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ABSTRACT

CLUSTERING-BASED ROBOT NAVIGATION AND CONTROL

Omur Arslan
Daniel E. Koditschek

In robotics, it is essential to model and understand the topologies of configuration spaces
in order to design provably correct motion planners. The common practice in motion plan-
ning for modelling configuration spaces requires either a global, explicit representation of a
configuration space in terms of standard geometric and topological models, or an asymp-
totically dense collection of sample configurations connected by simple paths, capturing
the connectivity of the underlying space. This dissertation introduces the use of cluster-
ing for closing the gap between these two complementary approaches. Traditionally an
unsupervised learning method, clustering offers automated tools to discover hidden intrin-
sic structures in generally complex-shaped and high-dimensional configuration spaces of
robotic systems. We demonstrate some potential applications of such clustering tools to
the problem of feedback motion planning and control.

The first part of the dissertation presents the use of hierarchical clustering for relaxed,
deterministic coordination and control of multiple robots. We reinterpret this classical
method for unsupervised learning as an abstract formalism for identifying and represent-
ing spatially cohesive and segregated robot groups at different resolutions, by relating the
continuous space of configurations to the combinatorial space of trees. Based on this new ab-
straction and a careful topological characterization of the associated hierarchical structure,
a provably correct, computationally efficient hierarchical navigation framework is proposed
for collision-free coordinated motion design towards a designated multirobot configuration
via a sequence of hierarchy-preserving local controllers.

The second part of the dissertation introduces a new, robot-centric application of Voronoi
diagrams to identify a collision-free neighborhood of a robot configuration that captures the
local geometric structure of a configuration space around the robot’s instantaneous posi-
tion. Based on robot-centric Voronoi diagrams, a provably correct, collision-free coverage
and congestion control algorithm is proposed for distributed mobile sensing applications
of heterogeneous disk-shaped robots; and a sensor-based reactive navigation algorithm is
proposed for exact navigation of a disk-shaped robot in forest-like cluttered environments.

These results strongly suggest that clustering is, indeed, an effective approach for au-
tomatically extracting intrinsic structures in configuration spaces and that it might play
a key role in the design of computationally efficient, provably correct motion planners in
complex, high-dimensional configuration spaces.
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Chapter 1

Introduction

1.1 Motivation

With the increasing use of robots in our daily lives, from household applications [97] to
elder/patient assistance [210] to self-driving vehicles [188], it has become even more crucial
for autonomous robotics systems to be able to safely move in their workspaces in order to
accomplish given tasks. The design of such provably correct safe motion planners inevitably
requires to model and understand the topologies of configuration spaces of robotics systems.
Two commonly encountered approaches to tackle the safe robot navigation problem are
configuration space motion planning and sampling-based motion planning [140, 55].

The configuration space1 of a robotic system is a mathematical abstract formalism of
all possible allowed robot states that are free of any collisions and satisfy the kinematic and
dynamic system constraints [152]. Once an explicit representation of the robot’s configura-
tion space is obtained, a number of configuration space motion planners [140, 55], such as
discrete planners, cell decomposition and roadmap methods, and feedback motion planners,
can be used to safely steer the robot toward its target configuration, satisfying the given
task specifications. However, configuration spaces generally have complex shapes and are
difficult, if not impossible, to explicitly describe in terms of standard geometric and topolog-
ical models. Moreover, the complexity of motion planning is known to grow exponentially
as the configuration space grows in dimension [46]. These limitations therefore restrict the
applicability of configuration space planners to low dimensional settings.

Alternatively, sampling-based methods, such as probabilistic roadmaps [126], rapidly-
exploring random trees [139], and their variants, resolve such limitations by producing
(open-loop) navigation paths based on randomly sampled robot configurations and sim-
ple connectivity criteria; for instance, a pair of sample configurations are connected if the
straight line joining them is free of collisions. Although they require no explicit construc-
tions of configuration spaces, sampling-based methods strongly rely on fast collision detec-
tors, efficient nearest neighbor and graph search algorithms, effective sampling strategies
(especially around narrow passages) and informative metric selection [141, 144].

1Here we use the informal robotics notion of the term configuration space from [152] rather than the
mathematician’s formal definition used in topology [76].
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In brief, these two widely used motion planning methods fundamentally differ from each
other in modelling configuration spaces: on one hand, we have methods based on global,
explicit representations of configuration spaces; on the other hand, we have methods based
on individual, sample configurations connected by simple paths. Hence, the question that
naturally arises is whether it is possible to combine the strengths of these methods in
modelling configuration spaces. As an affirmative response, in this dissertation we propose
the use of clustering for closing the gap between these two complementary motion planning
methods to take advantages of both constructions, see Figure 1.1. We argue that the
intrinsic local structures in configuration spaces that are identified by clustering can be
exploited to design computationally efficient, provably correct feedback motion planners.

Configuration Space

Motion Planning

Explicit Configuration 

Space Representation

Sampling-Based

Motion Planning

Sample Configurations

Connected by Simple Paths

Clustering-Based 

Motion Planning

Coherent Groups (Clusters) 

in Configuration Spaces 

and Their Adjacencies 

Figure 1.1: Clustering-based motion planning: A new perspective for closing the gap in
modelling configuration spaces between configuration space motion planning and sampling-
based motion planning.

1.2 What Does Clustering Offer?

Automatic Discovery of Structural Patterns Traditionally an unsupervised learning
method, clustering offers automated tools to discover coherent groups (clusters) in config-
uration spaces to model their unknown global organizational structure (e.g., hierarchical
clustering, see Figure 1.2), and to determine the local intrinsic structure of configuration
spaces around a robot configuration (e.g., partitional clustering, see Figure 1.4) [115]. Since
explicit modelling the global geometry and topology of configuration spaces arising in robot
motion planning is generally known to be very difficult [140], understanding the local topol-
ogy of robot configurations sharing the same cluster structure might hold a significant
value for simplifying the associated robot navigation problem. In particular, one can use
clustering as a magnifying glass to explicitly understand the configuration space topology
locally, and, perhaps, exploit the topology of configuration clusters to design provably cor-
rect computationally efficient local motion planners to navigate between structurally similar
configurations while preserving the shared cluster structure.
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Figure 1.2: A multirobot configuration and its cluster hierarchy

Clustering-Based Symbolic Abstractions A unique strength of configuration space
clustering over arbitrary configuration space partitioning, such as cellular decompositions,
is that clustering not only yields a cover of a configuration space in terms of configura-
tion clusters, but also relates each covering element to a clustering model (e.g., cluster
hierarchies and finite set partitions) that deciphers the structural properties of the associ-
ated configuration cluster [116, 4]. Hence, on a more conceptual level, clustering can be
viewed as a symbolic abstraction [30] relating the continuous space of configurations to the
(combinatorial) space of clustering models.

In robot motion planning, discrete abstractions are generally utilized to focus on the
high-level aspects of motion design, for instance, how to compose available local behaviours
or local motion planners to achieve a given global task, while hiding its continuous low-
level details, like collision avoidance, trajectory following and stability that are handled by
local planners [30]. Such discrete abstractions mostly represent possible transitions between
local planners by means of an adjacency graph, instead of an explicit mathematical relation,
and a high-level discrete plan is therefore constructed usually by employing standard graph
search algorithms, like the A* or Dijkstra’s algorithm [59]. Here, a potential advantage of a
clustering-based symbolic abstraction is that the space of the associated clustering models
is commonly endowed with some explicit connectivity criteria; for example, restructuring
operations of cluster hierarchies [80, Chapter 4], see Figure 1.3. Hence, instead of using
a graph search algorithm, one can exploit explicit relations between clustering models to
reduce the complexity of high-level motion planning.

A

AA

B

BB

C

CC

σ

τ

γ

(σ,A)

(τ, C)

(σ, B)

(γ, C)

(τ,B)

(γ,A)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

Figure 1.3: The nearest neighbor interchange (NNI) moves between cluster hierarchies and
the NNI graph of hierarchies
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Locality Identification Another characteristic use of clustering is for locality identifi-
cation. As opposed to the usual practice of defining a local neighborhood of a robot in
terms of simple geometric shapes (e.g., an Euclidean ball around the robot), one can utilize
clustering to identify a collision-free neighborhood of a robot that also captures the local
geometric structure of the associated configuration space around the robot’s instantaneous
position, as illustrated in Figure 1.4. Therefore, one can leverage clustering for design-
ing effective collision avoidance algorithms and provably correct navigation algorithms in
cluttered environments.

Figure 1.4: An application of robot-centric Voronoi diagrams for identifying a collision-
free region (yellow) around the robot body (blue) in environments cluttered with obstacles
(black)

1.3 Prior Literature on the Use of Clustering in Robot Mo-

tion Planning

A commonly encountered approach in robot motion design that is strongly related to clus-
tering is a spatial decomposition of a robot’s workspace for modelling its connectivity and
for increasing the computational performance of a motion planner by substantially reduc-
ing the associated search space [140, 55]. For example, given its explicit representation,
cell decomposition [51, 54] and roadmap [165, 53] methods typically construct a global,
one-dimensional graphical representation (skeleton) of an environment based on its trape-
zoidal [68] or Voronoi [167] decomposition, and seek for a connected path in this skeleton
to navigate a robot between any source-destination pair. Hierarchical decomposition meth-
ods based on quadtrees [84] and octrees [158] are also successfully applied for representing
environments at multiple resolutions via adaptive cells, and, in particular, their recur-
sive constructions yield computationally efficient solutions for robots operating in unknown
and/or sparse environments, with a substantial reduction in computations and memory re-
quirements compared to a fixed resolution grid representation [120, 225, 41, 227, 79, 107].
In brief, such motion planners make use of spatial decomposition methods for building effi-
cient data structures that approximately model environments, independent of any specific
robot configuration and model, whereas our use of clustering aims to explicitly extract im-
manent local geometric and topological structures in configuration spaces around a given
robot configuration. What is more, proximity search in configuration spaces arising in mo-
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tion planning is generally complicated due to topological irregularities, and kd-trees [31, 88]
are extended to handle various topologies of configuration spaces with increased perfor-
mance in nearest neighbor search for sampling-based motion planning [226]. To mitigate
another bottleneck in the performance of sampling-based motion planning, hierarchical ag-
gregation of workspace obstacles are utilized to effectively sample configurations at various
resolutions [91]. Although such studies of individual and/or pairs of configurations are
critical for sampling-based motion planning, we believe that automatic identification of
structurally similar groups (clusters) in configuration spaces and their geometric and topo-
logical properties might be beneficial for a broader family of motion design approaches,
including sampling-based methods.

Clustering has also played a key role in the design of scalable algorithms for motion
planning and control of large groups of robots, because coordinated motion planning of in-
dependent thick bodies in a compact space is known to be computationally hard [203, 111].
Prior work on this problem had already demonstrated that a hierarchy of proximities ab-
stracting the spatial structure of an environment might have a significant value for producing
practical coordination strategies that scale well with the number of robots [147, 148, 175].
Hierarchical coordination strategies that divide a large group of robots into small teams and
limit coordination across them have been also shown to alleviate the combinatorial growth of
complexity by simplifying the systematic enumeration of group interactions [21, 48]. More-
over, hierarchical discrete abstraction methods are successfully applied for scalable steering
of a large number of robots as a group all together by controlling the group shape [29], and
also find applications for congestion avoidance in swarm navigation [93]. Alternatively, in
this dissertation, we show that clustering also achieves a significant reduction in the com-
plexity of coordinated motion design by limiting group interactions in a principled way at
multiple levels, based on the spatial distributions of robots, and by using the topological
and geometric properties of discovered organizational models.

Pattern formation in biology [92, 173, 86, 61, 69, 7, 194, 23, 110] has recently inspired
a great deal of interest in robotics, yielding a growing literature on group coordination
behaviors [134, 191, 190, 113] by the intuition that the heterogeneous action and sensing
abilities of a group of robots might enable a comparably diverse range of complex tasks
beyond the capabilities of a single individual. Group coordination via splitting and merging
behaviours creates effective strategies for obstacle avoidance [166], congestion control [93],
shepherding [48], area exploration [48, 65], and maintaining persistent and coherent groups
while adapting to the environment [113]. In this regard, hierarchical clustering offers an
interesting means of ensemble task encoding and control; especially, the ability to specify
organizational structure in the precise but flexible terms that hierarchy permits enables us
to specify group coordination behaviours at selectively multiple resolutions for safe mul-
tirobot navigation. It also bears mentioning that, motivated by both biological pattern
formation [23, 110] and facility localization [167, 72], Voronoi diagrams are widely applied
in robotics for coverage control of distributed mobile sensor networks for both solving sen-
sory task assignment and encoding robots’ diversity in actuation, sensing, computation,
communication and energy resource [60, 137, 178]. In addition to these standard usages in
robotics, we tailor Voronoi diagrams to exactly encode robot collisions and to determine a
safe neighborhood of a robot that specifies the spatial structure around the robot.
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1.4 Contributions and Organization of the Thesis

Clustering-based modelling of configuration spaces, which comprises the central contribution
of this dissertation, offers a fresh perspective for computationally efficient provably correct
robot motion design. We below present a brief overview of the chapters demonstrating some
nontrivial examples of this new perspective to robot motion design.

