ J \ I, (i∧ j)τ = J

}
. (38)

Note that if (i, j) ∈ Q (I, J) ∪ R (I, J), then i , j.

Have S totally ordered (say, by enumerating its elements) and have S × S ordered lexicographically according to

the order of S . Then, define q : C (σ) × C (τ)→ S × S to be

q (I, J) :=



(
min (I ∪ J) ,min (I ∪ J)

)
, if I ⊲⊳ J,

min Q (I, J) , if I 6⊲⊳ J, |I| ≤ |J| ,

min R (I, J) , if I 6⊲⊳ J, |I| > |J| .

(39)

Recall that Q (I, J) and R (I, J) both contain pairs of distinct elements of S . Hence, q satisfies the property (a) above.

11
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By construction, for any i , j we have:

q−1 (i, j) ⊆ A (i, j) ∪ B (i, j) , (40)

where

A (i, j) :=

{
(I, J) ∈ C (σ) × C (τ)

∣∣∣∣ I 6⊲⊳ J, |I| ≤ |J| , (i, j) ∈ Q (I, J)

}
, (41)

B (i, j) :=

{
(I, J) ∈ C (σ) × C (τ)

∣∣∣∣ I 6⊲⊳ J, |I| ≥ |J| , (i, j) ∈ R (I, J)

}
. (42)

Remark from (37) that if (I, J) ∈ A (i, j) then (i∧ j)σ = I and (i∧ j)τ ) J. Hence, if
∣∣∣ (i∧ j)σ

∣∣∣ ≥
∣∣∣ (i∧ j)τ

∣∣∣, then

A (i, j) = ∅. Similarly, (i∧ j)σ ) I and (i∧ j)τ = J whenever (I, J) ∈ B (i, j); and B (i, j) = ∅ if
∣∣∣ (i∧ j)σ

∣∣∣ ≤
∣∣∣ (i∧ j)τ

∣∣∣.
Thus, one can observe that for any i, j ∈ S ,

A (i, j) , ∅ =⇒ B (i, j) = ∅. (43)

Recall that for any i, j ∈ S and (I, J) ∈ A (i, j) we have:

I = (i∧ j)σ , J ( (i∧ j)τ , |I| ≤ |J| and J ∈ Anc ({i} , τ) . (44)

Hence, one can conclude that

∣∣∣A (i, j)
∣∣∣ ≤
∣∣∣∣
∣∣∣ (i∧ j)τ

∣∣∣ −
∣∣∣ (i∧ j)σ

∣∣∣
∣∣∣∣ =
∣∣∣U (τ)i j − U (σ)i j

∣∣∣ . (45)

Similarly, for any i, j ∈ S ∣∣∣B (i, j)
∣∣∣ ≤
∣∣∣∣
∣∣∣ (i∧ j)σ

∣∣∣ −
∣∣∣ (i∧ j)τ

∣∣∣
∣∣∣∣ =
∣∣∣U (σ)i j − U (τ)i j

∣∣∣ . (46)

Thus, overall, using (40) and (43), one can obtain the second property of q as follows: for any i , j ∈ S

∣∣∣q−1
σ,τ (i, j)

∣∣∣ ≤
∣∣∣A (i, j)

∣∣∣ +
∣∣∣B (i, j)

∣∣∣ ≤
∣∣∣U (τ)i j − U (σ)i j

∣∣∣ , (47)

which completes the proof. �

4. The Navigation Dissimilarity

Problem 1 may be loosely restated in graph-theoretic terms as follows:

Problem 2. For each tree τ ∈ BTS , find a subgraph NS ,τ of the NNI graph NS containing no directed cycles and such

that every σ ∈ BTS satisfies:

(†) If σ , τ then there exists an edge of NS ,τ exiting σ; moreover, such an edge may be produced in low time

complexity.

Clearly, the reactive navigation algorithm Aτ of Problem 1 is, in this case, to compute an edge of NS ,τ exiting

the input tree σ and then follow that edge. The challenge for us is to produce a graph (Definition 18) where (i) the

complexity of Aτ is low (Corollary 5), and (ii) the length of any directed path is bounded by a reasonable function

of dNNI (σ, τ), or, at least of n = |S | (Definition 19, Theorem 2 and Corollary 4). Observe the similarity between our

requirements of NS ,τ and a skeletal variant of the stricter notion of a combing from the early days of geometric group

theory (see, e.g. [32]): a ‘coherent’ system of paths {px}x ∈ X in a topological space X, one for each point of the space,

with px(0) = x0 for all x ∈ X and py(t) = px(t) for all t ≤ s whenever y = px(s). Specializing to the differentiable

setting, one might hope to be able to (efficiently) compute a tangent vector tx to px at x in some open dense (and

necessarily contractible) sub-manifold of X so that the px become integral curves of ẋ = tx; following these curves in

reverse comprises reactive navigation towards x0, as seen through the eyes of a roboticist [14].

We start out with a study of the coarse structure of the directed NNI graph NS . We consider special subspaces of

the vertex space BTS :

12
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Definition 11. Let K1, . . . ,Km, m ≥ 1, be a compatible family of subsets of S . Denote:

BTS (K1, . . . ,Km) :=
{
σ ∈ BTS

∣∣∣σ ⊲⊳ {K1, . . . ,Km}
}
. (48)

Recalling that C (σ) is a maximal nested family in P (S ) if and only if σ ∈ BTS , one has, in fact:

BTS (K1, . . . ,Km) =
{
σ ∈ BTS

∣∣∣K1, . . . ,Km ∈ C (σ)
}
. (49)

Intuitively, it is clear that the problem of navigating NS towards a specified tree τ may be parsed into a sequence of

problems, each being that of navigating in BTS (K) towards BTS (K) ∩ BTS (Ch (K, τ)), where K ranges over C (τ),

starting with K = S and continuing inductively, provided each step preserves the achievements of its predecessors.

4.1. Resolving incompatibilities with a prescribed split

Throughout this section, let K = {K1,K2} be a fixed pair of disjoint non-empty subsets of S , and set K = K1 ∪ K2.

