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Abstract—A fundamental challenge of mobile sensor networks
is automated active reconfiguration of sensors in response to
environmental stimuli in order to maximize their total sensing
quality (or minimize their total sensing cost) of events occurring
over an environment. In this paper, given an event distribution
over a convex environment, we consider mobile isotropic sensors
with adjustable sensing range and propose a new family of
provably correct reactive coverage control algorithms for both
continuous- and discrete-time sensor dynamics. The proposed
coverage control algorithms constantly (re)configure sensor po-
sitions and sensing ranges in order to minimize a statistical
distance, in particular, an f -divergence, between the event dis-
tribution over the environment and the overall event detection
probability of sensors. We show that the standard Voronoi-based
coverage control law of homogeneous mobile sensor networks
is a special case of our framework where the event detection
probability of each sensor has a Gaussian form, the statistical
distance is set to be the Kullback-Leibler (KL) divergence and
sensor allocation is performed based on Voronoi diagrams. To
increase the practicality of our framework, we also present its
integration with a Voronoi-based collision avoidance strategy for
disk-shaped sensor bodies and its extension to differential drive
sensor dynamics, while retaining the stability properties.

Index Terms—Sensor networks, coverage control, statistical
distance, KL divergence, Voronoi diagrams, soft sensor allocation.

I. INTRODUCTION

Over their static counterparts, mobile sensor networks offer

increased flexibility and functionality in active information

gathering for applications such as situational awareness, secu-

rity, surveillance, search and rescue, and environmental mon-

itoring. However, given an estimate of some event or activity

distribution over an environment, sensors are usually needed to

be actively reconfigured in order to achieve better monitoring

of environmental conditions. In this paper, assuming a given

event/activity distribution over a known convex environment,

we consider the automated reconfiguration problem of a group

of mobile isotropic sensors with adjustable sensing range. We

propose a new family of simple greedy coverage control algo-

rithms that reactively (re)configure sensor positions and sens-

ing ranges, as illustrated in Fig. 1, in order to maximize their

total collective coverage quality which is measured in terms

of a statistical distance between the event distribution over

the environment and the overall event detection probability of

the sensors. Potential applications of the proposed coverage

control algorithms are envisioned to include surveillance and

environmental monitoring of large regions using adjustable

resolution sensors, such as aerial surveillance with downward
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facing cameras [1] and underwater monitoring with acoustic

sensors [2], at varying resolution for increased accuracy.

A. Motivation and Prior Literature

Finding a globally optimal coverage configuration of mobile

sensor networks is usually very hard. For example, many

related facility localization (e.g., p-center and p-median) prob-

lems [3] are known to be NP hard. This complexity is

generally mitigated by utilizing greedy gradient methods that

can efficiently find a locally optimal sensing configuration

using gradient descent or ascent along a coverage objective.1

A widely used coverage objective is the expected sensing

cost of event locations, where the spatial sensing cost of

sensors is usually assumed to be a (monotone increasing)

function of the Euclidean distance between sensor position and

event location [8]. Such geometric approaches also leverage

Voronoi diagrams to decouple the problems of optimal sensor

allocation and sensor configuration optimization, as well as to

model the heterogeneity of sensors in their sensing capabilities

via additively and multiplicatively weighted Voronoi diagrams

[9]–[11]. For example, the standard Voronoi-based coverage

control algorithm of mobile sensor networks continuously

moves each sensor towards its associated Voronoi centroid.

This simple coverage control strategy is known to asymptot-

ically converge to a locally optimal coverage configuration

where each sensor is located at the respective Voronoi cen-

troid and therefore minimizes the expected squared Euclidean

distance to events occuring within its Voronoi cell [9]–[11].

Another common coverage objective is the joint event detec-

tion probability of sensors, where each sensor is modelled

by means of its event detection probability (e.g., a Gaussian

distribution) that is parametrized according to the sensor’s

sensing capabilities [12]–[14]. Moreover, artificial potential

fields, constructed as the gradient of a repulsive potential

function between sensors, are also employed for minimizing

sensor overlap and so for maximizing the total coverage

area [15]. In fact, the common functional form of these

coverage objectives of geometric, probabilistic and potential

field approaches can be unified using a “mixing function” to

describe a general family of coverage cost functions [16].

Alternatively, we propose a new perspective for quantifying

coverage quality of a sensor network by comparing the overall

event detection probability of sensors with the (given or

1The coverage quality of such locally optimal configurations strongly
depends on the choice of initial sensor network configurations. Using proper
initialization [4] and incremental deployment [5], one can obtain a locally
optimal coverage configuration that is as “good” as a globally optimal
coverage configuration. One can also validate the quality of a locally optimal
coverage configuration by checking the stability of sensor allocation [6], [7].
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Fig. 1. Statistical coverage control of mobile isotropic sensor networks with variable sensing range aims to continuously adjust sensor positions and sensing
ranges in order to asymptotically minimize an f -divergence between the (given or estimated) event distribution over an environment and the overall event
detection probability of sensors. (a) The level sets (gray) of a given event distribution in (98) over the environment and an initial sensor network coverage
configuration, where the dashed circles depict sensors’ sensing ranges and the pie-charts attached to disk-shaped colored sensor bodies illustrate sensors’
mixture weights for soft sensor allocation. (b) A locally optimal Voronoi-centroidal coverage configuration and the associated Voronoi-based sensor allocation
where each Voronoi cell is coloured in accordance with the respective sensor body color. (c) The maximum of event detection probabilities of sensors at
the initial (top) and the final (bottom) coverage configurations. (d) A locally optimal soft centroidal coverage configuration and the associated soft sensor
allocation where spatial colouring is in accordance with sensor body colors and proportional with soft assignment weights. (e) The weighted average of event
detection probabilities of sensors at the initial (top) and the final (bottom) coverage configurations.12 Here, the reverse Kullback-Leibler (KL) divergence
is used as a statistical coverage quality measure, and the locally optimal coverage configurations in (b) and (d) are, respectively, obtained by following the
continuous-time move-to-Voronoi-centroidal configuration law in (37) and the continuous-time move-to-soft-centroidal configuration law in (33).13

estimated) event distribution over the environment using a

statistical distance, in particular, an f -divergence, where each

sensor is modelled using its event detection probability that is

parametrized by sensor position and sensing range, see Fig. 1.

We show that the standard Voronoi-based coverage control law

of homogeneous isotropic mobile sensors in [9] is a special

case of our approach, where each sensor is modelled using

a Gaussian event detection probability, the statistical distance

is set to be the Kullback-Leibler (KL) divergence and sensor

allocation is performed based on the standard Voronoi partition

of the environment. Thus, the proposed approach offers an

extension of Voronoi-based coverage control algorithms with

similar qualitative properties and interpretation (i.e., we in-

troduce new “move-to-centroidal-configuration” laws) for mo-

bile isotropic sensors with adjustable sensing range, whereas

most existing work on coverage control of mobile sensor

networks assumes fixed (and possibly heterogeneous) sensing

ranges [9]–[11]. Our interest in sensors with adjustable sensing

range is motivated by the increased availability of low-cost

controllable sensors (e.g., cameras) for accurate environment

monitoring at varying resolution [17].

Adjustable sensing range plays a critical role in sensor

(especially camera) networks due to the trade-off between

sensitivity and sensing region volume [17]. Among the others,

the most closely related approaches [18], [19] use Gaussian

mixture models to represent the overall sensing quality of

a pan/tilt/zoom camera network and design a discrete-time

coverage control strategy that reconfigures camera orienta-

tion and zoom levels based on the iterations of the stan-

dard Expectation-Maximization (EM) algorithm [20], which

is known to decrease the KL divergence between the over-

all sensing quality of the network and the event distribu-

tion. In this paper, in order to generate smooth coverage

motion, in addition to its continuous-time generalization,

we describe a discrete-time generalization, with adjustable

step size, of the EM algorithm using the MM (Majorize-

Minimization/Minorize-Maximization) principle [21] that de-

creases an f -divergence between the overall event detection

probability of a mobile sensor network and the event distri-

bution over the environment. In sensor networks, Gaussian

mixture models also find applications in event distribution es-

timation in unknown environments [22]–[25] and in interactive

multirobot control using time-varying density function [26].

Finally, it is worth mentioning that sensors with adjustable

sensing range are usually studied in (randomly deployed,

very large) static sensor networks in order to design effi-

cient scheduling algorithms to prolong network lifetime by

minimizing energy consumption [27]–[29]. Moreover, adaptive

Voronoi diagrams with adjustable additive and/or multiplica-

tive weights are used for load balancing among sensors and

area-constrained coverage control [30]–[32], but without mak-

ing an explicit connection between Voronoi weights and sensor

capabilities. We here introduce a new notion of additively and

multiplicatively weighted generalized Voronoi diagrams, for

isotropic sensors with adjustable sensing range, whose weights

are a function of sensors’ sensing ranges.

B. Contributions and Organization of the Paper

In this paper, we consider the reactive coverage control

problem of mobile isotropic sensor networks with adjustable

sensing range. Following a probabilistic approach, in Section

II-A, we model the event detection probability of each sensor

by a Gaussian distribution parametrized by sensor position and

sensing range, which also yields a natural spatial sensing cost

function. In Section II-B we show a novel use of this prob-

abilistic sensing model to define a new additively and multi-

plicatively weighted Voronoi diagram for determining optimal

sensor allocation in mobile sensor networks with adjustable

sensing range. To quantify the event coverage performance

of sensors, in Section II-C we introduce a new statistical

coverage quality measure based on an f -divergence between

the event distribution over the environment and the overall

event detection probability of the sensors that is determined by

either a weighted average or the maximum of individual event
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detection probabilities of the sensors, defining, respectively, a

soft or a hard sensor allocation scheme. In Section II-E we

provide an explicit characterization of locally optimal coverage

configurations for both soft and hard sensor allocation. In

Section III we propose a new family of simple reactive

coverage control algorithms, for both continuous- and discrete-

time sensor dynamics, that asymptotically (re)configure the

sensors towards a locally optimal coverage configuration. In

Section III-C, we present three practical extensions of our

framework for discrete event distributions, for collision avoid-

ance of disk-shaped finite-size sensors and for nonholonomi-

cally constrained kinematic differential drive dynamics, while

maintaining the stability properties. In Section IV, we provide

numerical simulations demonstrating the resulting coverage

motion and locally optimal coverage configurations for both

the KL divergence and the Hellinger distance. In Section V,

we conclude with a summary of our contributions and future

research directions.

In summary, the main contributions of the present paper

over the existing literature on coverage control of mobile

sensor networks are:

• a new probabilistic spatial sensing model for mobile

sensors with adjustable sensing range,

• a fresh perspective on soft and hard sensor allocation in

mobile sensor networks,

• a novel statistical coverage quality measure based on an

f -divergence between the event detection probability of

sensors and the event distribution over the environment,

• a new family of provably correct, simple reactive cover-

age control algorithms for continuous- and discrete-time

sensor dynamics.

In addition to these completely new contributions, we also

present practical extensions for differential-drive sensor dy-

namics and collision avoidance based on our prior work [33].

Moreover, we discuss in details how our proposed statistical

coverage control methods generalize the standard Voronoi-

based coverage control approaches [9].

II. QUANTIFYING COVERAGE VIA STATISTICAL DISTANCES

In this section, we first introduce a probabilistic spatial

sensing model for isotropic mobile sensors with adjustable

sensing range and describe its use for constructing generalized

Voronoi diagrams that determine optimal sensor allocation in

such mobile sensor networks. Then, we propose a new cover-

age quality measure based on a statistical distance between a

given event distribution over the environment and the overall

event detection probability of sensors, and present an explicit

characterization of locally optimal coverage configurations.

A. Mobile Sensor Networks with Adjustable Sensing Range

For ease of exposition, we consider a convex environment

W ⊂ R
d in the d-dimensional Euclidean space R

d that

is monitored by a group of mobile isotropic heterogeneous

sensors, located at positions p := (p1, p2, . . . , pn) ∈ Wn and

with adjustable sensing ranges2 r := (r1, r2, . . . , rn)∈(R>0)
n
,

each of whose event detection probability qsi(x) at event

location x ∈ R
d has the following normalized Gaussian form3

qsi(x) :=
1

(
2πr2i

) d
2

exp

(
−‖x−pi‖2

2r2i

)
, (1)

where ‖.‖ denotes the standard Euclidean norm. For ease

of presentation, we find it convenient to denote the state of

a mobile sensor network with adjustable sensing range by

s :=(s1, s2, . . . , sn) ∈ (W× R>0)
n

, where each sensor’s state

si := (pi, ri) ∈ W×R>0 is comprised of its position pi ∈ W

and adjustable desired sensing range ri ∈ R>0.

Note that, by applying the “two-” or ‘three-sigma” rules

of thumbs, one can consider the effective sensing range of a

sensor to be 2ri or 3ri depending on the desired confidence

level of 95% or 99.7%, respectively. Also observe that the

normalized form of the event detection probability qsi in

(1) ensures that the event detection probability of a sensor

decreases with increasing sensing range, which is consistent

with the trade-off between the sensitivity and the sensing range

of many physical finite-resolution sensors, such as cameras,

radars, acoustic and ultrasonic range sensors. Therefore, the

adjustable sensing range parameter ri intuitively corresponds

to zoom control of cameras [17] or signal power control of

dynamic range radars [34].

Finally, we find it useful to emphasize that the negative

log-likelihood of the event detection probability qsi defines a

natural spatial sensing cost csi for event location x∈R
d as

csi(x) := − log qsi(x) =
‖x−pi‖2

2r2i
+
d

2
log r2i +

d

2
log 2π, (2)

which is an additively and multiplicatively weighted power

distance based on the standard Euclidean distance [35].