Chapter 2: Inspired by the use of clustering for modelling global organizational struc-
tures, in this chapter we introduce a novel abstraction for ensemble task encoding and
control of multirobot systems in terms of hierarchical clustering, yielding precise yet flexi-
ble organizational specifications at selectively multiple resolutions. Hierarchical clustering
offers a formalism for identifying and representing spatially cohesive and segregated robot
groups at different resolutions by relating the continuous space of configurations to the com-
binatorial space of trees. We reveal that for a choice of a hierarchical clustering method, the
homotopy model of multirobot configurations sharing the same cluster hierarchy is a gener-
alized torus. By exploiting of the underlying topology, for m perfectly sensed and actuated
disk-shaped robots in a n-dimensional ambient space (for arbitrary m and n), we propose
a provably correct, computationally effective (quadratic in m and algebraic in n) hierarchi-
cal navigation framework for collision-free coordinated motion design toward a designated
multirobot configuration via an online sequential composition of hierarchy-preserving local
controllers, followed by a discrete navigation rule in the space of cluster hierarchies.

In summary, the main contributions of the chapter are:
• a novel abstraction for ensemble task encoding and control in terms of hierarchical

clustering,
• an explicit topological characterization of multirobot configurations sharing the same

clustering hierarchy,
• a provably correct generic hierarchical navigation framework for collision-free feedback

motion planning for multirobot systems,
• a computationally efficient instantiation of the hierarchical navigation framework for

coordinated control of an arbitrary number of disk-shaped robots operating in an
ambient space (of dimension d ≥ 2).

On a more conceptual level, this chapter breaks new ground by introducing a topologically
nontrivial symbolic abstraction that reduces the complexity of high level planning in the
abstract symbol space [30].

Chapter 3: To enable controllable transitions between different cluster hierarchies (and so
the associated local controllers of Chapter 2), in this chapter we design a computationally
efficient recursive algorithm for navigating through the space of cluster hierarchies of n
leaves that is guaranteed to reach a desired hierarchy in O(n2) steps, each step costing
O(n) computations. In Chapter 2, such a high-level discrete plan in the space of cluster
hierarchies is used to specify how a multirobot configuration should structurally evolve while
navigating toward a desired goal configuration.

Navigation in tree space not only plays a key part in our solution to the multirobot
motion planning problem in Chapter 2, but also has a significant value for efficient discrimi-
native comparison of cluster hierarchies — a fundamental classification problem common to
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both computational biology and pattern recognition. In this chapter, we also introduce and
study three new measures for efficient discriminative comparison of cluster hierarchies. The
NNI navigation dissimilarity is constructed as the length of a navigation path in the nearest
neighbor interchange (NNI) graph of binary hierarchies. It is both an efficient approxima-
tion to the (NP-hard) NNI distance and, along with this “edit length” interpretation, its
sensitivity to the number of mutually incompatible clusters lends it the character of an edge
dissimilarity measure as well. A relaxation of the closed form NNI navigation dissimilarity
expression yields a second, simpler measure on all trees — the crossing dissimilarity —
which explicitly counts pairwise cluster incompatibilities between trees. Both dissimilar-
ities are symmetric and positive definite (vanish only between identical trees) on binary
hierarchies but they are not true metrics, because they fail to satisfy the triangle inequality.
Nevertheless, both are linearly bounded below by the widely used Robinson-Foulds metric
and we achieve a metric upper bound by introducing a true distance, the cluster-cardinality
metric that is constructed as the pullback of matrix norms along an embedding of trees into
the space of matrices. All of these proposed new tree measures can be efficiently computed
in time O(n2) in the number of leaves, n.

In short, this chapter makes the following contributions:
• A recursive algorithm is proposed for efficient navigation in tree space.
• Metric upper and lower bounds on the length of navigation paths are provided.
• Three new tree measures are introduced for efficient discriminative comparison of

trees.
• An ordering relation between the proposed tree dissimilarities and related tree metrics

in the literature is revealed.
• The discriminative power of the proposed tree measures over existing tree metrics is

demonstrated by using a statistical analysis of their empirical distributions.

Chapter 4: Inspired by the use of clustering for locality identification, in this chapter
we introduce a novel use of separating hyperplanes for identifying a collision-free convex
neighborhood of a robot moving in a cluttered environment, which turns out to be a simple,
but effective way of extracting the intrinsic local geometric structure of the configuration
space around the robot’s instantaneous position. Accordingly, we construct a sensor-based
feedback law that solves the real-time collision-free robot navigation problem in a compact
convex Euclidean subset cluttered with sufficiently separated and strongly convex obstacles.
We prove that this construction affords a piecewise smooth continuously varied closed-loop
vector field whose smooth flow brings almost all configurations in the robot’s free space to
a designated goal location, with the guarantee of no collisions along the way. We extend
these provable properties to practically motivated limited range sensing models, and the
nonholonomically constrained kinematics of the standard differential drive vehicle.

The contributions of this chapter are:
• a novel application of separating hyperplanes for encoding robot collisions precisely

and identifying a safe convex neighborhood of a robot,
• a provably correct sensor-based vector field planner for safe robot navigation in clut-

tered environments,
• a new feedback navigation law that requires no parameter tuning and requires only

local knowledge of the environment,
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• practical extensions to limited range sensing modalities and the widely used differential
drive vehicle model, while retaining the provable properties.

Chapter 5: In distributed mobile sensing applications, networks of agents that are het-
erogeneous, respecting both actuation as well as body and sensory footprint, are often
modelled by recourse to power diagrams — generalized Voronoi diagrams with additive
weights. In addition to these standard usages, we adapt power diagrams to encode colli-
sions in a heterogeneous group of disk-shaped robots and determine a safe neighborhood
of a multirobot configuration, which is another application of clustering for locality identi-
fication in robot motion design. Accordingly, based on standard coverage control of point
robots [60, 137, 178], we propose a constrained coverage control law for heterogeneous disk-
shaped robots that solves the combined sensory coverage and collision avoidance problem.
We also present its practical extensions for a heuristic congestion management of unassigned
robots and for a lift of the fully-actuated controller to the more practical differential drive
kinematics, while maintaining the convergence and collision avoidance guarantees.

The chapter makes the following contributions:
• A new robot-centric application of Voronoi diagrams to precisely encode multirobot

collisions is introduced.
• A constrained coverage control law that solves the combined sensory coverage and

collision avoidance problem is proposed.
• A congestion management heuristic for unassigned robots is proposed to hasten the

assigned robots progress.
• An extension to the widely used kinematic differential drive robots (retaining the

provable properties) is presented.

In Chapter 6, we conclude the dissertation with a summary of our contributions and a brief
discussion of future work.
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Chapter 2

Coordinated Robot Navigation via

Hierarchical Clustering

Cooperative, coordinated action and sensing can promote efficiency, robustness, and flexi-
bility in achieving complex tasks such as search and rescue, area exploration, surveillance
and reconnaissance, and warehouse management [171]. Despite significant progress in the
analysis of how local rules can yield such global spatiotemporal patterns [114, 162, 52], there
has been strikingly less work on their specification. With few exceptions, the engineering
literature on multirobot systems relies on task representations expressed in terms of rigidly
imposed configurations — either by absolutely targeted positions, or relative distances —
missing the intuitively substantial benefit of ignoring fine details of individual positioning
to instead focus control effort on the presumably far coarser properties of the collective
pattern that matter. In this chapter, we seek a more relaxed means of task specification
that is sensitive to spatial distribution at multiple scales (as in influencing the intensity
of interactions among individuals and with their environment [168]) and the identities of
neighbors (as in determining the capabilities of heterogeneous teams [7]), while affording,
nevertheless, a well-formed deterministic characterization of pattern.

Biology offers spectacularly diverse examples of animal spatial organization ranging from
self-sorting in cells [205], tissues and organs [213, 92], and groups of individuals [69, 6, 100]
to more patterned teams [164, 125, 7, 173], all the way through strategic group forma-
tions in vertebrates [28, 207], mammals [90, 194, 204, 163], and primates [218, 63] that are
hypothesized to increase efficacy in foraging [164, 125], hunting [218, 28, 90, 194], logis-
tics and construction [7, 173], predator avoidance [211, 102], and even to stabilize whole
ecologies [89] — all consequent upon the collective ability to target, track, and transform
geometrically structured patterns of mutual location in response to environmental stimulus.
These formations are remarkable for at least two reasons. First, their global structure seems
to arise from local signaling and response among proximal individuals coupled to specific
physical environments [86] in a manner that might be posited as a paradigm for generalized
emergent intelligence [61]. Second, these formations appear to resist familiar rigid prescrip-
tions that govern absolute or relative location, instead giving wide latitude for individual
autonomy and detailed positioning (intuitively, a necessity for negotiating fraught, highly
dynamic interactions such as arise in, say, hunting [90, 204]), while, nevertheless, supporting
the underlying coarse, deterministic “deep structure” as a dynamical invariant. It is this
second remarkable attribute of biological swarms that inspires this chapter.
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We are led to the notion of hierarchical clustering. We reinterpret this classical method
for unsupervised learning [115] as a formalism for the specification and reactive implemen-
tation of collective mobility tasks expressed with respect to successively refined partitions
of the agent set in a manner depicted in Figure 2.1. There, we display three different
configurations of five planar disks. Their relative positions are specified by three distinct
trees that represent differently nested clusters of relative proximity. The first configuration
exhibits three distinct clusters at a resolution in the neighborhood of two units of distance:
the red and the blue disks; the yellow and the orange disks; and the solitary green disk.
At a coarser resolution, in the neighborhood of four units of distance, the green disk has
merged into the subgroup that includes the red and the blue disks to comprise one of only
two clusters discernible at this scale. The other formed by the orange and the yellow disks.
It is intuitively clear that this hierarchical arrangement of subgroupings will persist under
significant variations in the position of each individual disk. It is similarly clear that the
second and third configurations (and significant variations in the positions of the individual
disks of both) support the very differently nested clusters represented by the second and
third trees, respectively. In this chapter, we introduce a provably correct and computation-
ally effective machinery for specifying, controlling invariantly to, and passing between such
hierarchical clusterings at will.

Figure 2.1: Moving from one spatial distribution to another is generally carried through
rearrangements of robot groups (clusters) at different resolution corresponding to transitions
between different cluster structures (hierarchies).

To illustrate its utility, we use this formalism to solve a specific instance of the reactive
motion planning problem that suggests how the new “relaxed” hierarchy-sensitive layer of
control can be merged with a task entailing a traditional rigidly specified goal pattern.
Namely, for a collection of m disk-shaped robots in the n-dimensional Euclidean space Rn,
we presume that a target hierarchy has been specified along with a desired goal config-
uration that supports it, and that the robot group is controlled by a centralized source
of perfect instantaneous information about each agent’s position that can command exact
instantaneous velocities for each disk. We present an algorithm that results in a purely
reactive hybrid dynamical system [22] guaranteed to bring the disk robots to both the hi-
erarchical pattern as well as the rigidly specified instance from (almost) arbitrary initial
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Table 2.1: Constituent Problems of Hierarchical Robot Navigation

Problem Solution Theorem Description

2.1 Table 2.5 2.4 Hierarchy-invariant vector field planner
2.2 Table 2.6 2.5 Reactive navigation across hierarchies
2.3 Eqn.(2.33) 2.6 Cross-hierarchy geometric realization

conditions, with no collisions of the disks along the way. Stated formally later in Table 2.3,
the correctness of this algorithm is guaranteed by Theorem 2.1, whose proof appeals to the
resolution of various constituent problems summarized in Table 2.1. The construction is
computationally effective: The number of discrete transitions grows in the worst case with
the square of the number of robots, n; each successive discrete transition can be computed
reactively (i.e., as a function of the present configuration) in time that grows linearly with
the group size; and the formulas that define each successive vector field and guard condition
are rational functions (defined by quotients of polynomials over the ambient space of degree
less than 3) entailing terms whose number grows quadratically with the number of robots.
In summary, the main contributions of this chapter are as follows:
• a novel abstraction for ensemble task encoding and control in terms of hierarchical

clustering, yielding precise yet flexible organizational specifications at selectively mul-
tiple resolutions;

• a provably correct generic hierarchical navigation framework for collision-free feedback
motion planning for multirobot systems;

• a computationally efficient instantiation of the hierarchical navigation framework for
coordinated control of an arbitrary number of disk-shaped robots operating in an
ambient space (of dimension n ≥ 2).

On a more conceptual level, this chapter breaks new ground by introducing a topologically
nontrivial symbolic abstraction that reduces the complexity of high-level planning in the ab-
stract symbol space [30], while nevertheless keeping the associated physical problems within
the scope of reactive (real-time) planning methods. In particular, our hierarchical decom-
position is not cellular, i.e., it is not the case that a stratum of clusterings is contractible
[104]. Rather, each component has a known homotopy type. That information enables the
construction of a vector field to handle continuous motions whose flow is designed to respect
it, as must be the case if its basin (the physical initial conditions it can handle correctly) is
to fill out the entire component.