We will refer to such pairs as partial splits. Let us make a simple observation:

Lemma 5. The following equivalence holds for all I ( K:

I ⊲⊳ K⇐⇒ (I ⊆ K1) ∨ (I ⊆ K2) . (50)

Proof. Suppose I ⊲⊳ K but neither I ⊆ K1 nor I ⊆ K2 holds. By Definition 1 we must then have I ⊇ K1 and I ⊇ K2,

implying I ⊇ K — contradiction to I ( K. The converse is trivial. �

Let σ ∈ BTS (K) be a tree which splits K into a pair of children not coinciding with K. According to the preceding

lemma, this is equivalent to Ch (K, σ) 6⊲⊳ K. Observe now that any cluster I ∈ C (σ) which is not a σ-descendant of K

is automatically compatible with K. Thus, incompatibilities of σ with K could only occur among σ-descendants of

K. This motivates the following definition:

Definition 12 (Recombinants). For σ ∈ BTS (K) we distinguish two classes of σ-descendants of the cluster K:

I (σ;K) :=
{
I ∈ Des (K, σ)

∣∣∣ I 6⊲⊳ K
}
, (51)

R (σ;K) :=
{
I ∈ I (σ;K)

∣∣∣Ch (I, σ) ⊲⊳ K , Ch
(
I−σ, σ

)
⊲⊳ K
}
. (52)

For lack of a better term, we will refer to the elements of R (σ;K) as recombinants of K in σ. See Figure 5.

The set of recombinants suffices to characterize the compatibility of a tree with a given split:

Lemma 6. Observe that σ ∈ BTS (K) has recombinants of K if and only if σ < BTS (K).

Proof. Indeed, if σ ∈ BTS (K), then all clusters of σ are compatible with K, causing I (σ;K) — and hence also

R (σ;K) — to be empty. Conversely, suppose there is a cluster of σ incompatible with K. Then the σ-children

of any deepest such cluster and its local complement’s children are compatible with K in σ, and their children are

compatible with K as well (even if vacuously). �

Definition 13 (Incompatibility Types). Given σ ∈ BTS (K), a cluster I ∈ I (σ;K) is said to be of type 1 with respect

to K if I−σ ⊲⊳ K. If I ∈ I (σ;K) is not of type 1, then it is said to be of type 2 (see Figure 5).

Another, perhaps less intuitive, quantifier of incompatibility arises as follows:

Definition 14 (Essential Crossing Index). Let K = {K1,K2} and L = {L1, L2} be partial splits. Their essential crossing

index is defined as:

[[L |K]] :=



0 if L
∣∣∣
K1∪K2

⊲⊳ K
∣∣∣
L1∪L2

1 if L j

∣∣∣
K1∪K2

⊲⊳ K
∣∣∣
L1∪L2

for only one j ∈ {1, 2}

3 otherwise

(53)

For a tree σ ∈ BTS we define:

‖σ‖K :=
∑

I∈C(σ)

[[Ch (I, σ) |K]] . (54)

13
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Figure 5. An illustration of I (σ;K) (51) and R (σ;K) (52) of σ ∈ BT[n](K), where n ≥ 9 and K = [9]. The vertices and edges associated with

clusters of σ incompatible with the split K are thickened. The only recombinant of K in σ is A = {1, 2} and it has Type 1. B and B−σ are examples

of Type 2 clusters of σ incompatible with K which are not recombinants.

The following elementary observations will be useful:

Lemma 7. Let K = {K1,K2} and L = {L1, L2} be partial splits. Then [[K |L]] = [[L |K]].

Proof. Write K = K1 ∪ K2 and L = L1 ∪ L2. Without loss of generality we may assume K = L = S , since:

2⋃

i=1

(Ki ∩ L) =

2⋃

j=1

(L j ∩ K) = K ∩ L . (55)

We study the possible cases:

• [[L |K]] = 0: By definition, this means none of the Ki crosses any of the L j; equivalently, no L j crosses any of

the Ki and we have [[K |L]] = 0.

• [[L |K]] = 1: WLOG, only L1 crosses K, hence L2 is contained in one of the Ki, say K2. Then L1 contains K1

and at least one element of K2, by Lemma 5. Thus, K1 ⊲⊳ L while K2 ⊲⊳ L2, K2 6⊲⊳ L1. This means [[K |L]] = 1.

• [[L |K]] = 3: if both L1 and L2 cross K, then L j ∩ Ki , ∅ for all i, j ∈ 1, 2, implying both K1 and K2 cross L,

as desired. �

We are now ready to construct the graph ΓS (K):

Definition 15 (Projector Graph). Let K = {K1,K2} be a partial split, and set K = K1 ∪ K2. Then ΓS (K) is defined to

be the directed graph with vertex set BTS (K), and all edges of the form (σ,G) ∈ Ẽ such that I := Pr (G, σ) ∈ R (σ;K)

and one of the following holds:

1. I is of type 1, and G−σ, I−σ ⊆ Ki for some i ∈ {1, 2};

2. I is of type 2.

The following elementary property of edges in ΓS (K) is crucial:

Lemma 8. Suppose σ ∈ BTS (K), (σ,G) is an edge of ΓS (K) and τ = NNI(σ,G). Then ‖σ‖K = ‖τ‖K + 1.

Proof. Let I = Pr (G, σ) and let J = I−σ∪G−σ be the cluster replacing I in τ. Also, set M = Pr2 (G, σ) ∈ C (σ)∩C (τ).

In the transition from σ to τ only the clusters I, J and M change (or lose, or acquire) their child splits. Therefore:

‖τ‖K = ‖σ‖K − [[Ch (I, σ) |K]] + [[Ch (J, τ) |K]] − [[Ch (M, σ) |K]] + [[Ch (M, τ) |K]] . (56)

Figure 6 demonstrates without loss of generality that, in the case when I is of type 1 with respect to K the values of

the above crossing indices are 0, 0, 1 and 0, respectively, resulting in a total decrease of one unit. The case when I is

of type 2 produces the respective values of 0, 1, 3 and 1, also resulting in a total decrease of one unit. �
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σ σ′

I

I−σG

(σ,G)

σ σ′ σ′′ σ′′′

I I−σ

G

(σ,G)

Figure 6. Different types of incompatibility — Type 1 (above) and Type 2 (below) — of a tree σ ∈ BTS (K), K = K1 ∪ K2, with the split

K = {K1, K2}, and the NNI moves suggested by ΓS (K) to resolve them. Clusters are colored blue or red according to their being contained in K1 or

K2, respectively. Thickened vertices represent the recombinants affected by these moves.

Lemma 9. The following are equivalent for a vertex σ ∈ BTS (K) of ΓS (K):

1. ‖σ‖K > 0;

2. ΓS (K) contains an edge exiting σ;

3. σ < BTS (K).

Proof. First observe that, since K is a cluster of σ, all clusters I′ ∈ C (σ) not contained in K have [[I′ |K]] = 0.

(1) ⇒ (2). By the preceding observation, if ‖σ‖K > 0 then σ has a sub-cluster of K whose child split is

incompatible with K. By Lemma 6, σ then has a cluster I ( K which is a recombinant of K. Picking G to be an

appropriate σ-child of I provides the required edge (σ,G).