B. Optimal Sensor Allocation

To determine which part of the environment each sensor

should monitor given other sensors’ configurations, we follow

a standard optimal resource allocation strategy widely used

in facility localization [8], [36], quantization [37], [38] and

sensor networks [9]; and we assign each event location to

the sensor with maximal event detection probability (resp.

minimal sensing cost) so that the total event detection prob-

ability of sensors is maximized (resp. the total sensing cost

2Here, R>0 (R≥0) denotes the set of positive (nonnegative) real numbers.
3Depending on the application setting, especially the physical nature of

sensors, one can consider other kernel functions to define a distance between
sensor position and event location, and alternative probability distribution
functions. For example, if the event detection probability qsi(x) of a sensor

is defined, using a kernel function K : Rd × Rd → R≥0, as

qsi(x) :=
1

(
2πr2i

) d
2

exp

(

−K(x,pi)

2r2i

)

,

then the sensor’s spatial sensing cost csi becomes

csi(x) := − log qsi(x) =
K(x,pi)

2r2i
+

d

2
log r2i +

d

2
log 2π,

which has the same general form as the standard sensing cost function used in
coverage control of homogeneous mobile sensor networks [9]. In this paper,
in order to design simple intuitive coverage control algorithms with an explicit

closed form, we limit our attention to K(x,pi) = ‖x− pi‖2. In future
papers, in addition to other kernel functions, we plan to extend our results
to the exponential family of distributions such as Gamma distributions for
modelling sensor directionality and Beta distributions for modelling limited
range sensing.
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is minimized). For any given sensor network configuration

s∈(W×R>0)
n

, this yields an additively and multiplicatively

weighted Voronoi diagram, V(s) := {V1, V2, . . . , Vn}, of the

environment W, whose blocks are given by

Vi :=
{
x ∈ W

∣∣∣qsi(x) ≥ qsj (x), ∀j 6= i
}
, (3a)

=
{
x ∈ W

∣∣∣csi(x) ≤ csj (x), ∀j 6= i
}
, (3b)

=
{
x∈W

∣∣∣‖x−pi‖
2

d r2
i

+log r2i ≤ ‖x−pj‖
2

d r2
j

+log r2j , ∀j 6= i
}
, (3c)

and have quadratic (i.e., circular or planar) boundary segments

between adjacent Voronoi cells [8], see Fig. 2(a)-(b). It is

useful to observe that if sensors share identical sensing range

parameters, i.e., ri=rj for all i 6=j, then V(s) is equivalent to

the standard Voronoi diagram of W, generated based on sensor

positions p = (p1, p2, . . . , pn) and the Euclidean distance, i.e.,

Vi=
{
x∈W

∣∣‖x−pi‖ ≤ ‖x−pj‖, ∀j 6= i
}

[8].

Despite their flexibility in modelling different phenomena,

generalized Voronoi diagrams might suffer from some form

of degeneracy such as empty Voronoi cells or Voronoi cells

excluding generating points [8]. In our case in (3), one can

observe both situations: the Voronoi cell of a sensor can be

empty, especially if its sensing range is very large compared

to the others’ sensing ranges and the diameter of the envi-

ronment W, denoted by diam(W) := maxx,y∈W‖x−y‖; and,

likewise, nonempty Voronoi cells might exclude the associated

sensor positions. However, one can always ensure that Voronoi

cells contain the respective sensor positions by bounding the

sensors’ difference in sensing range from above by their

spatial separation distances. Hence, we find it convenient to

summarize these observations as follows:

Proposition 1 Let V(s) be the generalized Voronoi diagram

of W in (3) associated with a sensor network configuration

s∈(W×R>0)
n

. Then, one has the following properties:

(i) Vi = ∅ if log r2i > log r2j +
diam(W)2

d r2
j

for all j 6= i.

(ii) pi ∈ Vi iff log r2i ≤ log r2j +
‖pi−pj‖

2

d r2
j

for all j 6= i.

(iii) pi ∈ Vi if ‖pi−pj‖2 ≥ d
∣∣r2i − r2j

∣∣ for all j 6= i.4

Proof. The result (i) directly follows from (3c), because

0 ≤ ‖x−pj‖ ≤ diam(W) for any x, pj ∈ W. Similarly, one

can obtain the result (ii) by substituting x = pi in the predicate

of (3c).

Finally, if ri≤ rj , then we have log r2i ≤ log r2j+
‖pi−pj‖

2

d r2
j

.

Otherwise (ri > rj), ‖pi−pj‖2 ≥ d
(
r2i −r2j

)
implies that

‖pi−pj‖
2

d r2j
≥ r2i

r2j
− 1 ≥ log

r2i
r2j

, because log x ≤ x2 − 1 for

x ≥ 1. Thus, the result (iii) is evident from the result (ii). �

C. Quantifying Coverage Quality via Statistical Distances

Inspired by the use of Gaussian mixture models in learning

approximate representations of complex probability distribu-

tion functions [39], we define the overall event detection

probability of a sensor network, at a coverage configuration

4A similar geometric condition is required to resolve the degeneracy of
power diagrams, additively weighted generalized Voronoi diagrams whose
generating objects are Euclidean balls [33].

s ∈ (W×R>0)
n

, as a weighted average of the individual

event detection probabilities of the sensors as

ϕθ(x) :=

n∑

i=1

πiqsi(x), (4)

where π := (π1, π2, . . . , πn)∈ [0, 1]
n

denotes a list of normal-

ized mixture weights that satisfy
∑n

i=1 πi=1. For the sake of

notational simplicity, we shall denote the extended soft state of

a sensor network by θ := (s,π)∈(W×R>0)
n×Ω(n), where

Ω(n) is the set of normalized mixture weights,

Ω(n) :=
{
π ∈ [0, 1]

n
∣∣∣
∑n

i=1
πi = 1

}
. (5)

The notion of soft sensor network configurations will become

clear in Section II-E. Here, one can intuitively interpret

mixture weights as task weights determining the role of each

sensor in the coverage task. For example, if the sensors

are desired to participate equally in the coverage task, their

mixture weights can be set to be equal, i.e., πi=
1
n

for all i.

Hence, (small) mixture weights can also be utilized to identify

redundant sensors in the coverage task.

Note that ϕθ(x) is a valid probability distribution over Rd as

are all the individual event detection probabilities qsi . Hence,

given an event distribution φ : W → R>0 over W, in order

to determine the event coverage performance of a soft sensor

network configuration, θ ∈ (W× R>0)
n ×Ω(n), we propose

to use an f -divergence [40], [41] that measures the statistical

distance between the event distribution φ and the average event

detection probability ϕθ as5

Df,W(ϕθ, φ) :=

∫

W

f

(
ϕθ(x)

φ(x)

)
φ(x)dx, (6)

where f : R>0 → R is a continuously differentiable convex

function with f(1) = 0. For example, f(t) = t log t, f(t) =
− log t, f(t) = 1 −

√
t and f(t) = t2 − 1 correspond to the

Kullback-Leibler (KL) divergence, the reverse KL divergence,

the Hellinger distance, and χ2 divergence, respectively, which

are a member of the family of α-divergences associated with

f(t) = 1
α(α−1) (t

α − 1) for some α ∈ R [41], [42]. Here, while

the relations of the Hellinger distance and χ2 divergence with

the α-divergence are obvious, the α-divergence is known to

simplify back to the (resp. reverse) KL divergence as α → 1
(resp. α → 0) [42]. Also note that, due to Jensen’s inequality,

an f -divergence of two probability distributions with the same

support is always nonnegative and it is zero only if two

distributions are identical [41], [42].

5To handle unnormalized distribution functions, the f -divergence between
distribution functions ϕ : X → R>0 and φ : X → R>0 over a shared
domain X can be defined as [42]

Df,X(ϕ, φ) :=

∫

X

(

f

(
ϕ(x)

φ(x)

)

φ(x)+
(
f ′(1)−f(1)

)
φ(x)−f ′(1)ϕ(x)

)

dx

where f : R>0 → R is a convex function. Here, the additional terms act as
a regularizer that measures how much the mass distributions of ϕ and φ are
concentrated over the domain X .

Since the event distribution function φ is normalized over W, for the sake
of simplifying the notational presentation and to be able to highlight the
connection with the existing literature on Voronoi-based coverage control [9],
we simply ignore these additional regularization terms in this paper, but our
results can be simply extended to handle unnormalized distributions.
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D. Some Important Bounds on f -Divergences

Since the overall event detection probability ϕθ is defined

as a convex combination of the individual event detection

probabilities qsi , using Jensen’s inequality, the f -divergence

Df,W(ϕθ, φ) can be bounded from below and above as:

Proposition 2 For any convex function f over (0,∞), the

f -divergence Df,W(ϕθ, φ) in (6) satisfies

f

(
n∑

i=1

πi

∫

W

qsi(x)dx

)
≤Df,W(ϕθ, φ)≤

n∑

i=1

πiDf,W(qsi , φ). (7)

Proof. The lower bound simply follows from the continuous

form of Jensen’s inequality for probability distributions, i.e.,

Df,W(ϕθ, φ) =

∫

W

f

(
ϕθ(x)

φ(x)

)
φ(x)dx ≥ f

(∫

W

ϕθ(x)dx

)
. (8)

Similarly, since f is convex, the finite form of Jensen’s

inequality states that

f

(
ϕθ(x)

φ(x)

)
= f

(
n∑

i=1

πi

qsi(x)

φ(x)

)
≤

n∑

i=1

πif

(
qsi(x)

φ(x)

)
. (9)

Thus, the upper bound follows from the monotonicity of the

integral operator, which completes the proof. �

Note that, for any monotone function f , both of the bounds in

Proposition 2 can be considered as a coverage objective with

no coordination constraint. More precisely, the lower bound

measures how concentrated the individual event detection

probabilities of sensors are over the environment W in average,

whereas the upper bound quantifies how well the sensors’

individual event detection probabilities approximate the event

distribution φ over W, in the sense of the f -divergence, in

average. Hence, both of these coverage objectives can be

independently optimized at the individual sensor level.

More interestingly, if f is monotonically decreasing (e.g.,

f(t)=− log t) or increasing (e.g., f(t)= t2−1) over (0,∞),
then one can find upper and lower bounds on the f -divergence

Df,W(ϕθ, φ) in terms of the individual coverage performance

of sensors over their respective Voronoi cells.

Proposition 3 For any monotone decreasing convex function

f over (0,∞) and any soft sensor network configuration

θ = (s,π) ∈ (W×R>0)
n×Ω(n), with distinct sensor states,

i.e., si 6= sj for all i 6= j, one has

n∑

i=1

Df,Vi
(qsi , φ) ≤ Df,W(ϕθ, φ) ≤

n∑

i=1

Df,Vi
(πiqsi , φ), (10)

and the inequalities in the reverse direction hold for an

increasing convex function f . Here, V(s) = {V1, V2, . . . , Vn}
is the Voronoi diagram of W constructed as defined in (3).

Proof. By definitions (3) and (4), we have qsi(x) ≥ qsj(x) for

all x ∈ Vi and i 6= j; and so πiqsi(x) ≤ ϕθ(x) ≤ qsi(x) for

any x∈Vi, since qsi(x)=qsi(x)
n∑

j=1

πj≥πiqsi(x)+
∑
j 6=i

πjqsj (x).

Hence, for a monotone decreasing f , we have from the

monotonicity of the integral operator that

Df,Vi
(qsi , φ) ≤ Df,Vi

(ϕθ, φ) ≤ Df,Vi
(πiqsi , φ). (11)

Thus, since a Voronoi diagram defines a partition of W for

distinct sensor states, we have Df,W(ϕθ,φ) =
n∑

i=1

Df,Vi
(ϕθ,φ)

and so the inequalities in (10) directly follows.

Similarly, one can verify that the directions of inequalities

are reversed for an increasing convex function f . �

Once again, the bounds in Proposition 3 can be interpreted

as a coverage objective with a Voronoi-based coordination

constraint, and they measure how well the (scaled) individual

event detection probabilities of sensors over the corresponding

Voronoi cells approximate the event distribution φ in total.

Although it does not hold in general, the bounds in Proposition

3 are usually tighter than the bounds in Proposition 2, espe-

cially around a locally optimal coverage configuration, because

the individual event detection probabilities of the sensors are

concentrated within their associated Voronoi cells at locally

optimal coverage configurations (see Corollary 2).

To have a better intuitive understanding of the bounds on the

f -divergence Df,W(ϕθ, φ) in Proposition 3, one can relax the

constraint of being a valid probability distribution on ϕθ and

redefine it as the maximum of the individual event detection

probabilities of the sensors as

ϕ̂s(x) := max
i∈{1,2,...,n}

qsi(x), (12)

which is not necessarily a valid probability distribution, but the

f -divergence in (6) is still well defined for comparison of any

two positive functions over their shared support.5 Note that ϕθ

in (4) is parametrized by a soft sensor network configuration

θ = (s,π), consisting of network state s and mixture (task)

weights π, whereas ϕ̂s in (12) is parametrized by sensor

network state s. More importantly, observe from Proposition

3 that the f -divergences Df,W(ϕ̂s, φ) defines a bound on

Df,W(ϕθ, φ), revealing an interesting connection between the

f -divergence and Voronoi-based optimal sensor allocation of

Section II-B, because

Df,W(ϕ̂s, φ) =
∑n

i=1
Df,Vi

(qsi , φ), (13)

where V(s) = {V1, V2, . . . , Vn} is the additively and multi-

plicatively weighted Voronoi diagram of the environment W,

generated based on sensor configuration s, as defined in (3).

Another significant connection with Voronoi-based cover-

age control approaches is that the objective function for the

standard Voronoi-based coverage control of homogeneous (i.e.,

ri = rj for all i 6= j) isotropic mobile sensors is the total

expected event sensing cost, measured in terms of the squared

Euclidean distance, of sensors within the respective Voronoi

cells [9], which corresponds in our framework to setting the

statistical distance to be the reverse Kullback-Leibler (KL)

divergence (i.e., f(t) = − log t ), denoted by Dkl,W, while

assuming Voronoi-based sensor allocation.