Complexity of Multirobot Motion Planning Existing work on multirobot motion
planning generally suffers from the intrinsic complexity of multibody configurations, which
impedes computationally effective generalizations of single-robot motion planners [140, 55].
Coordinated motion planning of thick bodies in a compact space is known to be compu-
tationally hard. For example, moving planar rectangular objects within a rectangular box
is PSPACE-hard [111], and motion planning for finite planar disks in a polygonal environ-
ment is strongly NP-hard [203]. Even determining when and how the configuration space of
noncolliding spheres in a unit box is connected entails an encounter with the ancient sphere
packing problem [27]. As a result, although they ensure certain optimality properties and
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handle complex environments, most available multirobot path planning algorithms suffer
from having at least exponential computation time with the number of robots limiting their
applicability to problems entailing a small number of robots in real-time settings [172].
Within the domain of reactive or vector field motion planning, which is the main focus of
this chapter, it has proven deceptively hard to determine exactly this line of intractability.
Consequently, this intrinsic complexity for coordinated vector field planners is generally
mitigated by either assuming objects move in an unbounded (or sufficiently large) space
[209, 70], as we do in Section 2.3, or simply assuming conditions sufficient to guarantee
connectivity between initial and goal configurations [123, 150]. On the other hand, more
relaxed versions entailing (perhaps partially) homogeneous1 (unlabeled) specifications for
interchangeable individuals have yielded computationally efficient planners in the recent
literature [202, 2, 215, 214], and we suspect that the cluster hierarchy abstraction may be
usefully applicable to such partially labeled settings.

Reactive Multirobot Motion Planning Since the problem of reactively navigating
groups of disks was first introduced to robotics [221, 222], most research into vector field
planners has embraced the navigation function paradigm [183]. A recent review of this two-
decade-old literature is provided in [209], where a combination of intuitive and analytical
results yields a nonsmooth centralized planner for achieving goal configurations specified up
to rigid transformation. As noted in [209], the multirobot generalization of a single-agent
navigation function is challenged by the violation of certain assumptions inherited from
the original formulation [183]. One such assumption is that obstacles are “isolated” ( i.e.,
nonintersecting). In the multirobot case, every robot encounters others as mobile obsta-
cles, and any collision between more than two robots breaks down the isolated obstacle
assumption [209]. In some approaches, the departure from isolated interaction has been
addressed by encoding all possible collision scenarios, yielding controllers with terms grow-
ing superexponentially in the number of robots, even when the workspace is not compact
[70]. In contrast, our recourse to the hierarchical representation of configurations affords a
computational burden that grows merely quadratically in the number of agents. In [123],
the problem is circumvented by allowing critical points on the boundary (with no damage
to the obstacle avoidance and convergence guarantees), but, as mentioned above, very con-
servative assumptions about the degree of separation between agents at the goal state are
required. In contrast, our recourse to hierarchy allows us to handle arbitrary (noninter-
secting) goal configurations, albeit our reliance upon the homotopy type of the underlying
space presently precludes the consideration of a compact configuration space as formally
allowed in [123].

Another limitation of navigation function approaches is the requirement of proper pa-
rameter tuning to eliminate local minima. Some effort has been given to automatic adap-
tation of this parameter [150]. In principle, the original results of [183] guarantee that any
monotone increasing scheme must eventually resolve the issue of local minima; however, this

1Following the literature, we use the term “heterogeneity” to connote the robots’ diversity in actuation,
sensing, computation, communication, and energy resources, which generally determines constraints on task
assignment [171, 202, 134]. For example, each robot in a fully heterogeneous (uniquely labeled) group has
a specific task (or target), whereas robots in a homogeneous (unlabeled) group are interchangeable. In this
chapter, we consider fully heterogeneous robot groups, since any method proposed for heterogeneous robots
can be easily applied to (partially) homogeneous robots.
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is numerically unfavorable (the Hessian of the resulting field becomes stiffer) and incurs sub-
stantial performance costs (transients must slow as the tuning parameter increases).2 In
contrast, our recourse to hierarchy removes the need for any comparable tuning parameter.

This chapter is based on the papers [14, 15, 16, 18, 17]. The journal paper [18] presents a
unified view of our hierarchical navigation framework, with some tutorial background, that
is developed in preliminary form in the conference paper [16], building on the initial results
of the conference paper [15]. The submitted journal paper [17] presents a recursively defined
algorithm for navigating in tree space (presented in detail later in Chapter 3) that is used to
define a high-level transition rule between (hierarchy-preserving) local navigation controllers
whose correct recruitment solves the reactive coordinated motion planning problem. The
journal paper [14] studies the optimality of Napoleon triangles, which we utilize to select an
optimal multirobot configuration around which instantaneous switching between different
cluster structures is feasible.

2.1 Hierarchical Abstraction

This section describes how we relate multirobot configurations to abstract cluster trees via
hierarchical clustering methods and how we define connectivity in tree space. Table 2.2
summarizes the principal notation that will be used throughout this paper.

Table 2.2: Principal Symbols Used Throughout This Chapter

S, r Sets of labels and disk radii [2.1.1]
Conf(Rn, S, r) The conf. space of labelled, noncolliding disks (2.1)
BTS The space of binary trees [2.1.2]
HC Hierarchical clustering [2.1.3]
HC2-means Iterative 2-means clustering [2.3]
S(τ) The stratum of a tree, τ ∈ BTS , (2.2)
Portal (σ, τ) Portal configurations of a pair, (σ, τ), of trees (2.5)
Portσ,τ Portal map [2.2.1]
AS = (BTS ,EA) The adjacency graph of trees [2.1.4]
NS = (BTS ,ENS

) The nearest neighbor interchange (NNI) graph of trees [2.1.4]

2.1.1 Configuration Space

For convenience, we restrict our attention to Euclidean disks moving in a n-dimensional
ambient space, but many concepts introduced here can be generalized to any metric space.

Given an index set S = [m] := {1, . . . ,m} ⊂ N, a heterogeneous multirobot configuration,
x = (xi)i∈S , is a labeled nonintersecting placement of |S| = m distinct Euclidean spheres 3

of nonnegative radii r := (ri)i∈S ∈ (R≥0)
S , where ith sphere is centered at xi ∈ Rn and has

2It bears mention in passing that partial differential equations (e.g., harmonic potentials [151]) yield
self-tuning navigation functions, but these are intrinsically numerical constructions that forfeit the reactive
nature of the closed form vector field planners under discussion here.

3Here, |A| denotes the cardinality of set A.
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radius ri ≥ 0. We find it convenient to identify the configuration space [77] with the set of
distinct labelings, i.e., the injective mappings of S into Rn, and we will find it convenient
to denote our “thickened” subset of this configuration space as 4

Conf(Rn, S, r) :=
{
x ∈ (Rn)S

∣∣∣ ‖xi − xj‖ > ri + rj , ∀i 6= j ∈ S
}
, (2.1)

where ‖.‖ denotes the standard Euclidean norm on Rn.

2.1.2 Cluster Hierarchies

A rooted semilabelled tree τ over a fixed finite index set S, illustrated in Figure 2.2, is a
directed acyclic graph Gτ = (Vτ , Eτ ), whose leaves, vertices of degree one, are bijectively
labeled by S and interior vertices all have out-degree at least two; and all of whose edges
in Eτ are directed away from a vertex designated to be the root [35]. A rooted tree with
all interior vertices of out-degree two is said to be binary or, equivalently, nondegenerate,
and all other trees are said to be degenerate. In this chapter, BTS denotes the set of rooted
nondegenerate trees over leaf set S.

1

2

3 45

6

I−τ

τ
root

I

Pr(I, τ )

Ch(I, τ )

1 23 456

(a) (b)

Figure 2.2: An illustration of (a) a heteregeneous configuration of unit disks in
Conf(R2, [6] ,1) and (b) its iterative 2-mean clustering [193] hierarchy τ in BT[6], where the
dashed lines in (a) depict the separating hyperplanes between clusters, and (b) illustrates
hierarchical cluster relations: parent - Pr (I, τ), children - Ch (I, τ), and local complement
(sibling) - I−τ of cluster I of the rooted binary tree, τ ∈ BT[6]. An interior node is referred
by its cluster, the list of leaves below it, for example, I = {3, 5}. Accordingly the cluster
set of τ is C (τ) =

{
{1} , {2} , . . . , {6} , {1, 6} , {3, 5} , {2, 4} , {1, 3, 5, 6} , {1, 2, 3, 4, 5, 6}

}
.

A rooted semilabelled tree τ uniquely determines (and henceforth will be interchangeably
termed) a cluster hierarchy [159]. By definition, all vertices of τ can be reached from the
root through a directed path in τ . The cluster of a vertex v ∈ Vτ is defined to be the set of
leaves reachable from v by a directed path in τ (see Figure 2.2). Let C (τ) denote the set of
all vertex clusters of τ .

For every cluster I ∈ C (τ), we recall the standard notion of parent (cluster) Pr (I, τ)
and lists of children Ch (I, τ), ancestors Anc (I, τ) and descendants Des (I, τ) of I in τ ,

4Here, R and R≥0 denote the set of real and nonnegative real numbers, respectively; and Rn is the
n-dimensional Euclidean space.
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illustrated in Figure 2.2 — see Section 3.1.1 for explicit definitions of cluster relations.
Additionally, we find it useful to define the local complement (sibling) of cluster I ∈ C (τ)
as I−τ := Pr (I, τ) \ I.

2.1.3 Configuration Hierarchies

A hierarchical clustering 5 HC ⊂ Conf(Rn, S, r) × BTS is a relation from the configuration
space Conf(Rn, S, r) to the abstract space of binary trees BTS [115], an example depicted
in Figure 2.2. In this chapter, we are interested only in clustering methods that can classify
all possible configurations (i.e., for which HC assigns some tree to every configuration), and
therefore, we need the following:

Property 2.1 HC is a multi-function.

Most standard divisive and agglomerative hierarchical clustering methods exhibit this prop-
erty, but generally fail to be functions, because choices may be required between different
but equally valid cluster splitting or merging decisions [115].

Given such an HC, for any x ∈ Conf(Rn, S, r) and τ ∈ BTS , we say x supports τ if and
only if (x, τ) ∈ HC. The stratum associated with a binary hierarchy τ ∈ BTS , denoted by
S(τ) ⊂ Conf(Rn, S, r), is the set of all configurations x ∈ Conf(Rn, S, r) supporting the
same tree τ [15],

S(τ) :=
{
x ∈ Conf(Rn, S, r)

∣∣∣ (x, τ) ∈ HC
}
, (2.2)

and this yields a tree-indexed cover of the configuration space. For purposes of illustration,
we depict in Figure 2.3 the strata of Conf(C, [3] ,0) — a space that represents a group of
three point particles on the complex plane. 6 7

The restriction to binary trees precludes combinatorial tree degeneracy [35] and we will
avoid configuration degeneracy by imposing the following.

Property 2.2 Each stratum of HC includes an open subset of configurations, i.e., for every
τ ∈ BTS, S̊(τ) 6= ∅ .8

Once again, most standard hierarchical clustering methods respect this assumption: They
generally all agree (i.e., return the same result) and are robust to small perturbations of a
configuration whenever all its clusters are compact and well separated [223].

Given any two multirobot configurations supporting the same cluster hierarchy, moving
between them while maintaining the shared cluster hierarchy (introduced later as Problem
2.1) requires the following:

Property 2.3 Each stratum of HC is connected.

5Although clustering algorithms generating degenerate hierarchies are available, many standard hierar-
chical clustering methods return binary clustering trees as a default, thereby avoiding commitment to some
“optimal” number of clusters [115, 223].

6Here, 0 and 1 are, respectively, vectors of all zeros and ones with the appropriate sizes.
7Note that the quotient space in Figure 2.3 is not fully symmetric for all three cluster hierarchies because

of the nonlinearity of the quotient map. One can visualize the full symmetry of these hierarchical strata by
taking the inverse stereographic projection of the planar quotient space onto a sphere.

8Here, Å denotes the interior of set A.
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Figure 2.3: The Quotient Space Conf(C, [3] ,0)/ ∼, where for any x,y ∈ Conf(C, [3] ,0), x ∼
y⇐⇒ x3−x1

x2−x1
= y3−y1

y2−y1
. Here, point particle configurations are quotiented out by translation,

scale, and rotation and, therefore, x1 = 0 + 0i, x2 = 1 + 0i and x3 ∈ C \ {x1, x2}. Regions
are colored according to the associated cluster hierarchies that results from their iterative
2-mean clustering [193]. For instance, any configuration in the white region supports all
hierarchies in BT[3].

For an arbitrary clustering method, this requirement is generally not trivial to show, but
when configuration clusters of HC are linearly separable, one can characterize the topological
shape of each stratum to verify this requirement, as we do in Section 2.3.1.

2.1.4 Graphs On Trees

After establishing the relation between multirobot configurations and cluster hierarchies,
the final step of our proposed abstraction is to determine the connectivity of tree space.

Define the adjacency graph AS = (BTS ,EA) to be the 1-skeleton of the nerve [104] of
the Conf(Rn, S, r)-cover induced by HC. That is to say, a pair of hierarchies σ, τ ∈ BTS is
connected with an edge in EA if and only if their strata intersect, S(σ) ∩ S(τ) 6= ∅. To
enable navigation between structurally different multirobot configurations later (Problem
2.2), we need the following:

Property 2.4 The adjacency graph is connected.

Although the adjacency graph is a critical building block of our abstraction, as Figure
2.3 anticipates, HC strata generally have complicated shapes, making it usually hard to
compute the complete adjacency graph. Fortunately, the computational biology literature
[80] offers an alternative notion of adjacency that turns out to be both feasible and nicely
compatible with our needs, yielding a computationally effective, connected subgraph of the
adjacency graph, AS , as follows.