(2) ⇒ (3). Suppose (σ,G) is an edge in ΓS (K). Then I := Pr (G, σ) is incompatible with K, proving (3).

(3) ⇒ (1). Finally, if σ < BTS (K) then σ contains a recombinant I whose parent M = Pr (I, σ) then must

satisfy [[Ch (M, σ) |K]] > 0, resulting in ‖σ‖K > 0. �

Definition 16 (Projection). Let K = {K1,K2} be a partial split, and set K = K1 ∪ K2. For any σ ∈ BTS (K) we define

its projection to BTS (K)∩BTS (K) to be the tree γ = PS (σ;K) ∈ BTS (K)∩BTS (K) whose clusters are of one of the

following forms:

(a) I ∈ C (σ) with I ∩ K = ∅ or K ⊆ I;

(b) I ∩ Ki ∈ C (γ), i ∈ {1, 2} where I ∈ C (σ) (and I ⊆ K).

Remark 4. The tree PS (σ;K) is a well-defined binary tree in BTS (K) ∩BTS (K) by Lemma 2 (applied to BTK).

We are ready to state the main result of this section:

Theorem 1. The directed graph ΓS (K) contains no directed cycles. Moreover, for every σ ∈ BTS (K), every maximal

directed path of ΓS (K) emanating from σ terminates at the tree PS (σ;K) ∈ BTS (K) ∩BTS (K) and has length ‖σ‖K.

Proof. Denote Γ := ΓS (K) for short. By Lemma 8, the function ‖·‖K decreases by a unit along each edge of Γ,

implying the absence of directed cycles in the graph. In particular, for each σ ∈ BTS (K), the length of a directed path

in Γ emanating from σ is bounded above by ‖σ‖K. Since, by Lemma 9, σ ∈ BTS (K) has an exiting edge in Γ if and

only if ‖σ‖K > 0, we conclude that all maximal directed paths in Γ emanating from σ have length exactly ‖σ‖K and

terminate in BTS (K) ∩BTS (K).
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It will be useful to henceforth denote

PathK(σ) :=
{
p
∣∣∣ p is a maximal directed path in ΓS (K) emanating from σ

}
. (57)

It remains to prove that every p ∈ PathK(σ) terminates in PS (σ;K).

We will prove the remaining assertion of the proposition by induction on ‖σ‖K. More precisely, for any non-

negative integer k let S (k) denote the statement that for every τ ∈ BTS (K) satisfying ‖τ‖K ≤ k every path in PathK(τ)

terminates in PS (τ;K). Observing that S (0) holds true by construction, we assume S (k) holds for some k ≥ 0 and

deduce S (k + 1).

Suppose σ has ‖σ‖K = k + 1. Once again, consider any directed edge (σ,G) in ΓS (K), and write τ = NNI(σ,G)

with ‖τ‖K = k. Let γ and γ′ denote the projections of σ and τ to BTS (K)∩BTS (K). Finally, letting I = Pr (G, σ) and

J = G−σ ∪ I−σ we recall that C (τ) = (C (σ) r {I}) ∪ {J}. We observe the following:

• For any set Q ⊆ S satisfying Q ∩ K = ∅ ∨ K ⊆ Q and for any tree σ′ lying on a path in PathK(σ) — for the

trees τ, γ and γ′ in particular — one has Q ∈ C (σ) if and only if Q ∈ C (σ′). Thus, C (γ) \ C (γ′) consists only

of proper subsets of K.

• For a cluster Q ⊆ K of σ with Q , I we have Q ∩ Ki ∈ C (γ) =⇒ Q ∩ Ki ∈ C (γ′) for i ∈ {1, 2} because

C (σ) r {I} ⊂ C (τ).

• Finally, we consider the clusters I ∩ Ki: since I ∈ R (σ;K), the sets I ∩ Ki are precisely the children of I in σ,

which makes them clusters of τ; since I ∩ Ki ⊂ Ki, they are also clusters of γ′.

To summarize, we have found out that C (γ) ⊆ C (γ′). By the maximality of C (γ) as a nested family (Remark 1 and

Remark 4) they must be equal and we conclude that γ = γ′. Applying the induction hypothesis, we deduce that every

path in PathK(σ) starting with the edge (σ,G) must terminate in γ. Since the choice of edge (σ,G) was arbitrary, we

are done. �

4.2. The Navigation Distance

The following result has the flavor of a commutation relation between different projector graphs:

Lemma 10. Fix a pair of distinct partial splits K = {K1,K2} and L = {L1, L2}. Setting K = K1 ∪ K2 and L = L1 ∪ L2

assume in addition that {K,K1,K2} ⊲⊳ {L, L1, L2}. Then, for any σ ∈ BTS (K) and any edge (σ,G) ∈ ΓS (K) one has

‖NNI(σ,G)‖L = ‖σ‖L.

Proof. As before, set τ = NNI(σ,G) and consider the sets I = Pr (G, σ), J = G−σ ∪ I−σ and M = Pr2 (G, σ) — all

contained in the cluster K ∈ C (σ) ∩ C (τ) — and recall that C (τ) = (C (σ) r {I}) ∪ {J}. Without loss of generality,

G ⊆ K1 and G−σ ⊆ K2.

Once again we observe that the transition fromσ to τ affects only the crossing indices of the clusters I, J,M (which

are all contained in K) as follows:

‖τ‖L = ‖σ‖L − [[Ch (I, σ) |L]]︸            ︷︷            ︸
α

+ [[Ch (J, τ) |L]]︸           ︷︷           ︸
β

− [[Ch (M, σ) |L]]︸              ︷︷              ︸
γ

+ [[Ch (M, τ) |L]]︸             ︷︷             ︸
δ

. (58)

Note that K , L, since otherwise the compatibility assumption and Lemma 5 would have forced K = L.

Suppose now that K ∩ L = ∅. In this case the restrictions of L to I, J,M are all trivial and the corresponding

crossing indices are all zero.

Suppose K ( L. Then, without loss of generality, we have K ⊆ L1 by Lemma 5 and all children of I, J,M in σ

and τ (as relevant) are compatible with L, resulting again in zero crossing indices.

Since K ⊲⊳ L, K , L, we need only consider two cases (we refer the reader again to Figure 6 for an illustration):

• L ⊆ K1. We have Ch (I, σ)
∣∣∣
L
= {G ∩ L,∅} and therefore α = 0. Also, Ch (J, τ)

∣∣∣
L
= {∅, I−σ ∩ L}, so that β = 0.

Finally, Ch (M, σ)
∣∣∣
L
= Ch (M, τ)

∣∣∣
L
= {G ∩ L, I−σ ∩ L} produces γ = δ.