Remark 1 The reverse KL divergence Dkl,W(ϕ̂s, φ) mea-

sures the coverage quality of a sensor network configuration

s∈(W×R>0)
n

in terms of an additively and multiplicatively

weighted, expected squared Euclidean distance of events to

sensors over their respective Voronoi cells as
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(a) (b) (c) (d) (e)

Fig. 2. Hard and soft optimal sensor allocation. (a) Voronoi-based allocation of heterogeneous sensor networks with distinct sensing ranges (dashed circles),
(b) Voronoi-based allocation of homogeneous sensor networks with identical sensing ranges, (c) Soft allocation of heterogeneous sensor networks with distinct
sensing ranges and distinct mixture weights (pie-charts), (d) Soft allocation of heterogeneous sensor networks with distinct sensing ranges and identical mixture
weights, (e) Soft allocation of homogeneous sensor networks with identical sensing ranges and identical mixture weights.

Dkl,W(ϕ̂s, φ) =

n∑

i=1

∫

Vi

csi(x)φ(x)dx−HW(φ), (14)

where csi(x) is the spatial sensing cost of ith sensor as defined
in (2) and HW(φ) := −

∫
W

φ(x) logφ(x)dx denotes the
differential entropy of the event distribution φ over W and
is constant. Moreover, for homogeneous sensors with a shared
fixed sensing range parameter r > 0 (i.e., ri = r for all i),
the KL divergence Dkl,W(ϕ̂s, φ) is proportional with the total
expected squared Euclidean distance of events to sensors over
the associated Voronoi cells, i.e.,

Dkl,W(ϕ̂s, φ)=
1

2r2

n∑

i=1

∫

Vi

‖x−pi‖
2
φ(x)dx+

d

2
log(2πr)−HW(φ).

E. Locally Optimal Coverage Configurations

We now provide a geometric characterization of locally opti-

mal coverage configurations of the f-divergences Df,W(ϕθ , φ)
and Df,W(ϕ̂s, φ). As we shall discuss below, at a locally

optimal coverage configuration of Df,W(ϕθ, φ), each event

location is assigned to every sensor based on its relative event

detection probability, which is typically referred to as a soft

assignment; whereas Df,W(ϕ̂s, φ), by construction, relies on

the Voronoi-based assignment of each event location to a

particular sensor with the maximal event detection probability,

which is typically referred to as a hard assignment, see Fig. 2.

1) Optimal Coverage Configurations for Soft Assignment:

Soft assignment of event locations to sensors offers an intuitive

formula for the gradient of the f -divergence Df,W(ϕθ , φ) in

terms of the associated workspace statistics:

Theorem 1 The gradients of the f -divergence Df,W(ϕθ , φ),
between the sensors’ average event detection probability ϕθ in

(4) and the event distribution φ, with respect to sensor position

pi and squared sensing range r2i are given by

∇pi
Df,W(ϕθ , φ) =

mWi

r2i
(µWi

− pi), (15a)

∇r2
i
Df,W(ϕθ , φ) = d

mWi

2r4i

(
σ2
Wi

+‖µWi
−pi‖2

d
− r2i

)
, (15b)

where the mass mWi
, the centroid µWi

and the variance σ2
Wi

of the environment W for the ith sensor are defined to be

mWi
:=

∫

W

f ′

(
ϕθ(x)

φ(x)

)
πiqsi(x)dx, (16a)

µWi
:=

1

mWi

∫

W

x f ′

(
ϕθ(x)

φ(x)

)
πiqsi(x)dx, (16b)

σ2
Wi

:=
1

mWi

∫

W

‖x−µWi
‖2f ′

(
ϕθ(x)

φ(x)

)
πiqsi(x)dx. (16c)

Here, f ′ denotes the derivative of f .

Proof. Since the boundary of W is fixed, using the generalized

Leibniz rule for differentiation under the integral sign [43],

the partial derivative of Df,W(ϕθ, φ) with respect to a sensor

control parameter βi ∈
{
pi, r

2
i

}
can be obtained as

∂Df,W(ϕs, φ)

∂βi

=

∫

W

∂

∂βi

f

(
ϕθ(x)

φ(x)

)
φ(x)dx, (17a)

=

∫

W

f ′

(
ϕθ(x)

φ(x)

)
πi

∂qsi(x)

∂βi

dx, (17b)

where

∂qsi(x)

∂pi
= qsi(x)

(x−pi)
T

r2i
, (18a)

∂qsi(x)

∂r2i
= qsi(x)

1

2r2i

(
‖x−pi‖2

r2i
− d

)
. (18b)

Here, we can alternatively rewrite ‖x−pi‖2 as

‖x−pi‖
2=‖x−µWi

‖2+2(x−µWi
)T(µWi

−pi)+‖µWi
−pi‖

2
, (19)

Thus, after some arithmetic manipulation, one can verify the

theorem. �

Remark 2 While defining workspace statistics in (16), each

event location x ∈W is softly assigned to every sensor with

normalized assignment weight
πiqsi (x)∑

n
j=1

πjqsj (x)
that is propor-

tional with the sensor’s weighted event detection probability

πiqsi(x), as illustrated in Fig. 2.

Note that if sensors equally participate in the coverage task

with identical mixture weights (i.e., πi = 1
n

for all i), as

seen in Fig. 2(a)-(d) and Fig. 2(b)-(e), hard and soft sensor

allocations are significantly consistent with each other, and

soft sensor allocation yields a smooth transition in event-to-

sensor assignment by offering overlapping coverage regions.

Also observe that the mass mWi
is negative for decreasing

f (e.g., f(t) = − log t and f(t) = 1 −
√
t corresponding

to the reverse KL divergence and the Hellinger distance,

respectively); however, the associated mean µWi
is always

contained in W and the variance σ2
Wi

is always positive for any
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monotone function f . The sign of mWi
will play a critical role

in the design of coverage control in Section III and determine

the sign of (negative or positive) feedback. Finally, we find

it useful to emphasize that the global workspace statistics in

(16) can be computed efficiently using a distributed consensus

algorithm that combines local statistics obtained using local

observations [44], [45].

A corollary of Theorem 1 is that a locally optimal soft

coverage configuration satisfies:

Corollary 1 At a locally optimal soft coverage configuration

θ = (p, r,π) ∈ (W× R>0)
n × Ω(n) that locally minimizes

Df,W(ϕθ, φ), all sensors are located at the associated work-

space centroids with the centroidal sensing ranges, i.e.,

pi = µWi
, and r2i = 1

d
σ2
Wi

, ∀i. (20)

Proof. By definition, a locally optimal coverage configuration

is a critical point6 of Df,W(ϕθ, φ), and so the result follows

from Theorem 1. �

Theorem 2 For any monotone convex function f over

(0,∞), at a locally optimal soft coverage configuration

θ = (p, r,π) ∈ (W× R>0)
n × Ω(n) that locally minimizes

Df,W(ϕθ, φ), the mixture weights πi are proportional with the

associated workspace masses mWi
in (16a), i.e.,

πi =
mWi∑n

j=1 mWj

, ∀i. (21)

Proof. Recall that mixture weights should be nonnegative and

sum up to unity. The monotonicity of f ensures that the

mixture weights in (21) are all positive because the workspace

masses mWi
in (16a) share the same sign for any monotone

f and are all either positive or negative. Further, using the

method of Lagrange multipliers for determining critical points

of equality constrained optimization problems [46], a locally

optimal choice of mixture weights can be determined as

follows. Optimal mixture weights are a critical point of the

following Lagrangian,

L :=Df,W(ϕθ, φ) + λ
(
1−

∑n

i=1
πi

)
, (22)

where λ ∈ R is a scalar Lagrange multiplier. The gradients

of the Lagrangian L, with respect to mixture weights and the

Lagrange multiplier, are given by

∇πi
L =

∫

W

f ′

(
ϕθ(x)

φ(x)

)
qsi(x)dx− λ =

mWi

πi

− λ, (23a)

∇λL = 1−
∑n

i=1
πi. (23b)

At a critical point of L, ∇λL = 0 guarantees
∑n

i=1 πi = 1,

and, using ∇πi
L=0, one can obtain that the optimal value of

the Lagrange multiplier is given by λ =
∑n

i=1 mWi
, because

0 =
∑n

i=1
πi∇πi

L =
(∑n

i=1
mWi

)
− λ. (24)

Thus, we have from ∇πi
L = 0 that the optimal mixture

weights should satisfy (21), which completes the proof. �

6It is usually very hard to determine the type of critical points of
Df,W(ϕθ, φ), but in practice gradient descent algorithms are usually ob-
served to converge a local minimum of the Df,W(ϕθ, φ).

Finally, we find it important to note that, soft and hard

assignments of homogeneous isotropic mobile sensors with

a shared sensing range r ∈ R>0 (i.e., ri = r for all i)

coincide as the shared sensing range r approaches to zero

[39], which reveals another interesting connection between our

statistical coverage control method and the standard Voronoi-

based coverage control approaches [9].

Remark 3 For homogeneous isotropic sensor networks with

a shared sensing range r ∈ R>0 and distinct positions (i.e.,

ri = r for all i and pi 6= pj for all i 6= j), the soft

assignment converges to the Voronoi-based hard assignment

(almost everywhere over W) as r → 0, i.e.,

lim
r→0

πiqsi(x)∑n

j=1πjqsj (x)
=





1, x ∈ V̊i,
πi∑

n
j=1

πj1(Vi∩Vj 6=∅) ,x ∈ ∂Vi,

0, otherwise,

(25)

where si = (pi, r) ∈ W× R>0 and πi ∈ (0, 1) denote the ith

sensor’s state and mixture weight; V(s) = {V1, V2, . . . , Vn}
is the Voronoi diagram of W defined in (3); V̊i and ∂Vi

denote the interior and the boundary of Voronoi cell Vi,

respectively; and 1(.) is the indicator function that returns

one if its argument is true, and zero otherwise.

Proof. For any x∈W, let i∗:=arg maxi∈{1,2,...,n} qsi(x), and

observe that limr→0
qsi (x)

qsi∗ (x) =1 if x ∈ Vi, and zero otherwise.

Hence, since a Voronoi diagram defines a partition of W

for distinct sensor positions, one can verify (25) by simply

dividing the numerator and the denominator of the limit term

in (25) by qsi∗ (x). �

2) Optimal Coverage Configurations for Hard Assignment:

Similar to Theorem 1, the gradient of the f -divergence

Df,W(ϕ̂s, φ) can be computed using Voronoi statistics as:

Theorem 3 The gradients of the f -divergence Df,W(ϕ̂s, φ)
in (13), between the maximum event detection probability ϕ̂s

of sensors in (12) and the event distribution φ, with respect to

sensor position pi and squared sensing range r2i are given by

∇pi
Df,W(ϕ̂s, φ) =

mVi

r2i
(µVi

− pi), (26a)

∇r2
i
Df,W(ϕ̂s, φ) = d

mVi

2r4i

(
σ2
Vi
+‖µWi

−pi‖2

d
− r2i

)
, (26b)

where the mass mVi
, the centroid µVi

and the variance σ2
Vi

of Voronoi cell Vi are defined to be

mVi
:=

∫

Vi

f ′

(
qsi(x)

φ(x)

)
qsi(x)dx, (27a)

µVi
:=

1

mVi

∫

Vi

x f ′

(
qsi(x)

φ(x)

)
qsi(x)dx, (27b)

σ2
Vi

:=
1

mVi

∫

Vi

‖x− µVi
‖2f ′

(
qsi(x)

φ(x)

)
qsi(x)dx. (27c)

Proof. Recall from (6) and (13) that

Df,W(ϕ̂s, φ)=
n∑

i=1

Df,W(qsi , φ)=
n∑

i=1

∫

Vi

f

(
qsi(x)

φ(x)

)
φ(x)dx. (28)
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Hence, using the generalized Leibniz rule for differentiation

under the integral sign [43] (also refer to Lemma 6.1 in [38]),

the partial derivative of Df,W(ϕ̂s, φ) with respect to a sensor

control parameter βi ∈
{
pi, r

2
i

}
can be obtained as

∂Df,W(ϕ̂s, φ)

∂βi

=

∫

Vi

f ′

(
qsi(x)

φ(x)

)
∂qsi(x)

∂βi

dx

+

∫

∂Vi

f

(
qsi(x)

φ(x)

)
φ(x) nix ·

∂x

∂βi

dx

+
∑

j 6=i

∫

∂Vj

f

(
qsj (x)

φ(x)

)
φ(x) njx ·

∂x

∂βi

dx, (29)

where nix denotes the outward surface normal of the Voronoi

boundary ∂Vi at x ∈ ∂Vi. By definition (3), qsi(x) = qsj (x)
and nix = −njx for any point x ∈ ∂Vi ∩ ∂Vj on the shared

boundary of adjacent Voronoi cells Vi and Vj (where i 6= j).

Moreover, ∂x
∂βi

= 0 for any point x ∈ ∂W on the workspace

boundary ∂W. Hence, the last two terms in (29) sum to zero,

which yields

∂Df,W(ϕ̂s, φ)

∂βi

=

∫

Vi

f ′

(
qsi(x)

φ(x)

)
∂qsi(x)

∂βi

dx. (30)

Thus, using (18) and (19), one can obtain the result. �

Recall from Proposition 1 that a Voronoi cell can be empty.

Hence, to resolve the indeterminacy due to an empty Voronoi

cell, we set mVi
= 0, µVi

= pi and σ2
Vi

= 0 if Vi = ∅.

Moreover, observe that although the Voronoi mass mVi
is

negative for decreasing f , the associated mean µVi
is always in

W (not necessarily in Vi, see Proposition 1) and the variance

σ2
Vi

is positive for any monotone f . The sign of mVi
will

become critical later in determining the sign of (negative or

positive) feedback coverage control in Section III. As a final

remark, it is useful to note that the Voronoi assignment of

sensors and the associated Voronoi statistics in (27) can be

efficiently computed using a distributed algorithm [9].