The nearest neighbor interchange (NNI) move at a cluster A ∈ C (σ) on a binary tree
σ ∈ BTS, as illustrated in Figure 2.4(left), swaps cluster A with its parent’s sibling C =
Pr (A, σ)−σ to yield another binary tree τ ∈ BTS [184, 160]. Say that σ, τ ∈ BTS are NNI-
adjacent if and only if one can be obtained from the other by a single NNI move. Note that
a pair of NNI-adjacent trees differs only by one cluster, and the associated NNI moves that
join them can be determined by identifying their unshared clusters [17]. Moreover, define
the NNI graph NS = (BTS ,ENS

) to have vertex set BTS, with two trees connected by an
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Figure 2.4: (left) An illustration of NNI moves between binary trees: each arrow is labeled
by a source tree and an associated cluster defining the move. (right) The NNI Graph: a
graphical representation of the space of rooted binary trees, BTS , with NNI connectivity,
where S = [4] = {1, 2, 3, 4}.

edge in ENS
if and only if they are NNI-adjacent (see Figure 2.4(right)). An important

contribution of this chapter will be to show how the NNI graph yields a computationally
effective subgraph of the adjacency graph (Theorem 2.6) for our preferred choice of HC.

2.2 Hierarchical Navigation Framework

Hierarchical abstraction introduced in Section 2.1 intrinsically suggests a two-level naviga-
tion strategy for coordinated motion design: 1) At the low-level, perform finer adjustments
on configurations using hierarchy-preserving vector fields; and 2) At the high-level, resolve
structural conflicts between configurations using a discrete transition policy in tree space.
The connection between these two levels is established through “portals” — open sets of
configurations supporting two adjacent hierarchies. In this section, we abstractly describe
the generic components of our navigation framework, and we show how they are put to-
gether.

2.2.1 Generic Components of Hierarchical Navigation

Hierarchy-Preserving Navigation

For ease of exposition, we restrict our attention to first-order (completely actuated single-
integrator) robot dynamics, and we will be interested in smooth closed-loop feedback laws
(or hybrid controllers composed from them) that result in complete flows,9

ẋ = f (x) , (2.3)

where f : Conf(Rn, S, r)→ (Rn)S is a vector field over Conf(Rn, S, r) (see (2.1)).

9A long prior robotics literature motivates the utility of this fully actuated “generalized damper” dy-
namical model [153] and provides methods for “lifts” to controllers for second-order plants [130, 131] as
well.

17



Denote by ϕt the flow [8] on Conf(Rn, S, r) induced by the vector field f . For a choice
of hierarchical clustering HC, the class of hierarchy-invariant vector fields maintaining the
robot group in a specified hierarchical arrangement of clusters τ ∈ BTS is defined as [15],

FHC(τ):=
{
f :Conf(Rn, S, r)→ (Rn)S

∣∣∣ϕt
(
S(τ)

)
⊂ S(τ) , t > 0

}
. (2.4)

Hierarchy-preserving navigation, the low-level component of our framework, uses the vector
fields of FHC (τ) to invariantly retract almost all of a stratum onto any designated goal
configuration. 10 Thus, we require the availability of such a construction, summarized as
follows.

Problem 2.1 For any τ ∈ BTS and y ∈ S(τ) associated with HC, construct a control policy
fτ,y using the hierarchy invariant vector fields of FHC (τ) whose closed loop asymptotically
results in a retraction Rτ,y of S(τ), possibly excluding a set of measure zero 11, onto {y}.

Key for purposes of the present application is the observation that any hierarchy-
invariant field f ∈ FHC (τ) must leave Conf(Rn, S, r) invariant as well; thus, avoiding any
self-collisions of the agents along the way. Moreover, the availability of such a family of
hierarchy-preserving local controllers will enable us to focus on the structural aspects of the
multirobot navigation problem while hiding its continuous details such as collision avoidance
and stability. There are likely to be many alternative approaches to such constructions; and
working with the 2-means hierarchical clustering [193], we construct in [15] such a family of
hierarchy preserving control policies for particle configurations, and Section 2.3.2 extends
that construction to thickened disk configurations.

Navigation in the Space of Binary Trees

Whereas the controlled deformation retraction, Rτ,y, above generates paths “through” the
strata, we will also want to navigate “across” them along the adjacency graph (which will
be later in Section 2.3 replaced with the NNI graph — a computationally efficient connected
subgraph). Thus, we further require a construction of a discrete feedback policy in BTS

that recursively generates paths in the adjacency graph toward any specified destination
tree from all other trees in BTS by reducing a “discrete Lyapunov function” relative to that
destination, summarized as follows.

Problem 2.2 Given any τ ∈ BTS, construct recursively a closed-loop discrete dynamical
system in the adjacency graph, taking the form of a deterministic discrete transition rule
gτ with global attractor at τ endowed with a discrete Lyapunov function relative to the
attractor τ .

Such a recursively generated choice of next hierarchy will play the role of a discrete feedback
policy used to define the reset map of our hybrid dynamical system. Once again, there

10It is important to remark that instead of a single goal configuration, a more general family of problems
can be parametrized by a set of goal configurations sharing a certain homotopy model comprising a set of
appropriately nested spheres. For such a general case, one can still construct an exact retraction within our
framework.

11 Recall from [78] that a continuous motion planner in a configuration space X exists if and only if X
is contractible. Hence, if a hierarchical stratum is noncontractible (see Theorem 2.2), the domain of such a
vector field planner described in Problem 2.1 must exclude at least a set of measure zero.
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are many alternative ways of constructing such a discrete transition rule, for example,
using standard graph search algorithms, like the A* or Dijkstra’s algorithm [59]; and we
recently develop in [17] such an efficient recursive procedure, summarized in Section 2.3.3
and presented in detail in Chapter 3, to find paths joining any given pair of trees in the
NNI graph — a subgraph of the adjacency graph (Theorem 2.6).

Hierarchical Portals

Here, we relate the (combinatorial) topology of hierarchical clusters to the (continuous)
topology of configurations by defining “portals” — open sets of configurations that support
two adjacent hierarchies.

Definition 2.1 The portal Portal (σ, τ) of a pair of hierarchies σ, τ ∈ BTS is the set of
all configurations supporting interior strata of both trees,

Portal (σ, τ) := S̊(σ) ∩ S̊(τ) . (2.5)

Namely, portals are geometric realizations in the configuration space of the edges of the
adjacency graph on trees (see Figure 2.3). To realize discrete transitions in tree space via
hierarchy-preserving navigation in the configuration space, we need a portal map that takes
an edge of the adjacency graph and returns a target configuration in the associated portal:

Problem 2.3 Given an edge (σ, τ) ∈ EA of the adjacency graph AS = (BTS ,EA), construct
a geometric realization map Port(σ,τ) : S(σ) → Portal (σ, τ) that takes a configuration
supporting σ, and returns a target configuration supporting both trees σ and τ .

A portal map will serve the role of a dynamically computed “prepares graph” [45] for
the sequentially composed local controllers whose correct recruitment solves the reactive
coordinated motion planning problem (see Theorem 2.1). As one might expect, there are
infinitely many alternative choice of portal configurations as long as the portal of a given
pair of trees is nonempty; and we describe in Section 2.3.4 such a portal selection method
based on the optimality of Napoleon triangles (see Appendix B).

2.2.2 Specification and Correctness of the Hierarchical Navigation Con-

trol Algorithm

Assume the selection of a goal configuration y ∈ S(τ) and a hierarchy τ ∈ BTS that
y supports. Now, given (almost) any initial configuration x ∈ S(σ) for some hierarchy
σ ∈ BTS that x supports, Table 2.3 presents the hierarchical navigation control (HNC)
algorithm whose flowchart is illustrated in Figure 2.5. In short, the HNC algorithm solves
the collision-free multirobot navigation problem by reactively concatenating low-level con-
tinuous hierarchy-preserving vector field planners based on a high-level discrete navigation
planner in tree space and a selection of a “portal” configuration supporting two adjacent
hierarchies. We summarize the important properties of the HNC algorithm as follows.

Theorem 2.1 The HNC Algorithm in Table 2.3 defines a hybrid dynamical system whose
execution brings almost every initial configuration 11 x ∈ Conf(Rn, S, r) in finite time to an
arbitrarily small neighborhood of the goal configuration y ∈ S(τ) with the guarantee of no
collisions along the way.
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Table 2.3: Hierarchical Navigation Control (HNC) Algorithm

For (almost) any initial x ∈ S(σ) and σ ∈ BTS , and desired y ∈ S(τ) and τ ∈ BTS ,
1. (Hybrid Base Case) if x ∈ S(τ) then apply stratum-invariant dynamics, fτ,y

(Problem 2.1).
2. (Hybrid Recursive Step) else,

(a) invoke the discrete transition rule gτ (Problem 2.2) to propose an adjacent
tree, γ ∈ BTS , with lowered discrete Lyapunov value.

(b) Choose local configuration goal, z := Port(σ,γ) (x) (Problem 2.3).
(c) Apply the stratum-invariant continuous controller fσ,z (Problem 2.1).
(d) If the trajectory enters S(τ) then go to step 1; else, the trajectory must

enter S(γ) in finite time in which case terminate fσ,z, reassign σ ← γ,
and go to step 2a).

Proof In the base case, i.e., step 1, the conclusion follows directly from the construction
of Problem 2.1: The flow fτ,y keeps the state in S(τ) and approaches a neighborhood of y
(which is an asymptotically stable equilibrium state for that flow) in finite time.

In the inductive step 2a, the NNI transition rule gτ guarantees a decrement in the
Lyapunov function after a transition from σ to γ (Problem 2.2), and a new local policy fσ,z
is automatically deployed with a local goal configuration z ∈ Portal (σ, γ) found in step
2b. Next, the flow fσ,z in step 2c is guaranteed to keep the state in S(σ) and approach
z ∈ Portal (σ, γ) asymptotically from almost all initial configurations. If the base case

Start

x ∈ S(σ) , σ ∈ BTJ ,
y ∈ S(τ) , τ ∈ BTJ

Is

Is Is

Is
x ∈ S(τ)?

γ = gτ (σ),
z = Port(σ,γ)(x)

ẋ = fσ,z(x)

x ∈ S(τ)?x ∈ S(γ)?

σ ← γ

ẋ = fτ,y(x) x = y?

Finish

Yes

Yes Yes

Yes

No

No

No

No

Hybrid Base Case

Hybrid Recursive Step

Figure 2.5: Flowchart of the hybrid vector field planner that is guaranteed to bring almost
any initial configuration x ∈ S(σ) associated with an arbitrary hierarchy σ ∈ BTS to a
specified desired configuration y ∈ S(τ) supporting a designated hierarchy τ ∈ BTS .
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is not triggered in step 2d, then the state enters arbitrarily small neighborhoods of z and
hence must eventually reach Portal (σ, γ) ⊂ S(γ) in finite time, triggering a return to step
2a. Because the dynamical transitions gτ initiated from any hierarchy in BTS reaches τ in
finite steps (see Problem 2.2), it must eventually trigger the base case. �

2.3 Hierarchical Navigation of Euclidean Spheres via Bisect-

ing K-means Clustering

We now restrict our attention to 2-means divisive hierarchical clustering [193] HC2-means

and demonstrate a construction of our hierarchical navigation framework for coordinated
navigation of Euclidean spheres via HC2-means.

2.3.1 Hierarchical Strata of HC2-means

Iterative 2-means clustering HC2-means is a divisive method that recursively constructs a clus-
ter hierarchy of a configuration in a top-down fashion [193]. Briefly, this method splits each
successive (partial) configuration by applying 2-means clustering and successively continues
with each subsplit until reaching singletons. By construction, complementary configuration
clusters of HC2-means are linearly separable by a hyperplane defined by the associated clus-
ter centroids,12 as illustrated in Figure 2.2, and the stratum of HC2-means associated with a
binary hierarchy τ ∈ BTS can be characterized by the intersection of inverse images,

S(τ) =
⋂

I∈C(τ)\{S}

⋂

i∈I
η−1
i,I,τ [0,∞) , (2.6)

of the scalar valued “separation” function, ηi,I,τ : Conf(Rn, S, r)→ R [15], which returns the
distance of agent i in cluster I ∈ C (τ) \ {S} to the perpendicular bisector of the centroids
of complementary clusters I and I−τ : 13

ηi,I,τ (x) :=
(
xi −mI,τ (x)

)T sI,τ (x)

‖sI,τ (x)‖
, (2.7)

where the associated “cluster functions” of a partial configuration, x|I = (xi)i∈I , are defined
as

c (x|I) := 1

|I|
∑

i∈I
xi , (2.8)

sI,τ (x) := c (x|I)− c
(
x|I−τ

)
, (2.9)

mI,τ (x) :=
c (x|I) + c (x|I−τ )

2
. (2.10)

We now follow [25] in defining terminology and expresssions leading to the characteriza-

12In the context of self-sorting in heterogeneous swarms [134], two groups of robot swarms are said to
be segregated if their configurations are linearly separable and, in this regard, configuration hierarchies of
HC2-means represent spatially cohesive and segregated swarms groups at different resolutions.