• L ⊆ K2. In this case we have Ch (I, σ)
∣∣∣
L
= {∅,G−σ∩L} andα is zero again. Similarly, observe that Ch (M, τ)

∣∣∣
L
=

{∅, J ∩ L} gives δ = 0. At the same time, Ch (J, τ)
∣∣∣
L
= Ch (M, σ)

∣∣∣
L
= {G−σ ∩ L, I−σ ∩ L}, so that β = γ.

16
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This finishes the proof. �

Any pair of binary trees in BTS has a common cluster (the cluster S , for example), and one might hope to quantify

the discrepancy between a pair of trees by counting common clusters which split differently in the two trees (perhaps,

somehow accounting for the depth of these clusters). This motivates:

Definition 17. For any σ, γ ∈ BTS , let K (σ, γ) denote the set

K (σ, γ) :=
{
K ∈ C (σ) ∩ C (γ)

∣∣∣Ch (K, σ) , Ch (K, γ)
}
. (59)

Remark 5. In BTS , σ = τ if and only if K (σ, τ) = ∅.

Corollary 3. For all σ, τ ∈ BTS we have K (σ, τ) :=
{
K ∈ C (σ) ∩ C (τ)

∣∣∣Ch (K, σ) 6⊲⊳ Ch (K, τ)
}
.

Proof. Follows directly from Lemma 5 and the definitions. �

Given a prescribed target tree τ ∈ BTS , the projector graphs introduced above give rise to a tool for achieving

planned reductions in the number of clusters in K (σ, τ) at a given depth, for any tree σ ∈ BTS . More formally,

consider the following construction:

Definition 18 (Navigation Graph). Let τ ∈ BTS . Then NS ,τ denotes the directed subgraph of the NNI graph NS with

vertex set BTS and all the edges (σ,G) for which there exists a cluster K ∈ K (σ, τ) satisfying (σ,G) ∈ ΓS (Ch (K, τ)).

We proceed to prove statements about the navigation graph analogous to those we have shown to hold for the

projector graphs. It is time to introduce:

Definition 19 (Navigation Distance). Let σ, τ ∈ BTS . We define the navigation distance from σ to τ to be:

dnav (σ, τ) :=
∑

K∈C(τ)

‖σ‖Ch(K,τ) , (60)

=
∑

K∈C(τ)

∑

L∈C(σ)

[[Ch (L, σ) |Ch (K, σ)]] . (61)

We also define the special crossing matrix S (σ, τ) by

S (σ, τ)K,L := [[Ch (L, σ) |Ch (K, τ)]] , ∀K ∈ C (σ) , L ∈ C (τ) . (62)

Thus, dnav coincides with the standard 1-norm of the special crossing matrix.

Theorem 2. For any τ ∈ BTS the graph NS ,τ has no directed cycles. Moreover, for any σ ∈ BTS every maximal

directed path in NS ,τ emanating from σ terminates in τ and has length dnav (σ, τ). We will refer to such paths as

navigation paths from σ to τ.

Proof. First, observe from equation (60) that dnav (σ, τ) is zero if and only if ‖σ‖K = 0 for every pair K of siblings

in τ. By Lemma 9, this is equivalent to saying that σ ∈ BTS (K) for every pair of siblings in τ, or, in other words,

that σ = τ. Moreover, note that dnav (σ, τ) > 0 implies there is an edge of NS ,τ exiting σ: indeed, if σ , τ then there

exists a K ∈ K (σ, τ) (Remark 5), so that σ < BTS (Ch (K, τ)); Lemma 9 guarantees an edge of ΓS (Ch (K, τ)) exiting

σ, which, by definition, is also an edge of NS ,τ.

Suppose now (σ,G) is an edge in NS ,τ. That is, there exists K ∈ K (σ, τ) such that (σ,G) ∈ ΓS (K) where

K = Ch (K, τ).

Suppose there were more than one such K, that is: suppose K, L ∈ K (σ, τ), K , L, such that I := Pr (G, σ) is

contained in both K and L, and such that Ch (I, σ) is incompatible both with Ch (K, τ) and Ch (L, τ). Since ∅ , I ⊆

K ∩ L and K ⊲⊳ L, we may assume K ( L. But then K, L ∈ C (τ) and K , L implies K is contained in a τ-child of L,

denoted L1. As I ⊆ K, we conclude that both σ-children of I are contained in L1 — a contradiction to the assumption

that Ch (I, σ) and Ch (L, τ) are incompatible.
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Let σ′ = NNI(σ,G). Then, by Lemma 8, we have ‖σ′‖Ch(K,τ) = ‖σ‖Ch(K,τ) − 1. Moreover, Lemma 10 guarantees

‖σ′‖Ch(L,τ) = ‖σ‖Ch(L,τ) for all L ∈ C (τ), L , K. Applying equation (60) we obtain

dnav (NNI(σ,G), τ) = dnav (σ, τ) − 1 . (63)

Thus, NS ,τ contains no directed cycles, and every maximal directed path in NS ,τ emanating from a fixed σ ∈ BTS

terminates after precisely dnav (σ, τ) steps. By the preceding paragraph, every such path may only terminate in τ. �

The solution to the navigation problem implied by this theorem yields the following (very crude) bounds on the

performance of the corresponding reactive navigation algorithm:

Corollary 4 (Navigation Complexity). The length of a navigation path through NS does not exceed O(|S |2).

Proof. Let n = |S |. For all σ, τ ∈ BTS we have |C (τ)| = O(n), implying S (σ, τ) has O(n2) entries. The value of

dnav (σ, τ) never exceeds three times the number of entries in S (σ, τ). �

Corollary 5. Given σ, τ ∈ BTS , computing an edge of NS ,τ exiting σ may be done in O(|S |) time.

Proof. Using a look-up table for the clusters of τ [2], a cluster K ∈ K (σ, τ) may be found in linear time by a traversal

of σ. Next, an appropriate recombinant cluster may be found in linear time by post-order traversal of σ
∣∣∣
K

(compare

with proof of Proposition 1). �

The last theorem emphasizes the crucial role of the fact that all navigation paths from σ to τ have the same length,

equal to dnav (σ, τ), irrespective of the order in which one chooses to resolve the incompatibilities between the two

trees. We will now consider additional applications of the last theorem which will help us clarify the geometry of the

navigation distance and its relationship to the other dissimilarities mentioned in this paper.