A direct consequence of Theorem 3 is that:

Corollary 2 A locally optimal coverage configuration

s = (p, r) ∈ (W× R>0)
n

is a critical point of Df,W(ϕ̂s, φ)
where all sensors are located at the associated Voronoi cen-

troids with Voronoi-centroidal sensing range, i.e.,

pi = µVi
, and r2i = 1

d
σ2
Vi
, ∀i. (31)

III. COVERAGE CONTROL VIA STATISTICAL DISTANCES

In this section, we first consider first-order continuous-time

sensor dynamics and present a family of greedy coverage con-

trol algorithms for both soft and hard sensor allocation; then

we present its adaptation to discrete-time sensor dynamics and

describe its practical extensions for discrete event distributions,

collision avoidance and differential drive sensor dynamics.

A. Continuous-Time Move-to-Centroidal-Configuration Laws

Assuming first-order (completely-actuated single-integrator)

sensor dynamics,

ṗi = upi
, ṙ2i = ur2

i
, π̇i = uπi

, (32)

where upi
, ur2

i
and uπi

, respectively, denote the control inputs

for sensor position pi, squared sensing range r2i and mixture

weight πi, we now propose a new family of reactive coverage

control policies, named the “move-to-centroidal-configuration”

laws, that asymptotically bring the sensors to a locally optimal

coverage configuration for both soft and hard sensor allocation.

1) The Move-to-Soft-Centroidal-Configuration Law: Using

the workspace (mass mWi
, mean µWi

and variance σ2
Wi

)

statistics in (16) associated with Df,W(ϕθ, φ), we define the

“move-to-soft-centroidal-configuration” law at a soft coverage

configuration θ=(p, r,π)∈(W×R>0)
n×Ω(n) to be

upi
= κpi

sgn(mWi
)(pi − µWi

), (33a)

ur2
i
= κr2

i
sgn(mWi

)

(
r2i −

σ2
Wi

+‖pi−µWi
‖2

d

)
, (33b)

uπi
= κπsgn(mWi

)

(
πi −

mWi∑n

j=1 mWj

)
, (33c)

where κpi
> 0, κr2i

> 0 and κπ > 0 are fixed positive

gains for position, sensing range and mixture weight control,

respectively, and sgn returns the sign of its argument. Note

that κπ is a shared control gain for all mixture weights to

ensure the positive invariance of Ω(n) in (5).

Theorem 4 For any monotone decreasing7 convex function

f over (0,∞), the continuously differentiable “move-to-soft-

centroidal-configuration” law leaves (W×R>0)
n×Ω(n) pos-

itively invariant, and its unique flow asymptotically brings

sensors to a locally optimal coverage configuration of

Df,W(ϕθ, φ), where pi=µWi
, r2i =

σ2

Wi

d
and πi=

mWi∑
n
j=1

mWj

for all i, while decreasing Df,W(ϕθ, φ) along the way.

Proof. The sign of the workspace mass mWi
in (16a) is

fixed for any monotone convex function f , because mWi

is always positive (resp. negative) for increasing (resp. de-

creasing) f . Hence, the continuous differentiability of the

“move-to-soft-centroidal-configuration” law follows from the

integral form of the definition of the workspace statistics in

(16). Further, as shown below, the level sets of Df,W(ϕθ, φ)
are positively invariant under the “move-to-soft-centroidal-

configuration” law and so its continuous differentiability also

guarantees the existence and uniqueness of the resulting flow

over the positively invariant level sets of Df,W(ϕθ, φ) [47],

because a continuously differentiable function is also locally

Lipschitz [48], and a locally Lipschitz function is globally

Lipschitz over a compact domain [47].

The positive invariance of (W×R>0)
n × Ω(n) directly

follows from the convexity of W, R>0 and Ω(n), and the

fact that, by definition (16), µWi
∈ W, σ2

Wi
∈ R>0, and

1∑
n
i=1

mWi

(mW1
,mW2

, . . . ,mWn
) ∈ Ω(n), because for any

monotone decreasing f , the “move-to-soft-centroidal-configu-

ration” law continuously generates linear motion towards a

moving goal point in the convex set (W×R>0)
n×Ω(n).

7Many f -divergences used in practice are monotone decreasing; for ex-
ample, the reverse KL divergence associated with f(t) = − log t, and

the Hellinger distance associated with f(t) = 1 −
√
t. For any monotone

increasing f , e.g., f(t) = t2 − 1 corresponding to the χ2 divergence, the
soft workspace mass mWi

in (16a) is positive, and so the positive feedback
used in the coverage control in (33) cannot ensure the positive invariance of
(W×R>0)

n×Ω(n). In general, the soft workspace mass mWi
can be zero

for any arbitrary choice of a convex function f over (0,∞), and one therefore
needs to pay a special attention to resolve the associated indeterminacy.
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To prove the asymptotic stability of the “move-to-soft-
centroidal-configuration” law, one can consider Df,W(ϕθ , φ)
as a Lyapunov candidate, and verify from Theorem 1 that

Ḋf,W(ϕθ, φ) = −
n∑

i=1

κpi
πi

|mWi
|

r2i
‖pi−µWi

‖2
︸ ︷︷ ︸

≥0

−
n∑

i=1

κr2
i
πi

d|mWi
|

2r4i

(
r
2
i −

r2Wi
+‖pi−µWi

‖2

d

)2

︸ ︷︷ ︸
≥0

−
κπ∑n

i=1|mWi
|

(
n∑

i=1

|mWi
|2

πi

−

(
n∑

i=1

|mWi
|

)2)

︸ ︷︷ ︸
≥0

, (34)

Ḋf,W(ϕθ, φ) ≤ 0, (35)

which follows from
mWi∑

n
j=1

mWj

=
|mWi |∑
n
j=1|mWj | for any mono-

tone f and that we have from Jensen’s inequality that

n∑

i=1

|mWi
|2

πi

=
n∑

i=1

(
|mWi

|

πi

)2

πi ≥

(
n∑

i=1

|mWi
|

)2

. (36)

Hence, observe that Df,W(ϕθ, φ) strictly decreases away from

a locally optimal coverage configuration. Thus, it follows from

LaSalle’s Invariance Principle [47] that the sensors asymptot-

ically converge to a critical point of Df,W(ϕθ, φ). �

Note that the control inputs in (33) can be used separately, for

example, for coverage optimization of sensor networks with

static sensor positions or fixed sensing ranges or predefined

constant mixture weights, while retaining stability properties.

2) The Move-to-Voronoi-Centroidal-Configuration Law: In

the same spirit, using the Voronoi (mass mVi
, mean µVi

and

variance σ2
Vi

) statistics in (27) associated with Df,W(ϕ̂s, φ),
we define the “move-to-Voronoi-centroidal-configuration” law

at any coverage configuration s = (p, r) ∈ (W× R>0)
n

to be

upi
= κpi

sgn(mVi
)(pi − µVi

), (37a)

ur2
i
= κr2

i
sgn(mVi

)

(
r2i −

σ2
Vi
+‖pi−µVi

‖2

d

)
, (37b)

where κpi
> 0 and κr2

i
> 0 are fixed positive control gains.

Theorem 5 For any monotone decreasing convex f over

(0,∞), the configuration space (W×R>0)
n

of sensors is pos-

itively invariant under the continuously differentiable “move-

to-Voronoi-centroidal-configuration” law in (37) whose unique

flow, starting at any configuration in (W× R>0)
n

, asymptot-

ically decreases Df,W(ϕ̂s, φ) and reaches a locally optimal

coverage configuration of Df,W(ϕ̂s, φ).

Proof. The monotonicity of f ensures that the Voronoi mass

mVi
has a fixed sign; more precisely, mVi

is always positive

for monotone increasing f and negative for monotone decreas-

ing f . Hence, since the Voronoi statistics (mass, mean and

variance) are continuously differentiable due to their integral

form [49], the “move-to-Voronoi-centroidal-configuration” law

is continuously differentiable and so is locally Lipschitz

[48]. As we show below, the level sets of Df,W(ϕ̂s, φ) are

positively invariant under the “move-to-Voronoi-centroidal-

configuration” law. Therefore, since a locally Lipschitz func-

tion on a compact set is also globally Lipschitz on that set

[47], the uniqueness and existence of its flow follows from its

global Lipschitz continuity over the positively invariant level

sets of Df,W(ϕ̂s, φ).
Moreover, the convexity of W and R>0 implies the con-

vexity of (W× R>0)
n

, and we also have, by definition (27),

that µVi
∈ W and σ2

Vi
∈ R>0. Thus, since the “move-to-

Voronoi-centroidal-configuration” law continuously reconfig-

ures the sensors towards a configuration in its convex domain

(W× R>0)
n

, it leaves (W× R>0)
n

positively invariant.
Finally, if Df,W(ϕ̂s, φ) is chosen as a Lyapunov function

candidate, then we have from Theorem 3 that

Ḋf,W(ϕ̂s, φ) = −
n∑

i

κpi

|mVi
|

r2i
‖pi−µVi

‖2
︸ ︷︷ ︸

≥0

−
n∑

i

κr2
i

d|mVi
|

2r4i

(
r
2
i −

σ2
Vi
+‖pi−µVi

‖2

d

)2

︸ ︷︷ ︸
≥0

≤ 0, (38)

which is strictly negative away from a critical point of

Df,W(ϕ̂s, φ). Hence, we have from LaSalle’s Invariance Prin-

ciple [47] that the sensors asymptotically reach a locally

optimal coverage configuration of Df,W(ϕ̂s, φ). �

Once again, sensor positions and sensing ranges can be con-

trolled separately as described in (37) for coverage optimiza-

tion of sensor networks with static positions or fixed sensing

ranges, while maintaining the stability properties summarized

in Theorem 5. It is also useful to observe that:

Remark 4 For homogeneous mobile sensors with a shared

fixed sensing range r ∈ R>0 (i.e., ri = r for all

i), if the coverage quality is measured using the reverse

KL divergence (i.e., f(t) = − log t), then the “move-to-

Voronoi-centroidal-configuration” law simplifies to the stan-

dard “move-to-Voronoi-centroid” law in [9] as the coverage

objective Dkl,W(ϕ̂s, φ) simplifies to the total expected squared

Euclidean distance over a Voronoi diagram (see Remark 1).

B. Discrete-Time Move-to-Centroidal-Configuration Laws

A practical challenge of the continuous-time “move-to-

centroidal-configuration” laws is the need for a proper adaptive

step size selection [50] (e.g., based on line search [46]) in

order to follow the associated coverage dynamics. Although

it is difficult to resolve this issue in general, in this section

we present the discrete-time version of “move-to-centroidal-

configuration” laws constructed based on the forward Euler

method and prove the asymptotic convergence of the resulting

discrete-time coverage dynamics to a locally optimal cover-

age configuration, for both the reverse KL divergence and

the α-divergence, using the MM (majorize-minimization or

minorize-maximization) principle [21]. Hence, it is useful to

briefly recall the idea of the MM principle.

Definition 1 ( [21]) A scalar valued function h : X×X → R

is said to majorize another scalar valued function g : X → R

at point x′ ∈ X if and only if x 7→ h(x, x′) lies above g(x)
and is tangent to g(x) at x′, i.e.,

g(x) ≤ h(x, x′) ∀x ∈ X, and g(x′) = h(x′, x′). (39)

Similarly, h(x, x′) is said to minorize g(x) iff −h(x, x′)
majorizes −h(x).
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Therefore, instead of directly minimizing (resp. maximiz-

ing) a given objective function, the MM principle aims to

construct an iterative optimization method that minimizes a

majorizing (resp. maximizes a minorizing) surrogate function

of the objective function, which is usually easier to optimize.

Because, given a majorizing function h(x, x′) of g(x) at

x′ ∈ X , if one can find x∗ ∈ X with h(x∗, x′) < h(x′, x′),
then it also guarantees a strict decrease in g, i.e.,

g(x∗) ≤ h(x∗, x′) < h(x′, x′) = g(x′). (40)

1) General Form of Discrete-Time Coverage Control: In or-
der to iteratively decrease the f -divergence Df,W(ϕθ, φ) asso-
ciated with a differentiable convex function f over (0,∞), by
simply applying the forward Euler method [50], one can con-
struct a discrete-time version of the “move-to-soft-centroidal
configuration” law in (33) that updates a soft sensor coverage
configuration θ[k] = (p[k], r[k],π[k]) ∈ (W× R>0)

n×Ω(n)
at iteration k ∈ N as follows:

pi[k+1]=pi[k]+δpi
sgn(mWi

[k])
(
pi[k]−µWi

[k]
)
, (41a)

r
2
i [k+1]=r

2
i [k]+δr2

i
sgn(mWi

[k])

(
r
2
i [k]−

σ2
Wi

[k]+
∥∥µWi

[k]−pi[k]
∥∥2

d

)
,

(41b)

πi[k+1]=πi[k]+δπsgn(mWi
[k])

(
πi[k]−

mWi
[k]

∑
n
j=1

mWj
[k]

)
, (41c)

where δpi
, δr2

i
, δπ ∈ (0, 1] are fixed normalized step size

parameters, sgn denotes the sign function, and the workspace

statistics (mass mWi
[k], mean µWi

[k] and variance σ2
Wi

[k])
of W associated with Df,W

(
ϕθ[k], φ

)
are defined as in (16).