13Here, AT denotes the transpose of a matrix A.
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tion of the homotopy type of the stratum, S(τ) , associated with a nondegenerate hierarchy.
The proofs of our formal statements all follow the same pattern as established in [25], and
we omit them for the sake of brevity.

Definition 2.2 A configuration x ∈ Conf(Rn, S, r) is narrow relative to the split, {I, S \ I},
if

max
A∈{I,J\I}

r (x|A) <
1

2

∥∥c (x|I)− c (x|J \ I)
∥∥ , (2.11)

where the radius of a cluster, A ⊂ J , is defined to be14

r (x|A) := max
a∈A

(
‖xa − c (x|A)‖+ ra

)
. (2.12)

Say that x ∈ S(τ) is a standard configuration relative to the nondegenerate hierarchy
τ ∈ BTS if it is narrow relative to each local split Ch (I, τ) of every cluster I ∈ C (τ).

Figure 2.6: An illustration of (left) narrow and (right) standard disk configurations, where
arrows and dashed circles indicate clusters that can be rigidly rotated around their centroids
while preserving their clustering structures.

Since configuration hierarchies of HC2-means are invariant under rigid transformations, and
the separating hyperplanes of complementary clusters are preserved whenever the associated
cluster centroids are kept unchanged, one can observe the following:

Proposition 2.1 If x ∈ S(τ) is a standard configuration then for each cluster I ∈ C (τ),
any rigid rotation of the partial configuration x|I around its centroid c (x|I), as illustrated
in Figure 2.6, preserves the supported hierarchy τ .

Proposition 2.2 For any finite label set S ⊂ N and any binary tree τ ∈ BTS, there exists
a strong deformation retraction 15

Rτ : S(τ)× [0, 1]→ S(τ) (2.13)

of S(τ) onto the subset of standard configurations of S(τ).

These two observations now yield the key insight reported in [25].

14Recall from p.13 that ri denotes the radius of ith sphere for any i ∈ S.
15In [25], authors study point particle configurations, and they construct a strong deformation retraction

onto standard configurations by shrinking clusters around their centroids, and one can obtain this result for
thickened spheres by properly expanding cluster configurations instead of shrinking them.
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Theorem 2.2 The set of configurations x ∈ Conf(Rn, S, r) supporting a binary tree 16 has
the homotopy type of (Sn−1)|S|−1.

To gain an intuitive appreciation, one can restate this result as follows: Two config-
urations in S(τ) are topologically equivalent if and only if the corresponding separating
hyperplane normals of configuration clusters are the same. Hence, navigation in a hierar-
chical stratum is carried out by aligning separating hyperplane normals, 17 18 19 illustrated
in Figure 2.7. By using this geometric intuition, we construct in [15] a family of hierarchy
preserving control policies for point particle configurations, and in the following, we extend
that construction to thickened disk configurations.

Figure 2.7: The topological shape of a hierarchical stratum intuitively suggests that global
navigation in a hierarchical stratum is accomplished by aligning separating hyperplanes of
configurations.

In order to appreciate the mathematical importance of Theorem 2.2, it is necessary to
bear in mind the fact that configuration spaces have complicated topological shapes and
are very difficult, if not impossible, to characterize in terms of simple standard topologi-
cal models [76, 77]. One has such results only for low-dimensional settings. For example,
Conf

(
R2, [2] ,0

)
has the homotopy type of a circle [1], and one can observe from Figure

2.3 that Conf
(
R2, [3] ,0

)
is homotopy equivalent to a circle times a figure-eight (i.e., ∞-

shaped curve). On the other hand, for an arbitrary number of disks and ambient space
dimension, a hierarchical stratum of HC2-means is topologically well understood and is homo-
topy equivalent to a generalized torus, see Theorem 2.2 and Table 2.4. Hence, we believe

16Note that a binary hierarchy over the leaf set S has |S| − 1 interior nodes, i.e., nonsingleton clusters
[184].

17In [15], we construct a linear bijective mapping relating the configuration space and the centroidal sep-
arations of complementary clusters of any given hierarchy such that a multirobot configuration is uniquely
determined by its centroid and the centroidal separations of complementary clusters of the associated hier-
archy. Hence, since the Euclidean n-space and a connected subset of the real line are both contractible, one
can establish the intuitive connection between the separating hyperplane normals and the homotopy type
of a hierarchical stratum in Theorem 2.2.

18For the stability analysis of hierarchy-invariant local policies of point particle configurations, we use in
[15] a Lyapunov function that quantifies how well the separating hyperplanes of the current and the desired
multirobot configurations are aligned. Similarly, in the proof of Proposition A.9, we also show that the
separating hyperplane normals of complementary clusters are asymptotically aligned with the desired ones.

19Theorem 2.2 also explains the technical necessity of a rotational vector field in swarm coordination,
especially for collision avoidance, which is usually employed in an intuitive, ad hoc manner [93, 191].
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that the hierarchical strata might have a significant value for understanding the topologi-
cal complexity [78] of coordinated motion design in Conf(Rn, S, r), because, as opposed to
standard convex cell decompositions 20 [21], the hierarchical strata comprise a cover of the
configuration space by subsets with nontrivial topology.

Table 2.4: Topological Shape of a Hierarchical Stratum

m = 2 m = 3 m

Conf
(
R2, [m] , r

)
— —

Conf
(
R2, [m] ,0

)
× —

S(τ)
︸ ︷︷ ︸

m−1

Finally, it is useful to highlight some of the desired properties of HC2-means (Properties
2.1-2.3):

Theorem 2.3 Iterative 2-means clustering HC2-means is a multi-function, and each of its
stratum, S(τ) associated with τ ∈ BTS, is connected and has an open interior.

Proof It is well known that k-means clustering is a multi-function that generally yields dif-
ferent k-partitions of any given data and, therefore, is HC2-means (see Property 2.1) [115, 223].
Further, it follows from Definition 2.2 and Proposition 2.2 that the set of standard configu-
rations in S(τ) is open (see Property 2.2), and Theorem 2.2 guarantees the connectedness
of S(τ) (see Property 2.3). �

2.3.2 Hierarchy-Preserving Navigation

We now introduce a recursively defined vector field for navigation in a hierarchical stratum
and list its invariance and stability properties.

Suppose that some desired configuration y ∈ S(τ) has been selected, which supports
some desired nondegenerate tree τ ∈ BTS . Our dynamical planner takes the form of
a centralized hybrid controller fτ,y : S(τ) → (Rn)|S| that defines a hierarchy-invariant
vector field, whose flow in S(τ) yields the desired goal configuration y, recursively defined
according to logic presented in Table 2.5. Throughout this section, the tree τ and the
goal configuration y are fixed; therefore, we suppress all mention of these terms wherever
convenient in order to simplify the notation. For example, for any x ∈ S(τ), I ∈ C (τ)
and i ∈ I, we use the shorthand ηi,I (x) = ηi,I,τ (x) (2.7), sI (x) = sI,τ (x) (2.9), mI (x) =
mI,τ (x) (2.10), and so on.

20Note that a convex set has the homotopy type of a point.
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Table 2.5: Hierarchy-Preserving Navigation Vector Field

For any initial x ∈ S(τ) and desired y ∈ S(τ), supporting τ ∈ BTS, the hierarchy-
preserving vector field, fτ,y : S(τ)→ (Rn)S ,

fτ,y (x) := f̂τ,y (x,0, S) ,

is recursively computed starting at the root cluster S with the zero control input
0 ∈ (Rn)S as follows: for any u ∈ (Rn)S and I ∈ C (τ),

B
as
e
C
as
es





R
ec
u
rs
io
n





1. function û = f̂τ,y (x,u, I)

2. if x ∈ DA (I) (2.15),

3. û← fA (x,u, I) (2.14),

4. else if x 6∈ DH (I) (2.18),

5. û← fS (x,u, I) (2.24),

6. else

7. {IL, IR} ← Ch (I, τ),

8. ûL ← f̂τ,y (x,u, IL),

9. ûR ← f̂τ,y (x, ûL, IR),

10. û← fH (x, ûR, I) (2.19),

11. end

12. return û

% Attracting Field

% Split Separation Field

% Recursion for Left Child

% Recursion for Right Child

% Split Preserving Field

In brief, the hierarchy-invariant vector field fτ,y recursively detects partial configurations
whose separating hyperplanes are “sufficiently aligned” with the desired ones, as specified
in (2.15) and illustrated in Figure 2.8, and that can be directly moved toward the desired
configurations, using a family of attracting fields fA (2.14), with no collisions along the way.
Once the partial configurations associated with sibling clusters I and I−τ of τ are in the
domains of their associated attracting fields, fτ,y rotates these partial configurations while
preserving the hierarchy so that their separating hyperplane is also asymptotically aligned.
Hence, fτ,y asymptotically aligns the separating hyperplanes of clusters of τ in a bottom-up
fashion. Once the separating hyperplanes of all clusters of τ are “sufficiently aligned”, fτ,y
drives asymptotically each disk directly toward its desired location. We now present and
motivate its constituent formulas as follows.

The hierarchy-invariant vector field fτ,y in cases 2 and 3 in Table 2.5 recursively detects
partial configurations, such as x|I associated with cluster I ∈ C (τ), that can be safely
driven toward the goal formation in S(τ) by using a family of attracting controllers, fA :
S(τ) × (Rn)S × C (τ) → (Rn)S, that are defined in terms of the negated gradient field of
V (x) := 1

2 ‖x− y‖22 as: for any j ∈ S,

fA (x,u, I)j :=

{
−(xj−yj), if j ∈ I

uj, else
(2.14)

where u ∈ (Rn)S is a desired (velocity) control input specifying the motion of complemen-
tary cluster S \ I.
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Figure 2.8: An illustration of “sufficiently aligned” separating hyperplanes of complemen-
tary clusters I and I−τ of τ . Both the current (left) and desired (right) partial configurations
are linearly separable by each others separating hyperplane, and such an alignment con-
dition needs to be satisfied at each level of the subtrees rooted at I and I−τ so that the
partial configurations x|I and x|I−τ are steered by the associated attracting fields.

To avoid intracluster collisions along the way and preserve (local) clustering hierarchy,
for any I ∈ C (τ), the set of configurations in the domain of the attracting field fA is
restricted to

DA (I) :=
{
x∈S(τ)

∣∣∣L−→
y

1
2 ‖xi − xj‖2 ≥ (ri+rj)

2 , ∀i 6= j ∈ I,

L−→y (xk −mK (x))TsK (x) ≥ 0, ∀k ∈ K,K ∈ Des (I, τ)
}
, (2.15)

where Des (I, τ) is the set of descendants of I in τ . Here, L−→y f denotes the Lie derivative of
a scalar-valued function f along a constant vector field −→y , which assigns the same vector
y to every point in its domain, and one can simply verify that

L−→y
1
2 ‖xi − xj‖2 = (xi − xj)

T (yi − yj) , (2.16)

L−→y (xk −mK (x))TsK (x) = (yk −mK (y))TsK (x) + (xk −mK (x))TsK (y) . (2.17)

Note that (2.16) quantifies the safety of a resulting trajectory of fA, and to avoid collision
between any pair of disks, i and j, (2.16) should be no less than the square of sum of their
radii, (ri + rj)

2, as required in (2.15); and (2.17) quantifies the preservation of (local) clus-
tering hierarchy and should be nonnegative for hierarchy invariance. Also observe that since
a singleton cluster contains no pair of distinct indices and has an empty set of descendants,
the predicate in (2.15) is always true for these “leaf” node cases and we have DA (I) = S(τ)
for any singleton cluster I ∈ C (τ). Further, one can simply verify that y ∈ DA (I) for any
I ∈ C (τ).

If a partial configuration x|I is not contained in the domain of the associated attracting
field, i.e., x 6∈ DA (I), to avoid intercluster collisions, the failure of the condition in case 4
in Table 2.5 ensures that sibling clusters Ch (I, τ) will be separated by a certain distance,
specified as

DH (I) :=
{
x ∈ S(τ)

∣∣∣ηk,K (x) ≥ rk + α, ∀k ∈ K,K ∈ Ch (I, τ)
}
, (2.18)
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where ηk,K (x) (2.7) returns the perpendicular distance of kth agent to the separating hy-
perplane of cluster K ∈ C (τ), and α > 0 is a safety margin guaranteeing that the clearance
between any pair of disks in complementary clusters, Ch (I, τ), is at least 2α units. Observe
that DH (I) = S(τ) for any singleton cluster I ∈ C (τ), because such leaf clusters of a binary
tree have no children, i.e. Ch (I, τ) = ∅.