Lemma 11. Let K = {K1,K2} be a partial split, let τ ∈ BTS (K1,K2,K1 ∪ K2) and σ ∈ BTS (K1 ∪ K2). Then:

(a) ΓS (K) is contained in NS ,τ;

(b) Let σ′ = PS (σ;K), then:

dnav (σ, τ) = dnav

(
σ, σ′

)
+ dnav

(
σ′, τ
)
. (64)

(c) Finally, dnav

(
σ,BTS (K1,K2,K1 ∪ K2)

)
= ‖σ‖K.

Proof. For Lemma 11(a), let (σ,G) be an edge of ΓS (K). In particular, σ < BTS (K) so that K ∈ K (σ, τ) which

produces (σ,G) ∈ NS ,τ by definition.

For Lemma 11(b), let p be a maximal path in ΓS (K) emanating from σ. Then the endpoint of p is σ′ := PS (σ;K)

by Theorem 1. Now apply Lemma 11(a) and Theorem 2 to extend p to a navigation path p̃ in NS ,τ from σ to τ. Then:

dnav (σ, τ) = ℓ
(

p̃
)
= ℓ ( p ) + dnav

(
σ′, τ
)
= ‖σ‖K + dnav

(
σ′, τ
)
, (65)

as required.

Finally, for Lemma 11(c), pick τ above to be a tree of BTS (K1,K2,K1 ∪ K2) with dnav (σ, τ) minimal. By the

construction above, σ′ ∈ BTS (K1,K2,K1 ∪ K2) satisfies dnav (σ, σ′) ≤ dnav (σ, τ) while p is a navigation path from σ

to σ′. Thus σ′ must coincide with τ, and (65) reduces to the desired equality. �

Corollary 6. For any bipartition {L,R} of S and σ ∈ BTS , the navigation distance dnav (σ,BTS (L,R)) can be

computed in linear time, O(|S |).

Proof. Similarly to the proof of Proposition 4, the crossing indices of σ-clusters with {L,R} can be determined in

O(|S |) time using Lemma 5 and by post order traversal of σ. Therefore, by Lemma 11 and Theorem 1, the quantity

dnav (σ,BTS (S L, S R)) can be computed in O(|S |) by a complete traversal of σ. �

Lemma 12. For any bipartition {L,R} of S and σ ∈ BTS , an NNI navigation path in ΓS (L,R) joining σ to BTS (L,R)

can be computed in O(|S |) time.
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Proof. As illustrated in Figure 5, since Anc (I, σ) ⊆ I (σ; {L,R}) ∪ {S } for any I ∈ I (σ; {L,R}), the vertices and

branches of σ associated with clusters in I (σ; {L,R}) ∪ {S } defines a tree structure, containing all the information

required to compute the navigation distance dnav (σ,BTS ) (L,R) = ‖σ‖{L,R} (Lemma 11.(c)). Hence, one can construct

an NNI navigation path by a complete post-order traversal of this tree structure as follows:

1. Set k ← 0 and σ0 ← σ, and compute I (σ0; {L,R}).

2. Find a cluster I0 ∈ R (σ0; {L,R}) by a post-order traversal of incompatible clusters I (σ0; {L,R}) of σ0.

3. While (I (σk; {L,R}) , ∅)

(a) If Ik ∈ R (σk; {L,R}) is Type 1, then, as illustrated in Figure 6(top), choice a grandchild Gk ∈ Ch (Ik, σk)

such that Gk
−σk , Ik

−σk ⊆ L or Gk
−σk , Ik

−σk ⊆ R, and set

σk+1 ← NNI (σk,Gk) , I (σk+1; {L,R})← I (σk; {L,R}) \ {Ik} , Ik+1 ← Pr (Ik, σk) , k ← k + 1.

(b) If Ik ∈ R (σk; {L,R}) is Type 2, then, as illustrated in Figure 6(bottom), choice Gk ∈ Ch (Ik, σk) and

Gk+1 ∈ Ch
(
Ik
−σk , σk

)
such that Gk,Gk+1 ⊆ L or Gk,Gk+1 ⊆ R, and Gk+2 = Gk

−σk ∪Gk+1
−σk ; and set

σk+1 ← NNI (σk,Gk) , σk+2 ← NNI (σk+1,Gk+1) , σk+3 ← NNI (σk+2,Gk+2) ,

I (σk+3; {L,R})← I (σk; {L,R}) \
{
Ik, Ik

−σk
}
, Ik+3 ← Pr (Ik, σk) , k ← k + 3.

(c) Otherwise (Ik and Ik
−σk are Type 2 with Ch (Ik, σk) ⊲⊳ {L,R} and Ch

(
Ik
−σk , σk

)
6⊲⊳ {L,R}), find a cluster

Jk ∈ R (σk; {L,R}) by a post-order traversal of incompatible clusters of the subtree of σk rooted at Ik
−σk ,

and set Ik ← Jk.

4. Return
(
σk

)
k∈[0, ‖σ‖{L,R}] as an NNI navigation path starting at σ and ending in BTS (L,R).

As discussed in the proof of Proposition 4, all clusters of σ incompatible with {L,R}, i.e. I (σ; {L,R}) in Step

1, can be determined in O(|S |) time. Given I (σ; {L,R}), a cluster I ∈ R (σ; {L,R}), in Step 2, can be found in

O(|I (σ; {L,R})|) ≤ O(|S |) time by a post-order traversal of incompatible clusters of σ. Observe that the while

loop terminates after at most 2 |I (σ; {L,R})| iterations after a complete traversal of the tree structure defined by

I (σ; {L,R}) ∪ {S } since |I (σk; {L,R})| decreases at least by one unit after every two consecutive iterations and a

post-order subtree traversal in Step 3(c) is required only if the associated subtree is not explored yet. Hence, an NNI

navigation path joining σ to BTS (L,R) can be found by a complete post-order traversal of σ in O(|S |) time. �

The observation made in Lemma 11 is a good example of how the dual representation of dnav — both in terms of

paths in the NNI graph, and in terms of a closed-form formula quantifying inter-cluster incompatibility — offers a

practical compromise between the heretofore separate traditional approaches to constructing dissimilarities on BTS ,

those of edge comparison and of estimation of edit distances. A particular application of this dual nature is the

decomposability of dnav (as defined in [33]):

Lemma 13 (Root Split Reduction). Fix τ ∈ BTS and denote {L,R} := Ch (S , τ). Then for any σ ∈ BTS one has:

dnav (σ, τ) = dnav (σ,BTS (L,R)) + dnav

(
σ
∣∣∣
L
, τ
∣∣∣
L

)
+ dnav

(
σ
∣∣∣
R
, τ
∣∣∣
R

)
. (66)

Proof. By Lemma 11(2) it suffices to prove

dnav (PS (σ; L,R), τ) = dnav

(
σ
∣∣∣
L
, τ
∣∣∣
L

)
+ dnav

(
σ
∣∣∣
R
, τ
∣∣∣
R

)
. (67)