Proposition 4 For any decreasing convex f over (0,∞),
the discrete-time “move-to-soft-centroid-configuration” law in

(41) generates valid iterations over (W×R>0)
n×Ω(n), i.e.,

θ[k]∈(W×R>0)
n×Ω(n) implies θ[k+1]∈(W×R>0)

n×Ω(n).
Proof. For any monotone decreasing function f , the work-

space statistics in (16) satisfy mWi
[k]< 0, µWi

[k] ∈W and
1
d
(σ2

Wi
[k]+

∥∥µWi
[k]−pi[k]

∥∥2)∈R>0. Hence, the result holds

since the iterations in (41) is based on a convex combination

of points in the convex set (W× R>0)
n × Ω(n). �

Similarly, in the case of Voronoi-based sensor allocation,
a discrete-time version of the “move-to-Voronoi-centroidal-
configuration” law in (37) can be constructed to iteratively
decrease the f -divergence Df,W(ϕ̂s, φ) at any coverage con-
figuration s[k] = (p[k], r[k]) ∈ (W× R>0)

n
as

pi[k+1]=pi[k]+δpi
sgn(mVi

[k])
(
pi[k]−µVi

[k]
)
, (42a)

r
2
i [k+1]=r

2
i [k]+δr2

i
sgn(mVi

[k])

(
r
2
i [k]−

σ2
Vi
[k]+

∥∥µVi
[k]−pi[k]

∥∥2

d

)
,

(42b)

where δpi
, δr2

i
∈ (0, 1] are fixed normalized step sizes for

sensor position and sensing range updates, and, the Voronoi

statistics (mass mVi
[k], mean µVi

[k] and variance σ2
Vi
[k]),

associated with Df,W

(
ϕ̂
s[k], φ

)
and the Voronoi diagram

V(s[k]) = {V1[k], V2[k], . . . , Vn[k]}, are defined as in (27).

Proposition 5 For any decreasing convex f over (0,∞), the

discrete-time “move-to-Voronoi-centroid-configuration” law

in (42) yields valid iterations over (W× R>0)
n

, that is to

say, s[k]∈(W×R>0)
n

implies s[k+1]∈(W×R>0)
n

.

Proof. The proof follows similar lines as in the proof of

Proposition 4 and hence is omitted. �

Even though the update step sizes are limited to the unit

interval above, this, in general, does not guarantee that the

f -divergences Df,W

(
ϕθ[k], φ

)
and Df,W

(
ϕ̂
s[k], φ

)
decrease

at each iteration of the discrete-time “move-to-centroidal-

configurations” laws in (41) and (42), respectively, away from

a locally optimal coverage configuration. We shall show below

that the restriction of step sizes to the unit interval guarantees

a decrement in the coverage objective for the reverse KL

divergence and the α-divergence, where α ∈ (0, 1). Finally,

it is important to observe that:

Remark 5 For a step size of unity (i.e., δpi
=δr2

i
=δπ=1) and

the reverse KL divergence (i.e., f(t) = − log t), the iterations

of the discrete-time “move-to-centroidal-configuration” laws

in (41) and (42) are identical to the iterations of the standard

EM algorithm for learning (spherical) Gaussian mixture mod-

els and k-means clustering, respectively [39].

2) Discrete-Time Coverage Control via the KL Divergence:

In this part, we focus our attention to the reverse KL diver-

gence Dkl,W, associated with f(t)=− log t, and prove that the

discrete-time “move-to-centroidal-configuration” laws in (41)

and (42) asymptotically converge to a locally optimal coverage

configuration for both soft and hard sensor allocation.

Our convergence analysis of the discrete-time “move-to-

soft-centroidal configuration” law is strongly based on the idea

of majorizing the reverse KL divergence Dkl,W(ϕθ, φ).

Lemma 1 A majorizing surrogate function M(θ, θ[k]) of

the reverse KL divergence Dkl,W(ϕθ, φ) at a soft coverage

configuration θ[k]∈(W×R>0)
n×Ω(n) can be constructed as

M(θ, θ[k]) :=M(θ, θ[k]) + ∆M(θ[k]), (43)

where

M(θ, θ[k]):=

n∑

i=1

−mWi
[k]

(
σ2
Wi

[k]+‖pi−µWi
[k]‖2

2r2i
+
d

2
log r2i −logπi

)
,

(44a)

∆M(θ[k]):=Df,W

(
ϕθ[k], φ

)
−M(θ[k], θ[k]), (44b)

and the workspace statistics (mass, mean, variance) associated
with Dkl,W

(
ϕθ[k], φ

)
are defined as in (16) and given by

mWi
[k]:= −

∫

W

φ(x)

ϕθ[k](x)
πi[k]qsi[k](x)dx, (45a)

µWi
[k]:=

−1
mWi

[k]

∫

W

x
φ(x)

ϕθ[k](x)
πi[k]qsi [k](x)dx, (45b)

σ
2
Wi

[k]:=
−1

mWi
[k]

∫

W

‖x−µWi
[k]‖2

φ(x)

ϕθ[k](x)
πi[k]qsi [k](x)dx. (45c)

Proof. We will provide a proof by construction. It is conve-

nient to rewrite the reverse KL divergence as

Dkl,W(ϕθ, φ) =

∫

W

− log

(
ϕθ(x)

φ(x)

)
φ(x)dx, (46)

=

∫

W

− log(ϕθ(x))φ(x)dx−HW(φ), (47)

where HW(φ) = −
∫
W

φ(x) logφ(x)dx is the differential

entropy of the event distribution φ over W and is constant.
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By applying Lemma 4 in the appendix, we can obtain a

majorizing function of − log(ϕθ(x)) at around θ[k] as

Q(x, θ, θ[k]) :=

n∑

i=1

− log

(
πiqsi(x)

q̂si[k](x)

)
q̂si[k](x), (48)

≥ − log(ϕθ(x)), (49)

Q(x, θ[k], θ[k]) = − log
(
ϕθ[k](x)

)
(50)

where

q̂si[k](x) :=
πi[k]qsi[k](x)

ϕθ[k](x)
. (51)

Hence, due to the monotonicity of the integral operator, this

also provides a majorizing surrogate function

M(θ, θ[k]) :=

∫

W

Q(x, θ, θ[k])φ(x)dx−HW(φ), (52)

of the reverse KL divergence Dkl,W(ϕθ, φ) at θ[k], i.e.,

Dkl,W(ϕθ, φ) ≤ M(θ, θ[k]), (53)

Dkl,W

(
ϕθ[k], φ

)
= M(θ[k], θ[k]). (54)

To have a better intuitive understanding, one can alternatively

rewrite M(θ, θ[k]) using the workspace statistics in (45) as

M(θ, θ[k])=

n∑

i=1

−mWi
[k]

(
σ2
Wi

[k]+‖pi−µWi
[k]‖2

2r2i
+
d

2
log r2i −logπi

)

−
n∑

i=1

−mWi
[k]

(
σ2
Wi

[k]+‖pi[k]−µWi
[k]‖2

2r2i [k]
+
d

2
log r2i [k]−logπi[k]

)

+Dkl,W

(
ϕθ[k], φ

)
, (55)

which is identical to (43). Thus, the result follows. �

Theorem 6 Away from a locally optimal coverage configu-

ration, the reverse KL divergence Dkl,W(ϕθ[k],φ) decreases

at each iteration k ∈ N of the discrete-time “move-to-soft-

centroidal-configuration” law in (41) and so its iterations

asymptotically converge to a locally optimal coverage con-

figuration of Dkl,W(ϕθ , φ) that satisfies

pi[k]=µWi
[k], r2i [k]=

1
d
σ2
Wi

[k], πi[k]=
mWi

[k]
n∑

j=1

mWj
[k]

. (56)

Proof. As in the proof of Theorem 2, using the method of

Lagrange multiplier, one can verify that the optimal Lagrange

multiplier for the Lagrangian

L = M(θ, θ[k]) + λ
(
1−

∑n

i=1
πi

)
, (57)

is λ∗ =
∑n

i=1 mWi
[k] and its unique global minimum with

respect to each individual sensor control parameter is achieved,

respectively, at

p∗i = µWi
[k], (58a)

r∗i
2 =

1

d

(
σ2
Wi

[k]+‖pi−µWi
‖2
)
, (58b)

π∗
i = mWi

[k]

/∑n

j=1
mWj

[k]. (58c)

which are also, by definition, the optimal control parameters

that uniquely and globally minimize θ → M(θ, θ[k]). Here

the global optimality follows from the second-order sufficiency

condition for optimality [46], because the Hessian of the La-

grangian L with respect to each control parameter is positive.

Hence, at the globally optimal soft coverage configuration of

θ 7→ M(θ, θ[k]), sensors satisfy

pi = µWi
[k], ri

2 =
1

d
σ2
Wi

[k], πi =
mWi

[k]∑n

j=1 mWj
[k]

. (59)

Now let us denote by θ
′

[k] = (p[k], r[k+1],π[k]) and

θ
′′

[k] = (p[k+1], r[k+1],π[k]) the intermediate coverage

configurations between θ[k] and θ[k+1] after the sensing range

and sensor position updates in (41b) and (41a), respectively.

Note that, by definition, any convex function g : X → R over

its convex domain X with the global optimum x∗∈X satisfies

for any x ∈ X and δ ∈ [0, 1] that [51]

g(x∗)≤g(δx∗+(1−δ)x)≤δg(x∗)+(1−δ)g(x)≤g(x). (60)

Similarly, any function h : I → R of a single variable over an

interval I ⊂ R with the unique minimum y∗ ∈ I satisfies for

any y ∈ I and δ ∈ [0, 1] that

h(y∗) ≤ h(δy∗ + (1− δ)y) ≤ h(y). (61)

Hence, by applying (60) for pi → M(θ, θ[k]) over the
convex domain W and for π → M(θ, θ[k]) over the convex
domain Ω(n), and by applying (61) for r2i → M(θ, θ[k])
over the interval R>0, we obtain that the majorizing function
M(θ, θ[k]) of Dkl,W(ϕθ, φ) decreases at each intermediate
update in (41)(b-a-c), i.e.,

Dkl,W

(
ϕθ[k],φ

)
=M(θ[k],θ[k])≥M(θ

′

[k],θ[k])≥M(θ
′′

[k],θ[k]),

≥M(θ[k+1],θ[k])≥Dkl,W

(
ϕθ[k+1], φ

)
. (62)

Hence, the overall decrement on Dkl,W

(
ϕθ[k], φ

)
at each

iteration is bounded below by

Dkl,W

(
ϕθ[k], φ

)
−Dkl,W

(
ϕθ[k+1], φ

)
≥M(θ[k],θ[k])−M(θ[k+1],θ[k]),

≥ 0, (63)

which is strictly positive away from a critical point of

Dkl,W(ϕθ, φ). Thus, the iterations of the discrete-time “move-

to-soft-centroidal-configuration” law asymptotically converge

a locally optimal coverage configuration of Dkl,W(ϕθ, φ). �

Similarly, for the reverse KL divergence, the discrete-time

“move-to-Voronoi-centroidal configuration” law satisfies:

Theorem 7 The discrete-time “move-to-Voronoi-centroidal

configuration” law in (42) strictly decreases the reverse KL

divergence Dkl,W(ϕ̂
s[k], φ) at each iteration k ∈ N away

from a critical point of Dkl,W(ϕ̂
s[k], φ) and so asymptotically

converges to a locally optimal configuration where

pi[k]=µVi
[k], and r2i [k]=

1
d
σ2
Vi
[k], ∀i. (64)

Proof. By definition (3), Voronoi diagrams determine optimal

sensor allocation that maximizes the event detection probabil-

ities of sensors. Hence, by fixing sensor allocation with the

Voronoi diagram V(s[k]), a majorizing surrogate function of

Dkl,W(ϕ̂s, φ) in (13) at s[k] can be constructed as
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Q(s, s[k]) :=
n∑

i=1

Dkl,Vi[k](qsi , φ), (65)

=

n∑

i=1

−mVi
[k]

(
σ2
Vi
[k]+‖pi−µVi

[k]‖2

2r2i
+
d

2
log
(
2πr2i

)
)
−HW(φ), (66)

where HW(φ) denotes the differential entropy of φ over W.

Note that, since mVi[k] < 0 for the reverse KL divergence,

Q(s, s[k]) is a convex quadratic function of sensor position

pi over the convex set W whose unique global minimum is

achieved at pi = µVi
[k]. Similarly, observe that Q(s, s[k]) is

uniquely and globally minimized with respect to squared sens-

ing range r2i over R>0 at r2i = 1
d

(
σ2
Vi
[k]+‖pi−µVi

[k]‖2
)

.

Hence, the unique global optimal of s → Q(s, s[k]) over

(W× R>0)
n

is realized at

pi = µVi
[k], and r2i = 1

d
σ2
Vi
[k], ∀i. (67)

Accordingly, if the intermediate state after the sensing range

update in (42b) is denoted by s′[k] = (p[k], r[k+1]), since

Q(s, s[k]) majorizes Dkl,W(ϕ̂s, φ) at s[k], as discussed in

the proof of Theorem 6, one can verify that Dkl,W(ϕ̂s, φ)
decreases at each iteration of (42), i.e.,

Dkl,W

(
ϕ̂
s[k], φ

)
= Q(s[k], s[k]) ≥ Q(s′[k], s[k]),

≥ Q(s[k+1], s[k]) ≥ Dkl,W

(
ϕ̂
s[k+1], φ

)
, (68)

where the inequalities are strict away from a critical point

of Dkl,W(ϕ̂s, φ). Thus, for the reverse KL divergence, the

iterations of the discrete-time “move-to-Voronoi-centroidal-

configuration” law asymptotically converge a locally optimal

configuration of Dkl,W(ϕ̂s, φ) that satisfies (64). �

3) Discrete-Time Coverage Control via the α-Divergence:

To extend the applicability of our results beyond the KL

divergence, we now consider the α-divergence, associated with

f(t)= 1
α(α−1) (t

α−1) for some fixed α ∈ R, i.e.,

Dα,W(ϕ, φ) :=
1

α(α−1)

(∫

W

ϕα(x)φ1−α(x)dx−1

)
, (69)

where the integral term is known to be the Hellinger integrals

[41], denoted by

Hα,W(ϕ, φ) :=

∫

W

ϕα(x)φ1−α(x)dx. (70)

The α-divergence satisfies Dα,W(ϕ, φ) =D1−α,W(φ, ϕ) and

is known to converge the (resp. reverse) KL divergence as

α → 1 (resp. α → 0) [42].