While the disks move in DH (I) based on a desired control (velocity) input u ∈ (Rn)S ,
step 10 in Table 2.5 guarantees the maintenance of the safety margin between children
clusters Ch (I, τ) by employing an additive repulsive field fH : S(τ)×(Rn)S×C (τ)→ (Rn)S

that rigidly pushes the children clusters apart as follows:

fH (x,u, I)j := uj + 2αI (x,u)
|K−τ |
|I|

sK (x)

‖sK (x)‖ , (2.19)

for all j ∈ K and K ∈ Ch (I, τ); otherwise, fH (x,u, I)j := uj, where αI (x,u) is a scalar-
valued function describing the strength of the repulsive field

αI (x,u) := max
k∈K

K∈Ch(I,τ)

φk,K (x) · ψk,K (x,u) . (2.20)

Here, for each individual k in cluster K ∈ Ch (I, τ), φk,K (x) is exponential damping on the
repulsion strength ψk,K (x,y), in which the amplitude envelop exponentially decays to zero
after a certain safety margin β > α,

φk,K (x) := max

(
e−(ηk,K(x)−rk−α) − e−(β−α)

1− e−(β−α)
, 0

)
, (2.21)

ψk,K (x,u) := max
(
−
(
ηk,K (x)− rk − α

)
− L−→u ηk,K (x) , 0

)
, (2.22)

where

L−→
u ηk,K (x) =

(uk−mK (u))TsK (x) + (xk−mK (x))TsK (u)

‖sK (x)‖ − ηk,K (x)
sK (x)TsK (u)

‖sK (x)‖2
. (2.23)

Note that fH (x,u, I) is well defined for any singleton cluster I ∈ C (τ) and is equal to the
identity map, i.e., fH (x,u, I) = u, because Ch (I, τ) = ∅. Also observe that fH (x,u, I) =
u for any I ∈ C (τ) if the complementary clusters Ch (I, τ) are well separated, i.e., ηk,K (x) ≥
rk + β for all k ∈ K and K ∈ Ch (I, τ). The latter is important to avoid the “finite escape
time” phenomenon21 (see Proposition A.12).

Finally, case 5 in Table 2.5 guarantees that if a partial configuration is neither in the
domain of the attracting field nor are its children clusters Ch (I, τ) properly separated, i.e.,
x 6∈ DA (I) ∪DH (I), then the complementary clusters are driven apart by using another
repulsive field, fS : S(τ) × (Rn)S × C (τ) → (Rn)S , until asymptotically establishing a
certain safety margin β > α:

21 A trajectory of a dynamical system is said to have a finite escape time if it escapes to infinity at a finite
time [127].
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fS (x,u, I)j := − c (x− y|I) + 2βI (x)
|K−τ |
|I|

sK (x)

‖sK (x)‖ , (2.24)

for all j ∈ K and K ∈ Ch (I, τ); otherwise, fS (x,u, I)j :=uj, where the magnitude, βI (x),
of repulsion between complementary clusters Ch (I, τ) is given by

βI (x) := max
k∈K

K∈Ch(I,τ)

max
(
−
(
ηk,K (x)− rk − β

)
, 0
)
. (2.25)

For completeness, we set fS (x,u, I) = fA (x,u, I) for any singleton cluster I ∈ C (τ).
We summarize the properties of this construction as follows. 22

Theorem 2.4 The recursion of Table 2.5 results in a well-defined function fτ,y : S(τ) →
(Rn)S that can be computed in O(|S|2) time for any x ∈ S(τ). For all τ ∈ BTS, the stratum
S(τ) is positive invariant and any y ∈ S(τ) is an asymptotically stable equilibrium point
of a continuous piecewise smooth flow arising from fτ,y whose basin of attraction includes
all of S(τ) with the exception of an empty interior set. 23

Proof These results are proven in Appendix A according to the following plan. Proposition
A.1 establishes that the recursion in Table 2.5 indeed results in a function computable in
quadratic time. The invariance, stability, and continuous flow generating properties of fτ,y
are shown using an equivalent system model within the sequential composition framework
[45], as follows. Table A.2 defines a new recursion that is shown in Proposition A.2 to result
in a family of continuous and piecewise smooth vector fields. Proposition A.3 asserts that
the family of domains associated with these fields (A.3) defines a (finite) open cover of S(τ)
relative to which a selection function (see Table A.3) induces a partition of that stratum.
Proposition A.4 demonstrates that the composition of the covering vector field family with
the output of this partitioning function yields a new function that coincides exactly with
the original control field defined in Table 2.5. Finally, Proposition A.12, Proposition A.11
and Proposition A.13 demonstrate, respectively, the flow, positive invariance and stability
properties of fτ,y, which are inherited from the flow, invariance and stability properties (see
Proposition A.8, Proposition A.7 and Proposition A.9, respectively) of substratum policies
executed over a strictly decreasing finite prepares graph (see Proposition A.5) via their
nondegenerately, real-time executed (see Proposition A.10) sequential composition. �

2.3.3 Navigation in the Space of Binary Trees

In principle, navigation in the adjacency graph of trees (see Problem 2.2) is a trivial matter,
because the number of trees over a finite set of leaves is finite. However, in practice, the
cardinality of trees grows super exponentially [35]

|BTS | = (2 |S| − 3)!!
def.
= (2 |S| − 3)(2 |S| − 5) . . . 3 · 1 , ∀ |S| ≥ 2 . (2.26)

22This construction indeed solves Problem 2.1, since a flow is a retraction of its basin into the attractor
[33].

23It follows from Theorem 2.2 that the measure zero set excluded from the basin of y under the flow
generated by fτ,y is the set of configurations in S(τ ) whose separating hyperplane normals are in the opposite
direction from the associated separating hyperplane normal of y for at least one pair of complementary
clusters of τ .
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Hence, standard graph search algorithms, like the A* or Dijkstra’s algorithm [59], become
rapidly impracticable. In particular, computing the shortest path (geodesic) in the NNI
graph, a regular subgraph of the adjacency graph (see Theorem 2.6), is NP-complete [66].

Alternatively, we have recently developed in [17], presented in detail in Chapter 3, an
efficient recursive procedure for navigating in the NNI graph NS = (BTS,ENS

) toward any
given binary tree τ ∈ BTS , taking the form of an abstract discrete dynamical system as
follows:

σk+1 = NNI
(
σk, Gk

)
, (2.27a)

Gk = uτ (σ
k) , (2.27b)

where NNI
(
σk, Gk

)
denotes the NNI move 24 on σk at cluster Gk ∈ C (τ), illustrated in

Figure 2.4, and uτ is our NNI control policy returning an NNI move as summarized in Table
2.6. Abusing notation, we shall denote the closed-loop dynamical system as

σk+1 = gτ

(
σk
)
:= (NNI ◦ uτ )

(
σk
)
. (2.28)

In short, since a binary cluster hierarchy is a maximal collection of “compatible” clusters
and two distinct binary hierarchy always have some incompatible clusters, the NNI control
law recursively identifies and fixes cluster incompatibilities of any given hierarchy with the
desired target hierarchy (refer to Chapter 3 for more details).

Table 2.6: Nearest Neighbor Interchange (NNI) Control Law

To navigate from an arbitrary hierarchy σ ∈ BTS towards any selected desired
hierarchy τ ∈ BTS in the NNI graph, the NNI control policy uτ returns an NNI
move on σ at a cluster G ∈ C (σ), as follows:

1. If σ = τ , then just return the identity move, G = ∅.
2. Otherwise,

(a) Select a common cluster K ∈ C (σ) ∩ C (τ) with Ch (K,σ) 6= Ch (K, τ),
and let {KL,KR} = Ch (K, τ).

(b) Find a nonsingleton cluster I ∈ C (σ) with children {IL, IR} = Ch (I, σ)
satisfying IL ⊆ KL and IR ⊆ KR.

(c) Return a proper NNI navigation move on σ at grandchild G ∈ Ch (I, σ)
selected as follows:
i. If I−σ ⊂ KL , then return G = IR.
ii. Else if I−σ ⊂ KR , then return G = IL.
iii. Otherwise , return an arbitrary NNI move at a child of I in σ; for

example, G = IL.

24Here, note that the NNI move at the empty cluster corresponds to the identity map in BTS , i.e.,
σ = NNI (σ,∅) for all σ ∈ BTS . Therefore, the notion of identity map in BTS slightly extends the NNI
graph by adding self-loops at every vertex, which is necessary for a discrete-time dynamical system in BTS

to have fixed points.
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The NNI control law endows the NNI graph with a directed edge structure whose paths
all lead to τ , and whose longest path (from the furthest possible initial hierarchy, σ ∈ BTS)
is tightly bounded by 1

2 (|S| − 1) (|S| − 2) for |S| ≥ 2. Given such a goal, we show in Chapter
3 that the cost of computing an appropriate NNI move from any other σ ∈ BTS toward an
adjacent tree at a lower value of a “discrete Lyapunov function” relative to that destination
is O(|S|). We summarize such important properties of our NNI navigation algorithm as
follows.

Theorem 2.5 The NNI control law uτ (see Table 2.6) recursively defines a closed-loop
discrete dynamical system (2.28) in the NNI graph, taking the form of a discrete transition
rule, gτ , with global attractor at τ and longest trajectory of length O(|S|2) endowed with
a discrete Lyapunov function relative to which computing a descent direction from any
σ ∈ BTS requires a computation of time O(|S|).

Proof See Chapter 3. �

2.3.4 Portal Transformations

We now turn our attention to construction of the crucial portal map that affects the geo-
metric realization of the NNI graph as required for Problem 2.3, and herein, we extend our
recent construction of the realization function, Port, in [16] for point particle configurations
to thickened disk configurations.

Throughout this section, the trees σ, τ ∈ BTS are NNI-adjacent (as defined in Section
2.1.4) and fixed; therefore, we take the liberty of suppressing all mention of these trees
wherever convenient, for the sake of simplifying the presentation of our equations. Since
the trees σ, τ are NNI-adjacent, we may apply Lemma 3.1 from Chapter 3 to find common
disjoint clusters A,B,C such that {A ∪B} = C (σ)\C (τ) and {B ∪ C} = C (τ)\C (σ). Note
that the triplet {A,B,C} of the pair (σ, τ) is unique. We call {A,B,C} the NNI-triplet
of the pair (σ, τ). Since σ and τ are fixed throughout this section, so will be A,B,C and
P := A ∪B ∪ C.

In the construction of the portal map Port (2.33), we restrict our attention to the portal
configurations with a certain symmetry property, defined as follows.

Definition 2.3 We call x ∈ (Rn)S a symmetric configuration associated with (σ, τ) if cen-
troids of partial configurations x|A, x|B and x|C form an equilateral triangle, as illustrated
in Figure 2.9(left). The set of all symmetric configurations with respect to (σ, τ) is denoted
Sym (σ, τ).

An important observation about the symmetric configurations is as follows:

Lemma 2.1 ([16]) Let x ∈ S(σ) be a symmetric configuration in Sym (σ, τ). If each partial
configuration x|Q of cluster Q ∈ {A,B,C} is contained in the associated “consensus” ball
BQ (x) — an open ball 25 centered at c (x|Q) with radius

rQ (x) := min
γ ∈ (σ,τ)

D∈{Q,Pr(Q,γ)}\{P}

−
(
c (x|Q)−mD,γ (x)

)T sD,γ (x)

‖sD,γ (x)‖
, (2.29)

then x also supports τ , i.e., x ∈ S(τ), and so x is a portal configuration, x ∈ Portal (σ, τ).

25In a metric space (X, d), the open ball B (x, r) centered at x ∈ X with radius r ∈ R≥0 is the set of points
in X whose distance to x is less than r, i.e., B (x, r) = {y ∈ X | d (x,y) < r}.
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Figure 2.9: (left) An illustration of a symmetric configuration x ∈ Sym (σ, τ), where the
consensus ball BQ (x) of partial configuration of cluster Q ∈ {A,B,C} has a positive radius.
(right) Outer Napoleon Triangles△A′B′C′ and△A′′B′′C′′ of△ABC and△A′B′C′ , respectively,
and △A′′B′′C′′ is referred to as the double outer triangle of △ABC . Note that centroids of
all triangles coincides, i.e., c (△ABC) = c (△A′B′C′) = c (△A′′B′′C′′).

Note that for any symmetric configuration x ∈ Sym (σ, τ), the consensus ball of each partial
configuration of cluster Q ∈ {A,B,C} always has a nonempty interior, i.e., rQ (x) > 0 [16]
— see Figure 2.9(left).

In the following, we first describe how we relate any given triangle to an equilateral
triangle using Napoleon transformations, and then define our portal map.

Napoleon Triangles

We recall a theorem of geometry that describes how to create an equilateral triangle from
an arbitrary triangle: Construct either all outer or all inner equilateral triangles at the
sides of a triangle in the plane containing the triangle; therefore, the centroids of the con-
structed equilateral triangles form another equilateral triangle in the same plane, known as
the “Napoleon triangle” [62] (see Figure 2.9(right)). We will refer to this construction as
the Napoleon transformation, and we find it convenient to define the double outer Napoleon
triangle as the equilateral triangle resulting from two concatenated outer Napoleon transfor-
mations of a triangle. Let NT : R3n → R3n denote the double outer Napoleon transformation
(see Appendix B for an explicit form of NT). It is also worth mentioning that the double
outer Napoleon transformation yields an equilateral triangle optimally aligned with an ar-
bitrary given triangle by virtue of minimizing sum of square distances between the paired
vertices (Appendix B).

The NNI-triplet {A,B,C} defines an associated triangle with distinct vertices for each
configuration, △A,B,C : S(σ)→ Conf(Rn, [3] ,0),

△A,B,C (x) :=
[
c (x|A) ,c (x|B) ,c (x|C)

]T
. (2.30)

The double outer Napoleon transformation of△A,B,C (x) returns symmetric target locations
for c (x|A), c (x|B), and c (x|C), and the corresponding displacement of c (x|P ), denoted
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NoffA,B,C : Conf(Rn, S, r)→ Rn, is given by the formula

NoffA,B,C (x) := c (x|P )− Γ · NT ◦ △A,B,C (x) , (2.31)

where Γ := 1
|P |
[
|A| ,|B| ,|C|

]
⊗ In ∈ Rn×3n, and the vertices of the associated equilateral

triangle with compensated offset of c (x|P ) are
[
cA,cB ,cC

]T
:= NT ◦ △A,B,C (x) + 13 ⊗ NoffA,B,C (x) . (2.32)

Here, In is the n × n identity matrix, and 1k is the Rk column vector of all ones. Also, ⊗
and · denote the Kronecker product and the standard array product, respectively.