By definition, C (PS (σ; L,R)) = {S } ∪ C
(
σ
∣∣∣
L

)
∪ C
(
σ
∣∣∣
R

)
so it suffices to prove:

σ ∈ BTS (L,R) ⇒ dnav (σ, τ) = dnav

(
σ
∣∣∣
L
, τ
∣∣∣
L

)
+ dnav

(
σ
∣∣∣
R
, τ
∣∣∣
R

)
. (68)

At this stage, however, observe that C
(
σ
∣∣∣
L

)
and C

(
σ
∣∣∣
R

)
together exhaust the list of of clusters of σ not equal to S ,

with the same holding ab initio for τ. This allows us to finish the proof by applying Theorem 2 separately in BTL and

BTR. �
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The root split reduction of the NNI navigation dissimilarity may be used for its efficient computation:

Corollary 7. The NNI navigation dissimilarity dnav on BTS is computable in O(|S |2) time.

Proof. Let σ, τ ∈ BTS and {L,R} = Ch (S , τ). By the root split reduction above and the last corollary, dnav (σ, τ)

requires the computation of dnav (σ,BTS (Ch (S , τ))) at a cost of O(|S |) time, plus the computation of the restrictions

σ
∣∣∣
L

and σ
∣∣∣
R
, each of which can be computed using post-order traversal of σ in O(|S |) time. Hence, computing

dnav (σ, τ) requires a complete (depth-first) traversal of τwith each stage incurring at most a linear time cost in |S |. �

Corollary 8. An NNI navigation path joining σ ∈ BTS to τ ∈ BTS can be computed in O(|S |2) time.

Proof. Similar to the recursive expression of dnav in Lemma 13, an NNI navigation path joining σ to τ can be found

using the decomposability property within a divide-and-conquer approach as follows: first obtain an NNI navigation

path from σ to BTS (Ch (S , τ)) in O(|S |) (Lemma 12) and then find NNI navigation paths between subtrees. Hence,

this requires the pre-order traversal of τ each of whose step costs O(|S |). Thus, an NNI navigation path joining σ to τ

can be recursively computed in O(|S |2) time, which completes the proof. �

4.3. Properties of the Navigation Dissimilarity

Proposition 9. The NNI navigation dissimilarity dnav is positive definite and symmetric, but it is not a metric.

Proof. That dnav is positive definite follows directly from its definition. Lemma 7 proves it is symmetric and Corollary

2 with Figure 3 shows where the triangle inequality fails. �

Lemma 14. Let {L,R} be a bipartition of S and σ ∈ BTS . Then we have the tight bound:

dnav (σ,BTS (L,R)) ≤ |S | +min (|L| , |R|) − 3. (69)

Proof. Denote S = {L,R}. For any σ ∈ BTS and I ∈ C (σ) observe that (i) [[Ch (I, σ) | S]] = 0 if I is a singleton or

|I| = 2, and (ii) otherwise for larger clusters [[Ch (I, σ) | S]] equals 3 or 1 only if, respectively, both clusters or only

one cluster of Ch (I, σ) are incompatible with S. Since there are at least |S | + 1 clusters of the first kind, there are at

most |S | − 2 clusters of the second kind. Thus, applying Lemma 11 and Theorem 1 we have

dnav (σ,BTS (L,R)) ≤ (|S | − 2) + |X| , (70)

where X is the set of all I ∈ C (σ) both of whose children are incompatible with S. For each I ∈ X both I ∩ L and

I ∩ R are non-singleton clusters of σ
∣∣∣
L

and σ
∣∣∣
R
, respectively (each child of I intersects each of L,R). Suppose now

that I, J ∈ X are distinct. There are two cases, without loss of generality:

• If I ∩ J = ∅, then I ∩ L , J ∩ L (and similarly for R);

• If I ( J, then J has a child I′ disjoint from I, and this child must intersect L. Hence, I ∩ L ( J ∩ L.

We conclude that the map I 7→ I ∩ L (respectively I ∩ R) of X to C
(
σ
∣∣∣
L

)
(resp. to C

(
σ
∣∣∣
R

)
) is injective, and has no

singleton clusters in its image. Thus, |X| ≤ min (|L| − 1, |R| − 1), proving the desired inequality.

The example σ, τ ∈ BT[n] in Figure 4 with {L,R} = Ch ([n] , τ) = {{1} , {2, 3, . . . , n}} shows that the upper bound in

(69) is tight (where dnav (σ,BTS (L,R)) = n − 2). �

Proposition 10. diam (BTS , dnav) =
1
2

(|S | − 1) (|S | − 2) .

Proof. We proceed by induction over |S |, with the base case |S | = 2 satisfying |BTS | = 1. The formula then holds

trivially, as dnav = 0.

For the induction step assume |S | ≥ 3 and that σ, τ ∈ BTS satisfy dnav

(
σ
∣∣∣
K
, τ
∣∣∣
K

)
≤ 1

2
(|K| − 1) (|K| − 2) for every

K ∈ Ch (S , τ) = {L,R}.

Let µ = min (|L| , |R|), and note that |L| |R| = µ(|S | − µ). We now apply the root split reduction (Lemma 13):
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dnav (σ, τ) = dnav (σ,BTS (L,R))︸                   ︷︷                   ︸
by Lemma 14
≤ |S |+µ−3

+ dnav

(
σ
∣∣∣
L
, τ
∣∣∣
L

)
︸          ︷︷          ︸

by induction

≤ 1
2

(|L|−1) (|L|−2)

+ dnav

(
σ
∣∣∣
R
, τ
∣∣∣
R

)
︸          ︷︷          ︸

by induction

≤ 1
2

(|R|−1) (|R|−2)

, (71)

≤ 1
2

(|S | − 1) (|S | − 2) + (1 − µ) (|S | − µ − 2)︸                   ︷︷                   ︸
non-positive whenever |S |≥3

, (72)

≤ 1
2

(|S | − 1) (|S | − 2) . (73)

Finally, note that the trees in Figure 4 realize this bound on the diameter. �

4.4. Relations with Other Tree Measures

Like dCM (Proposition 7), dnav is tightly bounded in terms of dRF as follows:

Proposition 11. Over BTS one has dRF ≤ dnav ≤
1
2
d2

RF
+ 1

2
dRF and both bounds are tight.