Another very interesting, but not so obvious connection

between the reverse KL divergence and the α-divergence is:

Lemma 2 For any α ∈ R, the logarithm of the Hellinger

integral Hα,W(ϕθ, φ) can be minorized at around a soft

coverage configuration θ[k] ∈ (W×R>0)
n×Ω(n) in terms

of the reverse KL divergence by

Mα(θ, θ[k]) :=Mα(θ, θ[k]) + ∆Mα(θ[k]), (71)

where

Mα(θ, θ[k]):= − α

Hα,W

(
ϕθ[k], φ

)Dkl,W

(
ϕθ, ϕ

α
θ[k] ·φ1−α

)
, (72a)

∆Mα(θ[k]):= logHα,W

(
ϕθ[k], φ

)
−Mα(θ[k], θ[k]). (72b)

Proof. By applying Lemma 3 in the appendix, a minorizing

function of

logHα,W(ϕθ, φ) = log

(∫

W

ϕα
θ (x)φ

1−α(x)dx

)
. (73)

can be constructed as

Mα(θ, θ[k]) =

∫

W

log

(
ϕα
θ
(x)

ϕα
θ[k](x)

)
ϕα
θ[k](x)φ

1−α(x)

Hα,W

(
ϕθ[k], φ

) dx

+ logHα,W

(
ϕθ[k], φ

)
, (74)

which can be further simplified and rearranged as in (71).

Thus, the result follows. �

Since Dα,W(ϕθ, φ) is inversely proportional with

Hα,W(ϕθ, φ) for any α ∈ (0, 1), using the minorizing

surrogate function in Lemma 2, one can show that the discrete-

time “move-to-soft-centroidal-configuration” law iteratively

maximizes Hα,W(ϕθ, φ) and so minimizes Dα,W(ϕθ, φ).

Theorem 8 Away from any locally optimal coverage config-

uration, the α-divergence Dα,W

(
ϕθ[k], φ

)
, for8 0 < α < 1,

strictly decreases at each iteration, k ∈ N, of the discrete-

time “move-to-soft-centroidal-configuration” law in (41).

Proof. By definition (69), for α ∈ (0, 1), the α-divergence

Dα,W(ϕθ, φ) is inversely proportional with the Hellinger

integral Hα,W(ϕθ, φ). Since the logarithm of the Hellinger

integral Hα,W(ϕθ, φ) can be minorized in terms of the

negated KL divergence Dkl,W(ϕθ, ϕ
α
θ[k] · φ1−α) (Lemma 2),

Hα,W(ϕθ, φ) can be iteratively increased by iteratively de-

creasing the reverse KL divergence Dkl,W(ϕθ , ϕ
α
θ[k] · φ1−α)

as described in (41) in Theorem 6 where the event dis-

tribution at each iteration is specified by ϕα
θ[k](x)φ

1−α(x).
Thus, the result is simply inherited from Theorem 6 for

α ∈ (0, 1), because the workspace statistics, mean µWi
[k]

and variance σ2
Wi

[k], are the same for Dα,W

(
ϕθ[k], φ

)
and

Dkl,W(ϕθ[k], ϕ
α
θ[k] ·φ1−α) while the corresponding workspace

masses, mWi[k], have the same sign (negative). �

Likewise, one has for the discrete-time “move-to-Voronoi-

centroidal-configuration” law that:

Theorem 9 For any choice of α ∈ (0, 1), the α-divergence

Dα,W(ϕ̂
s[k], φ), away from its critical points, strictly de-

creases at each iteration k ∈ N of the discrete-time “move-

to-Voronoi-centroidal-configuration” law in (42).

Proof. The α-divergence Dα,W(ϕ̂s, φ) can be written in terms
of the Hellinger integrals as

Dα,W(ϕ̂s, φ)=

n∑

i=1

Dα,Vi
(qsi , φ)=

n∑

i=1

1
α(α−1)

(Hα,Vi
(qsi , φ)−1).(75)

Hence, for α ∈ (0, 1), the α-divergence Dα,W(ϕ̂s, φ) is in-

versely proportional with the Hellinger integrals Hα,Vi
(qsi , φ).

8This restriction on α being in (0, 1) can be explained as follows: The
α-divergence is “zero-avoiding” for α > 1 and yields an overestimate of
the support of the event distribution (i.e., sensors might leave the region of
interest and try to cover a larger domain); whereas it is “zero-forcing” for
α < 0 and yields an underestimate of the support of the event distribution
(i.e., sensors’ sensing ranges asymptotically converge to zero so that their
event sensing probabilities outside the environment approach zero.) [39], [42].
Such structural requirements are relaxed and mixed for 0 < α < 1.
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Similar to Lemma 2, one can obtain a minorizing surrogate

function Mα,Vi
(si, si[k]) of logHα,Vi

(qsi , φ) at si[k] in terms

of the reverse KL divergence as

Mα,Vi
(si, si[k]):= − α

Hα,Vi

(
qsi[k], φ

)Dkl,Vi

(
qsi , q

α
si[k]

·φ1−α
)

+
α

Hα,Vi

(
qsi[k], φ

)Dkl,Vi

(
qsi[k], q

α
si[k]

·φ1−α
)

+ logHα,Vi

(
qsi[k], φ

)
. (76)

Thus, the Hellinger integrals Hα,Vi

(
qsi[k], φ

)
can be iteratively

increased away from a critical point of Dα,W(ϕ̂s, φ)
by iteratively decreasing the reverse KL divergence

Dkl,Vi
(qsi , q

α
si[k]

·φ1−α) as described in Theorem 7 where the

Voronoi statistics are computed assuming event distribution

qαsi[k](x)φ
1−α(x). Hence, the result follows for α ∈ (0, 1)

since the Voronoi statistics, mean and variance, are the same

for Dα,Vi
(qsi[k], φ) and Dkl,Vi

(qsi[k], q
α
si[k]

· φ1−α) whereas

the associated Voronoi masses are positively scaled. �

C. Extensions of Move-to-Centroidal-Configuration Laws

In this part, to increase the practicability of our results, we

briefly present three extensions of the “move-to-centroidal-

configurations” laws for discrete event distributions, collision

avoidance, and differential drive sensor dynamics.

1) Coverage of Discrete Event Distributions: A practical

limitation of hard sensor allocation over soft allocation is that

hard assignments usually yield coverage algorithms that suffer

from discontinuities for discrete event distributions, which is

often mitigated by assuming the availability of approximate

continuous event distributions estimated based on a finite

collection of events detected over an environment [22]–[25].

In this part, we assume that we are given a discrete event

distribution Φ over the environment W that is represented as

a finite collection Φ := {(x1, ρ1), (x2, ρ2), . . . , (xK , ρK)} of

K ∈ N discrete event locations xj∈W with event probabilities

ρj ∈ R≥0 (that satisfy
∑K

j=1 ρj=1). Accordingly, in order to

asymptotically minimize the discrete f -divergence Df (ϕθ,Φ),
associated with a differentiable convex function f over (0,∞)
and a soft coverage configuration θ∈(W×R>0)

n×Ω(n),

Df (ϕθ,Φ) :=

K∑

j=1

f

(
ϕθ(xj)

ρj

)
ρj, (77)

we propose the continuous-time “move-to-soft-sample-

centroidal-configuration” law to be

upi
= κpi

sgn(mWi
)
(
pi − µWi

)
, (78a)

ur2
i
= κr2

i
sgn(mWi

)

(
r2i −

σ2
Wi

+
∥∥pi−µ

Wi

∥∥2

d

)
, (78b)

uπi
= κπsgn(mWi

)

(
πi − mWi∑n

j=1 mWj

)
, (78c)

where κpi
, κri , κπ ∈ R>0 are fixed positive control gains,

and the sample workspace statistics (mass, mean and variance)

associated with Df,W(ϕθ,Φ) are defined to be

mWi
:=

K∑

j=1

f ′

(
ϕθ(xj)

ρj

)
πiqsi(xj), (79a)

µWi
:=

1

mWi

K∑

j=1

xjf
′

(
ϕθ(xj)

ρj

)
πiqsi(xj), (79b)

σ2
Wi

:=
1

mWi

K∑

j=1

‖xj−µWi
‖2f ′

(
ϕθ(xj)

ρj

)
πiqsi(xj). (79c)

The “move-to-soft-sample-centroidal-configuration” law in-

herits all the stability properties of the original construction in

(33) summarized in Theorem 4.

Theorem 10 For any strictly monotone convex function f

over (0,∞), the continuously differentiable “move-to-soft-

sample-centroidal-configuration” law in (78) asymptotically

brings any initial soft coverage configuration θ in its positively

invariant domain (W× R>0)
n × Ω(n) to a locally optimal

coverage configuration of the discrete f-divergence Df(ϕθ,Φ)
in (77) that satisfies

pi=µ
Wi

, r2i =
1
d
σ2
Wi

, and πi=mWi

/∑n

j=1
mWj

, (80)

while decreasing Df (ϕθ,Φ) along the way.

Proof. The proof follows a similar pattern as the proof of

Theorem 4 where the integrations over the environment is

simply replaced with summations over discrete event locations,

and so is omitted for the sake of brevity. �

Similarly, the discrete-time “move-to-soft-centroidal-

configuration” laws for the KL divergence in Section III-B2

and the α-divergence in Section III-B3 can be extended to

handle discrete event distributions using sample workspace

statistics while retaining the convergence properties. The

“move-to-Voronoi-centroidal-configuration” laws can also be

adapted to use with sample Voronoi statistics, but this yields

discontinuities due to the hard event-to-sensor assignment.

2) Safe Coverage Control: In practice, sensors usually

have finite body sizes and some limits on their adjustable

sensing ranges. The “move-to-centroidal-configuration” laws

of Section III-A and Section III-B, unfortunately, do not ensure

collision-free coverage control for finite-size9 mobile sensors

and not respect any limits on their adjustable sensing ranges. In

this part, assuming disk-shaped sensor bodies and some upper

and lower bounds on adjustable sensing range, we propose

another extension of our “move-to-centroidal-configuration”

laws for safe coverage control of mobile sensor networks.

a) Encoding Collisions via Body Diagrams: Consider

a group of disk-shaped mobile sensors in W located at

p = (p1, p2, . . . , pn) ∈ Wn with a list of fixed body radii

β := (β1, β2, . . . , βn) ∈ (R>0)
n

, and denote the configuration

space of nonoverlapping disks of radii β in W by

Conf(W,β) :=
{
p ∈ W

n
∣∣∣‖pi−pj‖ ≥ βi+βj, ∀i 6= j,

S(pi, βi) ∈ W, ∀i
}
, (81)

where S(p, β) :=
{
x ∈ R

d
∣∣‖x−p‖<β

}
is the d-dimensional

open Euclidean sphere centered at p ∈ R
d with radius β > 0.

9The standard Voronoi-based coverage control of mobile sensors is only
known to be collision-free for point-size homogeneous sensors [9], and its
application to heteregenous sensor networks, especially with finite body sizes,
usually requires an additional collision avoidance strategy [10], [33].
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Fig. 3. Encoding collisions via body diagrams. (left) Body diagram and (right)
free subdiagram of spherical sensor bodies that identify convex collision free
neighborhoods of sensors for safe motion.

In [33], the body diagram B(p,β) := {B1, B2, . . . , Bn}
of the environment W associated with the disk-shaped sensor

bodies is defined as the power diagram [52] of W generated

by sensor body disks located at p and with body radii β as

Bi :=
{
x∈W

∣∣∣‖x−pi‖2−β2
i < ‖x−pj‖2−β2

j , ∀i 6=j
}
, (82)

which is an open convex polytope [52], illustrated in

Fig. 3(left). Accordingly, in [33], the free subdiagram

F(p,β) := {F1, F2, . . . , Fn} of the body diagram B(p,β)
is constructed by the erosion of each body cell with the

associated sensor body shape10, i.e.,

Fi :=Bi ⊖ S(0, βi) =
{
x ∈ Bi

∣∣∣S(x, βi) ⊆ Bi

}
, (83)

which is a closed convex polytope [33], see Fig. 3(right). Here,

⊖ denotes the Minkowski difference, and 0 is a vector of all

zeros with appropriate length.

A critical use of body diagrams is for encoding collisions.

Proposition 6 ([33]) A sensor placement p ∈ Wn is a

collision-free configuration in Conf(W,β) if and only if each

sensor body (resp. position) is contained in the associated

body cell (resp. free subcell), i.e.,

p∈Conf(W,β) ⇔ S(pi, βi)⊆Bi, ∀i ⇔ pi∈Fi, ∀i. (84)

b) Safe Coverage Control Laws : Accordingly, to ensure

collision avoidance and respect any given limits on adjustable

sensing ranges (i.e., ri ∈ [ri, ri] ⊂ R>0), we propose a

safe version of the “move-to-soft-centroidal configuration”

law in (33), that is defined at a soft coverage configuration

θ = (p, r,π) ∈ Conf(W,β)×
∏n

i=1[ri, ri]× Ω(n) as

upi
=κpi

sgn(mWi
)(pi−ΠFi

(µWi
)), (85a)

ur2
i
=κr2

i
sgn(mWi

)

(
r2i −Π[r2i ,r2i ]

(
σ2
Wi

+‖pi−µWi
‖2

d

))
, (85b)

uπi
=κπsgn(mWi

)

(
πi −

mWi∑n
j=1 mWj

)
, (85c)

where κpi
> 0 , κr2

i
> 0 and κπ > 0 are fixed control

gains; mWi
, µWi

and σ2
Wi

are soft workspace statistics

(mass, mean and variance, respectively) defined as in (16);

F(p,β) = {F1, F2, . . . , Fn} is the free subdiagram of W

10Similar constructions are also utilized for sensor-based safe navigation of
a single robot in cluttered environments [53]–[56], which also demonstrates
how local sensory measurements, e.g., from LIDAR range scanners and depth
sensors, can be used to construct body diagrams.

generated based on sensor positions p and sensor body radii β

as in (83); and the adjustable sensing variance r2i is assumed

to be limited to some fixed interval
[
r2i , r

2
i

]
⊂ R>0. Here,

ΠC(x) := arg minc∈C‖c−x‖ denotes the metric projection

of a point x ∈ R
N onto a convex set C ⊂ R

N , which is

piecewise continuously differentiable [57]–[59].