Portal Maps

We now define a portal map, Port : S(σ)→ Portal (σ, τ), to be

Port (x) :=

{
x, if x ∈ Portal (σ, τ) ,

(Mrg ◦ Scl ◦ Ctr) (x) , otherwise ,
(2.33)

where Ctr : S(σ) → Sym (σ, τ) rigidly translates the partial configurations, x|A, x|B, and
x|C, to the new centroid locations, cA, cB , and cC (2.32), respectively, yielding a symmetric
configuration

Ctr (x) :=

{
xi, if i 6∈ P ,

xi − c (x|Q) + cQ, if i ∈ Q,Q ∈ {A,B,C} . (2.34)

It is important to observe that Ctr keeps the barycenter of x|P fixed; therefore, separating
hyperplanes of the rest of clusters ascending and disjoint with P are kept unchanged.

After obtaining a symmetric configuration in Sym (σ, τ), Scl : Sym (σ, τ) → Sym (σ, τ)
rigidly translates each partial configuration, x|A, x|B and x|C, to scale and fit into the
corresponding consensus ball so that the new configuration simultaneously support both
subtrees of σ and τ rooted at P ,

Scl (x) :=

{
xi, if i 6∈ P

xi + ζ ·
(
c (x|Q)− c (x|P )

)
, if i ∈ Q,Q ∈ {A,B,C} , (2.35)

where ζ ∈ [0,∞) is a scale parameter defined as

ζ := max
Q∈{A,B,C}

max

(
r (x|Q) + α

rQ (x)
, 1

)
− 1 . (2.36)

Here, α > 0 is a safety margin as used in (2.20), and r (x|Q) (2.12) denotes the centroidal
radius of partial configuration x|Q and rQ (x) (2.29) is the radius of its consensus ball.
Note that Scl preserves the configuration symmetry, i.e., centroids c (x|A), c (x|B), and
c (x|C) still form an equilateral triangle after the mapping and leaves the barycenter of x|P
unchanged.
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Finally, Mrg : Sym (σ, τ)→ Sym (σ, τ) iteratively translates and merges partial configura-
tions of common complementary clusters of σ and τ , in a bottom-up fashion starting at P ,
to simultaneously support both hierarchies σ and τ ,

Mrg (x) := MrgP (x) , (2.37)

where for any I ∈ {P} ∪Anc (P, σ)

MrgI (x) :=

{
x, if I = S,

(MrgPr(I,τ) ◦ SepI) (x) , otherwise.
(2.38)

Here, SepI separates sibling clusters I and I−σ such that the clearance between every agent
in I ∪ I−σ and the associated separating hyperplane is at least α units (i.e., if x̂ = SepI (x)
for some x ∈ (Rn)S with sI,σ (x) 6= 0, then ηk,K,σ (x̂) ≥ rk+α for any k ∈ K, K ∈ {I, I−σ}):
for any j ∈ S

SepI (x)j :=

{
xj, if j 6∈ Pr (I, σ) ,

xj + 2λ |K−σ|
|Pr(K,σ)|

sK,σ(x)

‖sK,σ(x)‖ , if j ∈ K,K ∈ {I, I−σ} , (2.39)

where the required amount of centroidal separation, λ ∈ [0,∞), is given by

λ := max
k∈K

K∈{I,I−σ}
max

(
− (ηk,K,σ (x)− rk − α) , 0

)
. (2.40)

Note that since c (x|P ) = c (x̂|P ) for any x ∈ S(σ) and x̂ = (Scl ◦ Ctr) (x), we always
have sI,σ (x̂) 6= 0 for any I ∈ {P}∪Anc (P, σ), which is required for SepI to be well defined.
Further, using (2.39), one can verify that c (x|Pr (I, σ)) = c (x̂|Pr (I, σ)) = c (x̃|Pr (I, σ))
for x̃ = SepI (x̂); therefore, sA,σ (x̃) 6= 0 for any A ∈ Anc (I, σ), which guarantees that
recursive calls of SepI in the computation of Port are always well defined.

We find it useful to summarize some critical properties of the portal map for the strata
of HC2-means as follows.

Theorem 2.6 The NNI graph NS = (BTS ,ENS
) is a subgraph of the HC2-means adja-

cency graph AS = (BTS ,EA), i.e., for any pair (σ, τ) of NNI-adjacent trees in BTS,
Portal (σ, τ) 6= ∅. Further, given an edge (σ, τ) ∈ ENS

⊂ EA, a geometric realization
via the map Port(σ,τ) : S(σ) → Portal (σ, τ) (2.33) can be computed in quadratic O(|S|2)
time with the number of leaves |S|.

Proof See Appendix A.2.1. �

2.4 Numerical Simulations

For the sake of clarity, we first illustrate the behavior of the hybrid system defined in Section
2.3 for the case of four disks moving in a 2-D ambient space.26

26For all simulations, we consider unit disks moving in an ambient plane, i.e., ri = 1 for all i ∈ S, and
we set α = 0.2 and β = 1, and all simulations are obtained through numerical integration of the hybrid
dynamics generated by the HNC algorithm (see Table 2.3) using the ode45 function of MATLAB.
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In order to visualize in this simple setting the most complicated instance of collision-free
navigation and observe maximal number of transitions between local controllers, we pick the
initial x ∈ S(τ1) and desired configurations x∗ ∈ S(τ4), where disks are placed almost on
the horizontal axis and left-to-right ordering of their labels are (1, 2, 3, 4) and (3∗, 1∗, 4∗, 2∗),
respectively, and their corresponding clustering trees are τ1 ∈ BT[4] and τ4 ∈ BT[4] (see
Figure 2.10).

The resultant trajectory of each disk following the hybrid navigation planner in Section
2.3, the relative distance between each pair of disks, and the sequence of trees associated
with visited hierarchical strata are shown in Figure 2.10. Here, the disks start following the
local controller associated with τ1 until they enter in finite time the domain of the following
local controller associated with τ2 at xc∈S(τ1)∩S(τ2) (shown by cyan dots in Figure 2.10).
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Figure 2.10: Illustrative navigation trajectory of the hybrid dynamics generated by the HNC
algorithm for four disks in a planar ambient space. Disks are placed on the horizontal axis
for both the initial and desired configurations in different orders, from left to right (1, 2, 3, 4)
and (3∗, 1∗, 4∗, 2∗) at the start and goal, respectively. (a) Sequence of trees associated with
deployed local controllers during the execution of the hybrid navigation controller. (b)
Centroidal trajectory of each disk colored according to the active local controller, where
xc ∈ S(τ1) ∩S(τ2), xg ∈ S(τ2) ∩S(τ3) and xr ∈ S(τ3) ∩S(τ4) shown by cyan, green, and
red dots, respectively, are portal configurations. (c) Space-time curve of disks. (d) Pairwise
distances between disks.
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After a finite time navigating in S(τ2) and S(τ3), respectively, the group enters the domain
of the goal controller fτ4,x∗ (see Table 2.5) at xr ∈ S(τ3) ∩ S(τ4) (shown by red dots in
Figure 2.10), and fτ4,x∗ asymptotically steers the disks to the goal configuration x∗∈S(τ4).
Finally, note that the total number of binary trees over four leaves is 15; however, our
navigation planner reactively deploys only four of them.

We now consider a similar but slightly more complicated setting: a group of six disks in
a plane where agents are initially placed evenly almost on the horizontal axes and switch
their positions at the destination, as shown in Figure 2.11(top), which is also used in [209]
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Figure 2.11: Example trajectories of the hybrid vector field planner for (top) 6, (middle) 8,
and (bottom) 16 disks in a planar ambient space. (left) Trajectory and (right) state-time
curve of each disk. Each colored time interval demonstrates the execution duration of an
activated local controller. Dots correspond to the portal configurations where transitions
between local controllers occur.
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as an example of complicated multi-agent arrangements. Here, the order of disk labels from
left to right are, respectively, (1, 2, 3, 4, 5, 6) and (4∗, 5∗, 1∗, 6∗, 2∗, 3∗) for the initial and goal
configurations. While steering the disks toward the goal, the hybrid navigation planner
automatically deploys only six local controllers out of the family of 945 local controllers.
The time evolution of the disk is illustrated in Figure 2.11(top).

Moreover, to demonstrate the efficiency of the deployment policy of our hybrid planner,
we separately consider groups of 8 and 16 disks in an ambient plane, illustrated in Figure
2.11. The eight disks are initially located at the corner of two squares whose centroids
coincide, and the perimeter of one is twice that of the perimeter of the other. At the
destination, disks switch their locations as illustrated in Figure 2.11(middle). For sixteen-
disk case, disks are initially placed at the vertices of a 4 by 4 grid, and their task is to
switch their location as illustrated in Figure 2.11(bottom). Although there are a large
number of local controllers for the case of groups of 8 and 16 disks (

∣∣BT[8]

∣∣ > 105 and∣∣BT[16]

∣∣ > 6× 1015), our hybrid navigation planner only deploys 9 and 19 local controllers,
respectively.

The number of potentially available local controllers for a group of m disks (2.26) grows
super exponentially withm. On the other hand, if agents have perfect sensing and actuation
modelled as in this chapter, the hybrid navigation planner automatically deploys at most
1
2 (m− 1) (m− 2) local controllers (see Chapter 3), illustrating the computational efficiency
of our construction.

Finally, although the HNC algorithm in Section 2.3 is primarily constructed based on
the topological characterization of the associated hierarchical strata and does not ensure the
optimality of its resulting navigation paths, we still find it useful to include a brief statistical
analysis of the metric properties of its navigation paths. Since the geodesic distance (i.e.,
the shortest path length) between any pair of multirobot configurations is very difficult
to compute in practice, as done in [123, 222], in order to quantify navigation paths, we
consider the normalized navigation path length, Γ, which is defined as the ratio of the total
navigation distance traveled by all robots to the straight-line Euclidean distance between
any initial and goal configurations [222]

Γ :=

∑n
i=1

∫∞
0 ‖ẋi (t)‖ dt∑n

i=1 ‖xi (0)− x∗i ‖
, (2.41)

where x (t) is the time trajectory of the navigation path of the HNC algorithm asymptot-
ically joining the initial configuration x (0) to the goal configuration x∗ = limt→∞ x (t).
Further, to ensure an unbiased selection of initial and goal configurations, we consider unit
disk configurations (i.e., ri = 1 for all i = 1 . . . n) uniformly distributed in a square region
of edge length 2k

∑n
i=1 ri = 2kn, where the parameter k > 0 models how tight disks are

packed. In Figure 2.12, we present the effect of group size m, and configuration tightness
k, on the normalized navigation path length Γ. 27 As expected, the normalized naviga-
tion path length increases with increasing configuration tightness and group size in average,
since the closer the disks are packed and the greater they are in number, the more difficult
it is for them to navigate to their destination. We also observe that the average normalized

27Each data point in Figure 2.12 is obtained using 500 pairs of uniformly sampled random initial and goal
configurations.
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path length of the HNC algorithm has the same order of magnitude as those of other avail-
able navigation function based algorithms [222, 123] whose convergence and path properties
significantly depend on parameter tuning.
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Figure 2.12: (left) Average normalized navigation path length versus group size,m, and con-
figuration tightness, k. (right) Mean and standard deviation of the normalized navigation
path length for configuration tightness k = 2.

2.5 Summary

In this chapter, we have introduced a novel application of clustering to address the prob-
lem of coordinated robot navigation. The notion of hierarchical clustering offers a natural
abstraction for ensemble task encoding and control in terms of precise yet flexible organi-
zational specifications at different resolutions. Based on this new abstraction, we propose a
provably correct generic hierarchical navigation framework for collision-free motion design
toward any given destination via a sequence of hierarchy-preserving local controllers. For
2-means divisive hierarchical clustering [193], based on a topological characterization of the
underlying space, we present a centralized online (completely reactive) and computation-
ally efficient instance of our hierarchical navigation framework for disk-shaped robots, which
generalizes to an arbitrary number of disks and ambient space dimension.