Proof. Since dnav is realized by paths in the NNI graph we have dNNI ≤ dnav. The lower bound then follows from

dRF ≤ dNNI (Corollary 1). The bound is tight because

dRF (σ, τ) = 1⇔ dNNI (σ, τ) = 1⇔ dnav (σ, τ) = 1. (74)

For the upper bound we argue by induction over |S |, keeping in mind that for |S | = 2 the result holds trivially. Suppose

|S | ≥ 3. Now, if σ and τ have no common nontrivial clusters then dRF (σ, τ) = |S | − 2 and the result follows from

Proposition 10. Otherwise, let I ∈ C (σ) ∩ C (τ) be a nontrivial cluster and consider the tree σ′ obtained from σ by

replacing the branch σ
∣∣∣
I

with the branch τ
∣∣∣
I
.

By theorem Theorem 2 and by the definition of dRF , respectively, we have:

dnav (σ, τ) = dnav

(
σ, σ′

)
+ dnav

(
σ′, τ
)

(75)

dRF (σ, τ) = dRF

(
σ, σ′

)
+ dRF

(
σ′, τ
)

(76)

Let α = dRF (σ, σ′) and β = dRF (σ′, τ). Since dnav (σ, σ′) = dnav

(
σ
∣∣∣
I
, σ′
∣∣∣
I

)
we may apply the induction hypothesis

in BTI to conclude dnav (σ, σ′) ≤ 1
2
α(α + 1). By pruning the trees σ′ and τ at cluster I we may apply the induction

hypothesis in BTS̄ , where S̄ is the result of contracting I to a single vertex, to conclude that dnav (σ′, τ) ≤ 1
2
β(β + 1).

It then follows that:

dnav (σ, τ) ≤ 1
2
α (α + 1) + 1

2
β (β + 1) ≤ 1

2
(α + β) (α + β + 1) = 1

2
dRF (σ, τ) (dRF (σ, τ) + 1) . (77)

Proposition 10 ensures this bound is tight. �

Proposition 12. Over BTS one has dnav (σ, τ) ≤ 3
2
dCM (σ, τ) .

Proof. Consider the closed form expression of dnav (61) in terms of crossing indices. Since the trivial clusters are

compatible with any subset of S , it will suffices to verify that, for each I ∈ C (σ) and J ∈ C (τ), one has:

[[Ch (I, σ) |Ch (J, τ)]] ≤ 3
2

∑

A∈Ch(I,σ)

∑

B∈Ch(J,τ)

1 (A 6⊲⊳ B) . (78)

This verification is straightforward. �

The overall ordering of tree dissimilarities in Corollary 1, Proposition 8 and Proposition 12 can be combined as:

Theorem 3. For non-degenerate hierarchies,

2

3
dRF ≤

2

3
dNNI ≤

2

3
dnav ≤ dCM ≤ dCC . (79)
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Finally, we remark that the NNI navigation dissimilarity dnav (Definition 19) can be generalized to a pair of trees,

σ and τ, in TS as

dnav (σ, τ) =
1

2

( ∥∥∥S (σ, τ)
∥∥∥

1
+
∥∥∥S (τ, σ)

∥∥∥
1

)
, (80)

which is non-negative and symmetric. For non-degenerate trees σ, τ ∈ BTS one has S (σ, τ) = S (τ, σ)T (which is

evident from (62) and Lemma 7), so that dnav in (80) simplifies back to (61).9 Although the closed form expression of

dnav in Theorem 2 enables the generalization of dnav to degenerate trees as above, the notion of NNI moves (Definition

4) is generally not valid in TS .

As for non-degenerate trees in Proposition 12, the generalized dnav in TS can be bounded above by dCM as follows:

Proposition 13. Over TS one has dnav ≤
(

1
8
|S |2 + 1

4
|S |
)

dCM .

Proof. Note that the number of nontrivial children of a cluster in a tree can be at most 1
2
|S |. Hence one can verify the

result following similar steps as in the proof of Proposition 12. �

5. Discussion and Statistical Analysis

5.1. Consensus Models and Median Trees

Let us recall a definition : a median tree of a set of sample trees is a tree whose sum of distances to the sample

trees is minimum. Although the notion of a median tree is simple and well-defined, finding a median tree of a set of

trees is generally a hard combinatorial problem. On the other hand, a consensus model of a set of sample trees is a

computationally efficient tool to identify common structures of sample trees. In particular, a remark relating dCM and

dnav to commonly used consensus models of a set of trees and their median tree(s) is:

Proposition 14. Both the strict and loose consensus trees, T∗ and T ∗, of any set of trees T in TS (Definition 3)

are median trees with respect to both the crossing (dCM) and navigation (dnav) dissimilarities. In fact, for any d ∈

{dCM , dnav} one has: ∑

τ∈T

d (τ, T∗) =
∑

τ∈T

d (τ, T ∗) = 0. (81)

Proof. By Definition 3, both strict and loose consensus trees only contain clusters that are compatible with the clusters

of every tree in T , and the loose consensus tree is the finest median tree containing only clusters from the sample trees.

Thus, the result follows for both dCM and dnav due their relation in Proposition 13. �

5.2. Sample Distribution of Dissimilarities

To compare their discriminative power, we use a standard statistical analysis of empirical distributions of different

tree measures. The shape of the distribution of a tree measure tells how informative it is; for example, a highly

concentrated distribution means that the associated tree measure behaves like the discrete metric10 as in the case of

the Robinson-Foulds distance — see Figure 7. Finding a closed form expression for the distribution of a tree measure

is a hard problem, and so extensive numerical simulations are generally applied to obtain its sample distribution. In

particular, using the uniform and Yule model [34] for generating random trees, we compute the empirical distributions

of dRF , dMS , dCC , dCM , and dnav as illustrated in Figure 7.11 Moreover, in Table 1 we present two commonly used

statistical measures, skewness and kurtosis, for describing the shapes of the probability distributions of all these tree

measures. Here, recall that the skewness of a probability distribution measures its tendency on one side of the mean,

and the concept of kurtosis measures the peakedness of the distribution [35]. In addition to their computational

advantage over dMS , as illustrated in both Figure 7 and Table 1, like dMS , our tree measures, dCC , dCM and dnav, are

significantly more discriminative, with wider ranges of values and symmetry, than dRF .

9AT is the transpose of matrix A.
10The discrete metric d : X × X → R≥0 on a set X is defined as for any x , y ∈ X d (x, x) = 0 and d (x, y) = 1.
11In our numerical simulations for any chosen tree measure we observe the same pattern of sample distribution for different numbers of leaves,

and so here we only include results for BT[25].
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Figure 7. Empirical distribution of tree dissimilarities in BT[25]: (from left to right) the Robinson-Foulds distance dRF (14), the matching split

distance dMS (Def. 7), the cluster-cardinality distance dCC (18), the crossing dissimilarity dCM (Def. 10), and the NNI navigation dissimilarity dnav

(Def. 19). 100000 sample hierarchies are generated using (a) the uniform and (b)Yule model [34]. The resolutions of histograms of tree measures,

from left to right, are 1, 4, 32, 4, 2 unit(s), respectively.