Some important properties of the “move-to-projected-soft-

centroidal-configuration” law in (85) can be summarized as:

Theorem 11 For any monotone decreasing convex function f

over (0,∞), the piecewise continuously differentiable “move-

to-projected-soft-centroidal-configuration” law in (85) leaves

Conf(W,β) ×
∏n

i=1[ri, ri] × Ω(n) positively invariant, and

its unique flow asymptotically decreases the f -divergence

Df,W(ϕθ, φ) in (6) and brings the sensors to a locally optimal

coverage configuration of Df,W(ϕθ, φ) over Conf(W,β) ×∏n

i=1[ri, ri]× Ω(n) that satisfies for all i

pi=ΠFi
(µWi

), (86a)

r2i =Π[r2i ,r2i ]

(
σ2
Wi

+‖µWi
−ΠFi

(µWi
)‖2

d

)
, (86b)

πi = mWi

/∑n

j=1
mWj

. (86c)

Proof. By construction, the use of metric projections ensures

the positive invariance of Conf(W,β)×∏n
i=1[ri, ri]× Ω(n)

under the “move-to-projected-soft-centroidal-configuration”

law because for any monotone decreasing f it generates a

continuous linear motion towards a moving point in convex

set
∏n

i=1 Fi×
∏n

i=1[ri, ri]×Ω(n), and
∏n

i=1 Fi is a collision-

free convex subset of Conf(W,β) (see Proposition 6).

The monotonicity of f also guarantees that mW 6= 0 and

sgn(mW) is constant. Hence, since the soft workspace statis-

tics are continuously differentiable, and the metric projection

onto a convex set is piecewise continuous differentiable [57]–

[59], and piecewise continuous differentiability is preserved

under function composition [48], we have that the “move-to-

projected-soft-centroidal-configuration” law is piecewise con-

tinuous differentiable and so is locally Lipschitz [48]. Since

Conf(W,β)×
∏n

i=1[ri, ri]×Ω(n) is compact, the “move-to-

projected-soft-centroidal-configuration” law is globally Lips-

chitz over Conf(W,β)×∏n

i=1[ri, ri]×Ω(n), which implies

the existence and uniqueness of its flow [47].
Finally, similar to the proof of Theorem 4, using Theorem

1 and (36), its asymptotic stability can be shown using
Df,W(ϕθ, φ) as a Lyapunov candidate function as follows:

Ḋf,W(ϕθ, φ)=−
n∑

i=1

κpi
πi
|mWi

|
r2
i

(pi−µWi
)T
(
pi−ΠFi

(µWi
)
)

−
n∑

i=1

κr2
i
πi

d|mWi
|

2σ4
Wi

(
r2i−

σ2
Wi

+‖pi−µWi
‖2

d

)(
r2i−Π[r2i ,r

2

i ]

(
σ2
Wi

+‖pi−µWi
‖2

d

))
,

−
κπ∑n

i=1|mWi
|

(∑n

i=1

|mWi
|2

πi

−
(∑n

i=1
|mWi

|
)2)

︸ ︷︷ ︸
≥0, due to (36)

, (87)

Ḋf,W(ϕθ, φ) ≤ −
n∑

i=1

κpi
πi

|mWi
|

2r2i
‖pi−ΠFi

(µWi
)‖2

−
n∑

i=1

κr2
i
πi

d|mWi
|

4r4i

(
r
2
i −Π[r2i ,r2i ]

(
σ2
Wi

+‖pi−µWi
‖2

d

))2
, (88)

Ḋf,W(ϕθ, φ) ≤ 0, (89)
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where the inequality follows from the fact that the metric

projection ΠC(x) of a point x onto a convex set C satisfies11

(c− x)
T
(c−ΠC(x)) ≥

1

2
‖c−ΠC(x)‖2, ∀c ∈ C. (90)

Note that Ḋf,W(ϕθ, φ) is strictly negative away from a locally

optimal configuration satisfying (86). Thus, we have from

LaSalle’s Invariance Principle [47] that the sensors asymptot-

ically reach a locally optimal configuration while decreasing

Df,W(ϕθ, φ) along the way. �

It is important to note that, similar to (85), a safe ver-

sion of the “move-to-Voronoi-centroidal-configuration” law in

(37) can be constructed by using Voronoi statistics in (27)

instead of workspace statistics in (16), while maintaining

the stability and collision avoidance properties presented in

Theorem 11. Moreover, the discrete-time “move-to-centroidal-

configuration” laws presented in Section III-B can also be

made collision-free by using projected statistics.

3) Coverage Control with Differential Drive Constraints:

We now present a further extension of the safe “move-to-

projected-soft-centroidal-configuration” law in (85) for the

following kinematic differential drive sensor dynamics,

ṗi =

[
cos γi
sin γi

]
uυi

, γ̇i = uωi
, (91)

where uυi
∈ R and uωi

∈ R are the linear and angular velocity

inputs, respectively, for controlling sensor position pi ∈ W

and sensor orientation γi ∈ [0, 2π). Note that the differential-

drive dynamics are underactuated due to the nonholonomic

constraint

[
− sin γi
cos γi

]T
pi=0, and so we denote the straight-line

motion range of each sensor by

Hi :=

{
x ∈ R

2

∣∣∣∣
[
− sin γi
cos γi

]T
(x− pi) = 0

}
. (92)

Following the lines of [33], using a standard differential

drive controller [60], we define the “move-to-projected-soft-

centroidal-configuration” law for differential drive sensors

at an extended coverage configuration θ = (p,γ, r,π) in

Conf(W,β)× [0, 2π)n ×∏n
i=1[ri, ri]× Ω(n) to be

uυi
=κυi

sgn(mWi
)

[
cos γi
sin γi

]T
(pi−ΠFi∩Hi

(µWi
)), (93a)

uωi
=κωi

atan




[
− sin γi
cos γi

]T(
pi−ΠFεi

(µWi
)
)

[
cos γi
sin γi

]T(
pi−ΠFεi

(µWi
)
)


, (93b)

ur2
i
=κr2

i
sgn(mWi

)

(
r2i −Π[r2i ,r2i ]

(
σ2
Wi

+‖pi−µWi
‖2

d

))
, (93c)

uπi
=κπsgn(mWi

)

(
πi −

mWi∑n

j=1 mWj

)
, (93d)

where κυi
, κωi

, κr2
i
, κπ ∈ R>0 are fixed positive control gains;

mWi
, µWi

and σ2
Wi

are soft workspace statistics defined as in

(16); Hi is the linear motion range in (92). Here, in addition

to the free subdiagram F(p,β) = {F1, F2, . . . , Fn} in (83) of

W associated with sensor positions p and body radii β, we use

its subdiagram F(p,β+ε) = {Fε1 , Fε2 , . . . , Fεn} associated

with safety margins ε := (ε1, ε2, . . . , εn) ∈ (R>0)
d

to ensure

that projected workspace mean ΠFεi
(µWi

) is strictly in the

interior of W. Note that while Fi is always nonempty and

contains pi for all p ∈ Conf(W,β), the set Fεi can be

empty. Hence, we set ΠFεi
(µWi

) = pi whenever Fεi = ∅;

and to resolve indeterminacy, we also set uωi
= 0 when

ΠFεi
(µWi

) = pi.

Theorem 12 The “move-to-projected-soft-centroidal-

configuration” law of differential drive sensors in

(93) asymptotically brings any safe soft coverage

configurations in its positively invariant domain

Conf(W,β) × [0, 2π)n ×
∏n

i=1[ri, ri] × Ω(n) towards a

locally optimal coverage configuration that satisfies

pi=ΠFi∩Hi
(µWi

) = ΠFεi
(µWi

), (94a)

r2i =Π[r2i ,r2i ]

(
σ2
Wi

+‖µWi
−ΠFi

(µWi
)‖2

d

)
, (94b)

πi = mWi

/∑n

j=1
mWj

. (94c)

Proof. As in the proof of Theorem 11, the continuous mo-

tion towards the projected statistics in (93), by construction,

ensures the positive invariance of Conf(W,β)× [0, 2π)n ×∏n

i=1[ri, ri]×Ω(n) for differential drive sensor dynamics.

Also, the existence and uniqueness of its flow can be es-

tablished using the flow properties of the ‘move-to-projected-

soft-centroidal-configuration” law in Theorem 11 and the flow

properties of the differential drive controller in [60].
Using a similar argument as in the proof of Theorem 11, one

can consider Df,W(ϕθ, φ) as a Lyapunov function candidate
and show that Df,W(ϕθ, φ) is nonincreasing, i.e.,

Ḋf,W(ϕθ, φ) ≤ −
n∑

i=1

κpi
πi

|mWi
|

2r2i
‖pi−ΠFi∩Hi

(µWi
)‖2

−
n∑

i=1

κr2
i
πi

d|mWi
|

4r4i

(
r
2
i −Π[r2i ,r

2

i ]

(
σ2
Wi

+‖pi−µWi
‖2

d

))2

−
κπ∑n

i=1|mWi
|

(∑n

i=1

|mWi
|2

πi

−
(∑n

i=1
|mWi

|
)2)

︸ ︷︷ ︸
≥0, due to (36)

, (95)

Ḋf,W(ϕθ, φ) ≤ 0 (96)

Moreover, since Fεi ⊂ Fi and the standard different drive con-

troller asymptotically aligns each sensor towards ΠFεi
(µWi

),

i.e.,

[
− sin γi
cos γi

]T(
pi−ΠFεi

(µWi
)
)
=0 [60], the projected statis-

tics ΠFεi
(µWi

) and ΠFi∩Hi
(µWi

) asymptotically coincide.

Hence, it follows from LaSalle’s Invariance Principle [47] that

the sensors asymptotically reach a locally optimal coverage

configuration specified by (94). �

11The distance between a point x ∈ RN and a convex set C ⊂ RN can
be refactored via a point c ∈ C as

‖x−ΠC(x)‖2 = ‖x−c‖2 + 2(x−c)T
(
c−ΠC(x)

)
+ ‖c−ΠC(x)‖2,

which can be further rearranged to observe

2(c−x)T
(
c−ΠC(x)

)
= ‖c−ΠC(x)‖2 + ‖x−c‖2 − ‖x−ΠC(x)‖2

︸ ︷︷ ︸

≥0

,

≥ ‖c−ΠC(x)‖2 ≥ 0.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Statistical coverage control of mobile sensor networks with adjustable sensing range adaptively reconfigures sensor positions and sensing ranges to
match both the first and the second moments (spatial mean and variance) of assigned event distributions for increased coverage performance. (a) Level sets of
the event distribution in (97) of two well-separated activities with different spatial spreads and initial sensor coverage configuration. (b,d,f) Locally optimal
Voronoi (b,d) and soft (f) centroidal coverage configurations, where sensors share identical fixed sensing range in (b) and have the same mixture weights in
(f). (c,e,g) The maximum (c,e) and the average (g) of individual event detection probabilities of sensors at the initial (top) and the final (bottom) coverage
configurations. Here, the reverse Kullback-Leibler (KL) divergence is used as a statistical coverage quality measure.12 13

Using a similar construction as in (93), a safe version of the

“move-to-Voronoi-centroidal-configuration” law in (37) can be

designed for differential-drive sensors using the Voronoi statis-

tics in (27). Moreover, the discrete-time “move-to-centroidal-

configuration” laws in Section III-B can be extended for

discrete-time differential drive dynamics by using the forward

Euler method (with a step size no more than unity), while

maintaining the convergence and safety properties.

IV. NUMERICAL SIMULATIONS

To highlight the significance of adjustable sensing range

for increased coverage performance at varying resolution, we

first consider a 10 × 10 square environment with two well-

separated activities with different spatial spreads, specified by

the following event distribution function φ : [0, 10]2 → R>0

φ(x) ∝ 2 exp
(
−2

∥∥∥∥x−
[
3
7

]∥∥∥∥
2)

+ exp
(
−1

4

∥∥∥∥x−
[
7
3

]∥∥∥∥
2)
, (97)

where events are assumed to be monitored by two mobile

sensors that are initialized at around the lower left corner

of the environment with equal sensing ranges and sensing

weights, as illustrated in Fig. 4 (a). If the sensors have a fixed

shared sensing range, as expected, they asymptotically move

towards the central activity locations in order to match the first

moment (i.e., mean) of assigned activity distributions for both

soft and hard sensor allocation, which yields optimal coverage

regions with almost the same volume irrespective of the spatial

variances of assigned events, shown in Fig. 4 (b). On the other

hand, if the sensors have adjustable sensing range, they still

asymptotically move towards the central activity locations

but also adjust their sensing ranges appropriately in order

to match both the first and the second moments (i.e., mean

and variance) of assigned activity distributions, which yields

12Please refer to the accompanying video for an animated demonstration.
13For all simulations, inspired by k-means based initialization of the EM

algorithm for Gaussian mixture learning [39], we set the control gains for
continuous-time coverage control as κpi

= κυi
= κωi

= 1.0 and κr2
i
=

κπ = 0.1 for all i, and the update step sizes for discrete-time coverage control
as δpi

= 0.1 and δr2
i
= δπ = 0.01 for all i; and the simulation results for

continuous-time coverage control are obtained through numerical integration
using the ode45 function of MATLAB. Since the continuous- and discrete-
time coverage control dynamics yield very similar coverage motion for this
selection of control parameters, in order to save space, we only include the
simulation results for continuous-time coverage control. Moreover, for safe
coverage control, we assume the sensor body radius to be βi = 0.4 and the
safety margin to be εi = 0.05 for all i.

optimal coverage regions whose volumes are proportional with

the spatial variance of assigned events, shown in Fig. 4 (d,f).