Table 1. Skewness and Kurtosis Values for the Distributions of Tree Measures in BT[25]

Skewness Kurtosis

Uniform Yule Uniform Yule

dRF (14) −2.6162 −2.0740 9.8609 7.3998

dMS (Def. 7) 0.1293 −0.0117 3.0060 3.1136

dCC (18) −0.9294 −1.2507 3.8601 5.2724

dCM (Def. 10) 0.1390 −0.0405 3.1275 3.2103

dnav (Def. 19) 0.8809 −0.1195 4.8707 3.0746

6. Conclusion

This paper presents three new tree measures for efficient discriminative comparison of trees. First, using the well

known relation between trees and ultrametrics, the cluster-cardinality metric dCC is constructed as the pullback of

matrix norms along an embedding of trees into the space of matrices. Second, we present the crossing dissimilarity

dCM that counts the pairwise incompatibilities of trees. Third, the NNI navigation dissimilarity dnav while presented

in closed form is constructed as the length of a navigation path in the space of trees.

All of our dissimilarities can be computed in O(n2) with the number of leaves n, and they generalize to degenerate

trees as well. Moreover, we provide a closed form expression for each proposed dissimilarity and present an ordering

relation between these tree dissimilarities and related tree metrics in the literature (Theorem 3). Our numerical studies,

summarized in Figure 7, suggest that the proposed tree measures are significantly more informative and discriminative

than the Robinson-Foulds distance dRF , while maintaining a computational advantage over other distances such as the

matching-split distance [3, 4].

Finally, the system of projector graphs (Theorem 1) and navigation graphs (Theorem 2) seems to play a fundamen-

tal role in the geometry of the NNI graph, realizing many of the intuitive desiderata of tree dissimilarity measures that

have accumulated in the literature over the years. Consequently, NNI navigation paths are likely of some significance

for consensus/average models or statistical analysis of trees.
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Appendix A. Proofs

Appendix A.1. Proof of Lemma 1

Proof. Sufficiency is directly evident from Definition 4 because the cluster sets of a pair of nondegenerate hierarchies

differ exactly by one cluster if and only if they are NNI-adjacent. To verify necessity, let the move (σ, P), P ∈ G (σ)

join σ to τ, and R = P−σ and Q = Pr2 (P, σ) \ Pr (P, σ). By Definition 4, {Pr (P, σ)} = {P ∪ R} = C (σ) \ C (τ) and{
Pr2 (P, σ) \ P

}
= {R ∪ Q} = C (τ) \ C (σ). Further, (P,R,Q) is the only ordered triple of common clusters of σ and τ

with the property that {P ∪ R} = C (σ)\C (τ) and {R ∪ Q} = C (τ)\C (σ) since the cluster sets of any two NNI-adjacent

hierarchies differ exactly by one element. �

Appendix A.2. Proof of Lemma 2

Proof. To observe that resK (BTS ) ⊇ BTK , consider any two nondegenerate trees σ ∈ BTK and γ ∈ BTS \K , and let

τ ∈ BTS be the nondegenerate tree with cluster set C (τ) = C (σ) ∪ {S } ∪ C (γ). Note that Ch (S , τ) = {K, S \ K}.

Hence, we have from Remark 2 that σ = resK (τ). To prove that resK (BTS ) ⊆ BTK , let τ ∈ BTS and I ∈ C (τ) with

the property that |I ∩ K| ≥ 2. Note that I∩K is an interior cluster of τ
∣∣∣
K

. We shall show that the cluster I∩K ∈ C
(
τ
∣∣∣
K

)

always admits a bipartition in τ
∣∣∣
K

. That is to say, there exist a cluster A ∈ C (τ) with children {AL, AR} = Ch (A, τ) such

that A ∩ K = I ∩ K and AL ∩ K , ∅ and AR ∩ K , ∅. Hence, Ch
(
I ∩ K, τ

∣∣∣
K

)
= {AL ∩ K, AR ∩ K}. Now observe that

either IL ∩ K , ∅ and IR ∩ K , ∅ for {IL, IR} = Ch (I, τ), or there exists one and only one descendant D ∈ Des (I, τ)

with {DL,DR} = Ch (D, τ) such that I ∩ K = D ∩ K and DL ∩ K , ∅ and DR ∩ K , ∅. Thus, all the interior clusters

of τ
∣∣∣
K

have exactly two children, which completes the proof. �

Appendix A.3. Proof of Lemma 3

Proof. The proof of the sufficiency for being an ultrametric is as follows. Positive definiteness and symmetry of dτ
are evident from (15) and Lemma 3.(a)-(b). To show the strong triangle inequality, let i , j , k ∈ S and I = (i∧ j)τ,

and so dτ (i, j) = hτ (I). Accordingly, let {Ii, I j} ⊆ Ch (I, τ) with the property that i∈ Ii and j∈ I j.

If k ∈ I, without loss of generality, let k ∈ Ii, and so k < I j. Then, using (15) and Lemma 3.(a), one can verify

that dτ (i, k) ≤ hτ (Ii) ≤ hτ (I) and dτ ( j, k) = hτ (I) because (i∧k)τ ⊆ Ii and ( j∧k)τ = I. Also note that if neither

k ∈ Ii nor k ∈ I j (but still k ∈ I), then dτ (i, k) = dτ ( j, k) = hτ (I) since (i∧k)τ = ( j∧k)τ = I. Similarly, if k < I, then

dτ (i, k) ≥ hτ (I) and dτ ( j, k) ≥ hτ (I) because only some ancestors of I in τ might contain all i, j, k. Therefore, overall,

one always has dτ (i, j) ≤ max
(
dτ (i, k) , dτ (k, j)

)
, which completes the proof of the sufficiency.

Let us continue with the necessity for being an ultrametric. Note that Lemma 3.(b) directly follows from positive

definiteness of dτ. Let I ∈ C (τ) \ {S } be any non-singleton cluster of τ and i , j ∈ I with the property that (i∧ j)τ = I.

For any k ∈ I−τ, we always have (i∧k)τ = ( j∧k)τ = Pr (I, τ). Now, using the ultrametric inequality of dτ, one deduces

Lemma 3.(a) from

hτ (I) = dτ (i, j) ≤ max
(
dτ (i, k) , dτ ( j, k)

)
= hτ
(
Pr (I, τ)

)
, (A.1)

which completes the proof. �
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