Thus, instead of assuming a fixed proper sensing resolution

selection, statistical coverage control of mobile sensors with

adjustable sensing range offers increased coverage perfor-

mance by adaptively adjusting sensors’ sensing ranges in

response to the spatial spread of assigned events in order to

appropriately focus sensors based on event concentration.

To demonstrate coverage motion and locally optimal cover-

age configurations for the various settings discussed in Section

III, we now consider a 10 × 10 square environment with

the following more complicated event distribution function

φ : [0, 10]2 → R>0, which is also used in [11], [33],

φ(x) ∝ 1+10

(
exp
(
−1

9

∥∥∥∥x−
[
8
8

]∥∥∥∥
2)
+exp

(
−1

2

∥∥∥∥x−
[
8
2

]∥∥∥∥
2)

exp
(
−1

2

∥∥∥∥x−
[
8
4

]∥∥∥∥
2)
+exp

(
−
∥∥∥∥x−

[
3
7

]∥∥∥∥
2))

. (98)

and a group of six mobile sensors starting at around the

lower left corner of the environment from a triangle formation

with equal sensing ranges and equal mixture weights, as

illustrated in Fig. 1(a). Since continuous- and discrete-time

“move-to-centroidal-configuration” laws generate very similar

coverage motion for small update step sizes13, to save space,

we here only present the simulation results for continuous-time

coverage dynamics. Recall that the global and local approxi-

mation errors of the forward Euler method are, respectively,

linear and quadratic with the update step size [50].

(a) (b) (c) (d)

Fig. 5. Statistical coverage control of homogeneous mobile isotropic sensors
with fixed identical sensing ranges and mixture weights. Locally optimal (a)
Voronoi-centroidal and (c) soft-centroidal coverage configurations. (b) The
maximum and (d) the average of individual event detection probabilities of
sensors at the initial (top) and the final (bottom) coverage configurations.12

Here, the KL divergence is used as a measure of statistical coverage quality,13 ,
and the level sets of the event distribution in (98) and the initial sensor
coverage configuration are illustrated in Fig. 1.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 6. Statistical coverage control of mobile differential-drive sensor networks. (a) Level sets of the event distribution in (98) and initial sensor coverage
configuration. Locally optimal (b) Voronoi and (d,f) soft centroidal coverage configurations, where sensors share fixed equal mixture weights in (f). (c) The
maximum and (e,g) the weighted average of individual event detection probabilities of sensors at the initial (top) and the final (bottom) coverage configuration.12

Here, the statistical coverage quality is measured in terms of the KL divergence.13

In Fig. 1, we select the KL divergence as our statis-

tical coverage quality measure and illustrate the result-

ing coverage motion and the final locally optimal cover-

age configurations of the sensors for both the “move-to-

soft-centroidal-configuration” law in (33) and the “move-

to-Voronoi-centroidal-configuration” law in (37). Since soft

sensor allocation provides a flexible choice of mixture (task)

weights for determining how much each sensor participates in

the coverage task, as expected, we observe that at a locally

optimal coverage configuration, the weighted average of in-

dividual event detection probabilities of sensors approximates

the event distribution more accurately than the maximum of

individual event detection probabilities of sensors does.

To demonstrate the role of adjustable sensing range in

coverage, we consider in Fig. 5 statistical coverage con-

trol of homogeneous sensors with fixed identical sensing

ranges and mixture weights. As seen in Fig. 5, the sensors

converge to very similar locally optimal coverage config-

urations (up to relabelling of sensors) for the “move-to-

soft-centroidal-configuration” law and the “move-to-Voronoi-

centroidal-configuration” law, because soft and hard assign-

ments are very consistent with each other for sensors that par-

ticipate equally in the coverage task (i.e., sensors with identical

mixture weights). Not surprisingly, (homogeneous) sensors

with fixed sensing ranges (in Fig. 5) usually perform less well

in approximating the event distribution compared to (hetero-

geneous) sensors with variable sensing ranges (in Fig. 1).

In Fig. 6, we present the simulation results for safe sta-

tistical coverage control of differential drive mobile sensors.

Although they start at the same initial positions with the fully

actuated sensors in Fig. 1, we see that, due to the safety and

nonholonomic motion constraints, differential drive sensors

converge to slightly different locally optimal coverage config-

urations, especially for soft sensor allocation, via significantly

different paths.

To illustrate the effect of selection of a statistical distance

on the coverage performance, we consider in Fig. 7 statistical

coverage control of mobile sensor network using the Hellinger

distance. In our simulation experiments, we observe that

locally optimal coverage configurations for the KL divergence

and the Hellinger distance (even for the α-divergence for

α ∈ (0, 1)) are structurally very similar, in general. We

believe that this can be explained by the strong (“equivalence”)

relation of the α-divergence and the KL divergence observed in

Lemma 2. While their locally optimal coverage configurations

are significantly similar, the Hellinger distance yields smoother

coverage motion than the KL divergence since the overall

event detection probability of sensors acts as a smoothing

filter on the event distribution; for example, for α ∈ (0, 1),
the workspace means and variances for Dα,W(ϕθ, φ) and

Dkl,W(ϕθ, ϕ
α
θ
· φ1−α) are the same.

Finally, we consider statistical coverage control of discrete

event distributions and randomly sample a set of equally

weighted discrete event locations from the continuous distribu-

tion function φ in (98) [39]. In Fig. 8 we present the resulting

coverage motion and locally optimal coverage configurations

for both hard and soft sensor allocation. Here, to resolve

some potential technical issues due to the degeneracy of

hard assignment (i.e., some sensors might be assigned to

no or very few event locations), we assume that sensors

share a fixed sensing range of unity for hard assignment.

We observe that soft sensor allocation results in significantly

better coverage configurations than hard sensor allocation

does, because soft assignment leverages all event locations

in estimating workspace statistics used in coverage control,

whereas hard assignment can suffer from the lack of enough

(a) (b) (c) (d) (e) (f) (g)

Fig. 7. Statistical coverage control of mobile sensor networks using the Hellinger distance. (a) Level sets of the event distribution in (98) and initial sensor
coverage configuration. Locally optimal Voronoi (b) and soft (d,f) coverage configurations. The maximum (c) and the weighted average (e,g) of individual
event detection probabilities of the sensors at the initial (top) and the final (bottom) coverage configurations.12 13
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(a) (b) (c) (d) (e) (f) (g)

Fig. 8. Statistical coverage control of mobile sensor networks for a discrete event distribution. (a) Equally likely discrete event locations (randomly sampled
from the event distribution function in (98)) and initial sensor coverage configuration. (b,d,f) Locally optimal Voronoi (b) and soft (d,f) centroidal coverage
configurations, where sensors share identical fixed sensing range and mixture weights in (b) and (f). (c,e,g) The maximum (c) and the weighted average (e,g)
of individual event detection probabilities of sensors at the initial (top) and the final (bottom) coverage configurations.12 13

sample event assignment to sensors and so the (low) quality of

estimated Voronoi statistics. Moreover, hard assignment causes

discontinuous control inputs for discrete event distributions

while soft assignment always generates smooth control inputs,

which might be critical for certain application settings.

V. CONCLUSION

In this paper, we introduce a new statistical coverage quality

measure for mobile sensor networks, with adjustable sensing

range, that quantifies the total collective event coverage per-

formance of sensors over an environment in terms of an f -

divergence between the overall event detection probability of

sensors and the event distribution over the environment. We

consider soft and hard (Voronoi-based) sensor allocation in

such mobile sensor networks and provide an explicit charac-

terization of locally optimal coverage configurations for soft

and hard sensor assignments, using soft workspace statistics

and hard Voronoi statistics, respectively. Accordingly, for both

continuous- and discrete-time sensor dynamics, we design a

new family of simple, intuitive, reactive statistical coverage

control policies, named the “move-to-centroidal-configuration”

laws, that adaptively adjust sensor positions and sensing ranges

in order to increase the coverage performance of sensors,

and prove their asymptotic convergence to a locally optimal

coverage configuration. We further present three practical

extensions of our coverage control framework for discrete

event distributions, collision avoidance, and differential drive

sensor dynamics. In numerical simulations, we demonstrate

the effectiveness of the proposed statistical coverage control

strategies and the effect of various design parameters on the

coverage performance.

Work now in progress targets statistical coverage control

of limited-range anisotropic sensor networks [61]. We are

also exploring other practical extensions of our framework

for nonconvex environments [62] and camera networks [17].

Another interesting future extension is the use of mixture

weights for balancing event and area coverage in sensor

networks [63].

APPENDIX

MAJORIZATION/MINORIZATION VIA JENSEN’S INEQUALITY

In this part, we briefly present a generalization of some

standard mathematical tricks for constructing a majorizing or

minorizing surrogate function of a certain class of objective

functions by exploiting convexity via Jensen’s inequality [21].

Lemma 3 Let g : X ×Θ → R>0 be a positive function over

X ×Θ, where X ⊆ R
d, and define for any θ ∈ Θ that

G(θ) :=

∫

X

g(x, θ)dx, and ĝ(x, θ) :=
g(x, θ)

G(θ)
. (99)

Using a concave function h : R>0 → R, one can construct a

minorizing surrogate function of h(G(θ)) at θ′ ∈ Θ as

H(θ, θ′) :=

∫

X

h

(
g(x, θ)

ĝ(x, θ′)

)
ĝ(x, θ′)dx (100)

that satisfies H(θ, θ′)≤h(G(θ)) and H(θ′, θ′)=h(G(θ′)).
Moreover, for any convex function h : R>0 → R , H(θ, θ′)

is a majorizing surrogate function of h(G(θ)) at θ′ ∈ Θ.

Proof. Since x 7→ ĝ(x, θ) defines a positive probability

distribution over X , we directly have H(θ′, θ′) = h(G(θ′)).
Moreover, using Jensen’s inequality, one can also obtain that

h(G(θ)) = h

(∫

X

g(x, θ)

ĝ(x, θ′)
ĝ(x, θ′)

)
dx, (101)

≥
∫

X

h

(
g(x, θ)

ĝ(x, θ′)

)
ĝ(x, θ′)dx = H(θ, θ′). (102)

Similarly, the inequality in the reverse direction holds for a

convex function h. Thus, the result follows. �

Corollary 3 For any monotone increasing concave function

h over (0,∞), one has for any θ, θ′ ∈ Θ that

H(θ, θ′) ≥ H(θ′, θ′) =⇒ G(θ) ≥ G(θ′) (103)

where the inequalities change direction for a decreasing

convex function h over (0,∞). Here, G and H are defined

as in (99) and (100), respectively.

Proof. For a concave function h, we have from Lemma 3 that

H(θ, θ′) is a minorizing function of h(G(θ)) at θ′, and so

H(θ, θ′) ≥ H(θ′, θ′) implies that

h(G(θ)) ≥ H(θ, θ′) ≥ H(θ′, θ′) = h(G(θ′)). (104)

Hence, we obtain (103) because G(θ) ≥ G(θ′) ⇐⇒
h(G(θ)) ≥ h(G(θ′)) for any monotone increasing h. In a

similar way, one can verify that the implication with the

reversed inequalities holds for a monotone decreasing h. �

Correspondingly, discrete counterparts of Lemma 3 and

Corollary 3 can be stated as follows.
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Lemma 4 Let gi : X × Θ → R>0 be a set of positive

functions, where i ∈ {1, 2 . . . ,m}, and define for any x ∈ X

and θ := (θ1, θ2, . . . , θm) ∈ Θm that

G(x, θ):=

m∑

i=1

gi(x, θi), and ĝi(x, θ):=
gi(x, θi)

G(x, θ)
. (105)

Then, for any concave function h : R>0 → R ,

H(x, θ, θ′) :=

m∑

i=1

h

(
gi(x, θi)

ĝi(x, θ
′)

)
ĝi(x, θ

′) (106)

minorizes θ 7→ h(G(x, θ)) at θ′ ∈ Θm, that is to say,

H(x, θ, θ′) ≤ h(G(x, θ)) and H(x, θ′, θ′) = h(G(x, θ′));
whereas, for any convex function h : R>0 → R, H(x, θ, θ′)
is a majorizing function of θ 7→ h(G(x, θ)) at θ′ ∈ Θm.

Proof. By definition, since
∑m

i=1 ĝi(x, θ) = 1, we have

H(θ′, θ′) = h(G(x, θ′)). Further, using Jensen’s inequality,

we obtain the result for a concave function h as

h(G(x, θ)) = h

(
m∑

i=1

gi(x, θi)

ĝi(x, θ
′)
ĝi(x, θ

′)

)
, (107)

≥
m∑

i=1

h

(
gi(x, θi)

ĝi(x, θ
′)

)
ĝi(x, θ

′) = H(x, θ, θ′), (108)

where the inequality in the opposite direction holds for a

convex function h. �

Corollary 4 For any increasing concave h over (0,∞),

H(x, θ, θ′) ≥ H(x, θ′, θ′) =⇒ G(x, θ) ≥ G(x, θ′), (109)

whereas the implication with the reversed inequalities holds

for any decreasing convex h over (0,∞), where G and H are,

respectively, defined as in (105) and (106).
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Ömür Arslan (S’09–M’17) received the Ph.D. de-
gree in electrical and systems engineering from
the University of Pennsylvania, Philadelphia, PA,
USA, in 2016 and the B.Sc. and M.Sc. degrees
in electrical and electronics engineering from the
Middle East Technical University, Ankara, Turkey,
in 2007 and from Bilkent University, Ankara, in
2009, respectively. He is now a postdoctoral re-
searcher in the Autonomous Motion Department at
the Max Planck Institute for Intelligent Systems,
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