Specifically, matching the component problem statements of Section 2.2 to their subse-
quent resolution: we address Problem 2.1 in Theorem 2.4 (guaranteeing that the construc-
tion of Table 2.5 results in a hierarchy invariant vector field planner); we address Problem
2.2 in Theorem 2.5 (guaranteeing that the construction of Table 2.6 results in a reactive
strategy that finds, given any non-goal tree, an edge in the graph of all hierarchies leading
to a new tree that is closer to the desired goal hierarchy); and we address Problem 2.3 in
Theorem 2.6 (providing a geometric realization in the configuration space of the combinato-
rial edge toward the physical goal). The efficacy of this overarching strategy is guaranteed
by Theorem 2.1 (proving the correctness of these problems steps and their resolutions as
presented in Table 2.3).
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Chapter 3

Navigation in Tree Space

A fundamental classification problem common to both computational biology and engineer-
ing is the efficient and informative comparison of hierarchical structures. In bioinformatics
settings, these typically take the form of phylogenetic trees representing evolutionary rela-
tionships within a set of taxa. In pattern recognition and data mining settings, hierarchical
trees are often used to encode nested sequences of groupings of a set of observations. Dis-
similarity between combinatorial trees has been measured in the past literature largely by
recourse to one of two separate approaches: comparing edges and counting edit distances.
Representing the former approach, a widely used tree metric is the Robinson-Foulds (RF)
distance, dRF , [185] whose count of the disparate edges between trees requires linear time,
O(n), in the number of leaves, n, to compute [67]. Empirically, dRF offers only a very coarse
measure of disparity, and among its many proposed refinements, the recent matching split
distance dMS , [36, 143] offers a more discriminative metric albeit with considerably higher
computational cost, O(n2.5 log n). Alternatively, various edit distances have been proposed
[184, 160, 5, 80] but the most natural variant, the nearest neighbor interchange (NNI) dis-
tance dNNI , entails an NP-complete computation for both labelled and unlabelled trees [66].

The main contribution of this chapter is the introduction of a dissimilarity measure on
the space BTS of labelled binary trees over a fixed finite index set S, which bridges the
above approaches by what is, effectively, a solution to the NNI navigation problem in BTS :

NNI Navigation Problem Given a target tree τ ∈ BTS, provide a computationally ef-
ficient discrete transition rule uτ which, for any σ ∈ BTS, computes a nearest neighbor
interchange (NNI) operation to be performed on σ while guaranteeing that successive appli-
cation of uτ terminates in τ .

This problem is motivated by our applications in coordinated robot navigation, presented
in Chapter 2, where a group of robots is required to reconfigure reactively in real time their
(structural) adjacencies while navigating towards a desired goal configuration. Thus, our
particular formulation of the problem is inspired by the notion of reactive planning [45],
but may likely hold value for researchers interested in tree consensus and averaging as well.

Of course, since computation of the NNI distance dNNI is NP-hard, one cannot hope
for repeated applications of uτ to produce NNI geodesics without incurring prohibitive
complexity in each iteration. However, as we will show, constructing an efficient navigation
scheme is possible if we allow the algorithm to produce less restricted paths: for |S| = n,
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our navigation algorithms require O(n) time for each iteration and produce paths of length
O(n2) (as compared to the O(n log n) diameter of dNNI [201] — see (3.26)).

Additional insight into the geometry of the space (BTS , dNNI) is gained by recognizing
a significant degree of freedom with which our navigation algorithm may select the required
tree restructuring operation at each stage. As it turns out, for any given target τ , the
repeated application of uτ to a tree σ until reaching τ will yield paths of equal lengths
regardless of any choices made along the way. This length, by definition, is the NNI nav-
igation dissimilarity dnav (σ, τ) (and is obtained, in the manner described, in O(n3) time,
though more efficient implementations will guarantee O(n2)). At the same time, a closed
form formula we derive for dnav allows us to avoid computing a navigation path when only
the value of dnav is needed, and computes it in O(n2) time. This closed form expression
comprise a weighted count of certain incompatible pairs of clusters formed by two trees and
is derived as a kind of discrete “path integral” that counts the steps along trajectories of
a discrete dynamical system (3.57) defined over the NNI-graph of tree space, which seeks
to reduce the number of incompatible cluster pairs, level by level, with each chosen NNI
operation. In this sense, dnav seems distinguished in the large and still rapidly growing tree
distance literature by offering a compromise between the two traditional approaches. It is
both an efficient approximation to the (NP-hard) NNI distance and, along with this “edit
length” interpretation, its sensitivity to the number of mutually incompatible clusters lends
it the character of an edge dissimilarity measure as well.

Surprisingly, despite the asymmetric character of its construction, dnav is a symmetric
(and positive definite) dissimilarity on BTS , though it fails to be a true metric. Although
dnav does not satisfy the triangle inequality, it is related to the well accepted Robinson-
Foulds distance by the following tight bounds:

dRF ≤ dnav ≤
1

2
d2
RF +

1

2
dRF . (3.1)

We find it useful to introduce a “relaxation” of dnav, the crossing dissimilarity dCM .
This dissimilarity simply counts all the pairwise cluster incompatibilities between two trees,
hence it is symmetric, positive-definite, and computable in O(n2) time. In fact, the two
dissimilarities are commensurable, leading to similar bounds in terms of dRF :

dnav ≤
3

2
dCM , and dRF ≤ dCM ≤ d2

RF . (3.2)

But unlike dnav , dCM is simple enough to work with that it can be linearly bounded from
above by a true metric whose spatial resolution and computational complexity is comparable
to those our new dissimilarities. Namely, exploiting a well known relation between trees and
ultrametrics [47], we also introduce the cluster-cardinality distance dCC — the pullback of
a matrix norm along an embedding of hierarchies into the space of matrices and computable
in O(n2) time — which is a true metric bounding dCM from above (and hence also dnav ,
up to a constant factor). Thus, cumulatively we obtain:

2

3
dRF ≤

2

3
dnav ≤ dCM ≤ dCC . (3.3)

To summarize, in a manner of speaking, the dissimilarities dnav and dCM are not that far
from being metrics as one might have worried.
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We have surveyed some of the new features of our tree proximity measures that might
hold interest for pattern classification and phylogeny analysis relative to the diverse al-
ternatives that have appeared in the literature. Closest among these many alternatives
[142, 64, 42], dnav has some resemblance to an early NNI graph navigation algorithm, dra
[42] which used a divide-and-conquer approach with a balancing strategy to achieve an
O(n log n) computation of tree dissimilarity. Notwithstanding its lower computational cost,
in contrast to dnav , the recursive definition of dra, as with many NNI distance approxima-
tions [142, 64, 42], does not admit a closed form expression.

It is often of interest to compare more than pairs of hierarchies at a time, and the notion
of a “consensus” tree has accordingly claimed a good deal of attention in the literature [43].
For instance, the majority rule tree [154] of a set of trees is a median tree respecting the RF
distance and provides statistics on the central tendency of trees [24]. When dnav and dCM

are extended to degenerate trees, they fail to be positive definite, and thus their behavior
over (typically degenerate) consensus trees departs still further from the properties of a
true metric. However, it turns out that both notions of a consensus tree (strict [117], and
loose/semi-strict [39]) behave as median trees with respect to both our dissimilarities. In
fact, the loose consensus tree is the maximal (finest) median tree with respect to inclusion
for both dnav and dCM .

This chapter is based on the submitted journal paper [17] that introduce and study
these proposed tree measures for efficient discriminative comparison of phylogenetic trees,
and to demonstrate their discriminative power, the chapter concludes with a brief numerical
exploration of the distribution over tree space of these dissimilarities in comparison with
the Robinson-Foulds metric and the more recently introduced matching-split distance.

3.1 Preliminaries

We now introduce our basic notation used throughout the chapter and recall several stan-
dard notions of hierarchies, such as cluster compatibility, hierarchical relations of clusters
and tree operations, from a set theoretical perspective.

3.1.1 Hierarchies

By a hierarchy τ over a fixed non-empty finite index set S, say S = [n] := {1, 2, . . . , n},
we shall mean a rooted tree with labeled leaves (see Figure 3.1). Formally, τ is a finite
connected acyclic graph with leaves (vertices of degree one) bijectively labelled by S, and
edges oriented in such a way that (i) all interior vertices have out-degree at least two, and
(ii) there is a vertex, referred to as the root of τ , such that every edge is oriented away
from the root. Under these assumptions all the vertices Vτof τ are reachable from the root
through a directed path in τ [35].

The cluster C (v) of a vertex v ∈ Vτ is defined to be the set of leaves reachable from v
by a directed path in τ . Singleton clusters and the root cluster S are common to all trees,
and we refer to them as the trivial clusters. We denote by C (τ) (respectively Cint (τ)) the
set of all clusters (resp. nontrivial clusters) of τ :

C (τ) :=
{
C (v)

∣∣ v ∈ Vτ
}
⊆ P (S) , Cint (τ) :=

{
I ∈ C (τ) \ {S}

∣∣∣ |I| ≥ 2
}
, (3.4)

where P (S) denotes the power set of S.
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Compatibility

Definition 3.1 ([195, 80]) Subsets A,B ⊂ S are said to be compatible, A ⊲⊳ B, if

A ∩B = ∅ ∨ A ⊆ B ∨ B ⊆ A . (3.5)

If A 6⊲⊳ B, then we say that A and B cross. We further extend the compatibility relation
(⊲⊳) as follows:
• For A,B ⊆ P (S), write A ⊲⊳ B if A ⊲⊳ B for all A ∈ A and B ∈ B;
• For a cluster I ⊆ S and a tree τ over the leaf set S, write I ⊲⊳ τ if {I} ⊲⊳ C (τ);
• For two trees σ and τ over the leaf set S, write σ ⊲⊳ τ if C (σ) ⊲⊳ C (τ).

By construction, any two elements of C (τ) are compatible for any tree τ . This motivates
the following definition:

Definition 3.2 ([195]) A subset A of P (S) is said to be nested — also referred to in
the literature as a “laminar family” — if any two elements of A are compatible. C (τ) is
known as the laminar family associated with τ .

Hierarchical Relations

The cluster set C (τ) of a hierarchy τ completely determines its representation as a rooted
tree with labeled leaves: C (τ) stands in bijective correspondence with the vertex set Vτ of τ ,
and (v, v′) is an edge in τ if and only if C (v) ⊃ C (v′) and there is no vertex ṽ ∈ Vτ such that
C (v) ⊃ C (ṽ) ⊃ C (v′). Consequently, the standard notions of ancestor, descendant, parent
and child of a vertex in common use for rooted trees carry over to the cluster representation
as follows:

Anc (I, τ) =
{
J ∈ C (τ)

∣∣ I ( J
}
, Des (I, τ) =

{
J ∈ C (τ)

∣∣J ( I
}
, (3.6a)

Pr (I, τ) = min (Anc (I, τ)) , Ch (I, τ) =
{
J ∈ C (τ)

∣∣Pr (J, τ) = I
}
, (3.6b)

I−τ

τ

root

I

Pr (I, τ )

Ch (I, τ ) Des (I, τ )

A
nc
(I
, τ
)

111 2 3 4 5 6 7 8 9 10 12 13

interior node

leaf node

Figure 3.1: Hierarchical Relations: ancestors - Anc (I, τ), parent - Pr (I, τ), children
- Ch (I, τ), descendants - Des (I, τ), and local complement (sibling) - I−τ of cluster I
of a rooted binary phylogenetic tree, τ ∈ BT[13]. Filled and unfilled circles represent
interior and leaf nodes, respectively. An interior node is referred to by its cluster, the
list of leaves below it; for example, I = {4, 5, 6, 7}. Accordingly, the cluster set of τ is
C (τ) =

{
{1} , {2} , . . . , {13} , {1, 2} , {1, 2, 3} , {4, 5} , {6, 7} , {4, 5, 6, 7} , {1, 2, . . . , 7} , {9, 10} ,

{8, 9, 10} , {11, 12} , {11, 12, 13} , {8, 9, . . . , 13} , {1, 2, . . . , 13}
}
.
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where min (Anc (I, τ)) is computed with respect to the inclusion order. Note that for the
trivial clusters we have Pr (S, τ) = ∅ and Ch ((s) , τ) = ∅ for s ∈ S.

Since the set of children partitions each parent, we find it useful to define the local
complement (sibling) I−τ of I ∈ C (τ) as

I−τ := Pr (I, τ) \ I , (3.7)

not to be confused with the standard (global) complement, IC = S\I. Further, a grandchild
in τ is a cluster G ∈ C (τ) having a grandparent Pr2 (G, τ) := Pr

(
Pr (G, τ) , τ

)
in τ . We

denote the set of all grandchildren in τ by G (τ),

G (τ) :=
{
G ∈ C (τ)

∣∣∣Pr2 (G, τ) 6= ∅
}
. (3.8)

If A,B are either elements of S or clusters of τ , it is convenient to have (A∧B)τ denote
the smallest (in terms of cardinality) common ancestor of A and B in τ . Finally, the depth
(level) ℓτ (I) of a cluster in a hierarchy τ is defined to equal the number of distinct ancestors
of I in τ ,

ℓτ (I) :=
∣∣Anc (I, τ)

∣∣ , ∀I ∈ C (τ) , (3.9)

where |·| denotes the set cardinality operator.

Nondegeneracy

A rooted tree where every interior vertex has exactly two children is said to be binary
or nondegenerate. All other trees are said to be degenerate. We will denote the sets of
hierarchies over a fixed finite leaf set S by TS . The subset of nondegenerate hierarchies will
be denoted by BTS.

Note that the laminar family C (τ) of a degenerate tree τ may always be augmented with
additional clusters while remaining nested (Definition 3.2). This leads to the well known
result:

Remark 3.1 ([216, 195]). Let τ ∈ TS . Then τ has at most 2 |S| − 1 vertices, with equality
if and only if τ is nondegenerate, if and only if C (τ) is a maximal laminar family in P (S)
with respect to inclusion.1

Consensus

Definition 3.3 ([117, 39]) For any set of trees T in TS , the strict consensus tree T∗ of T
is defined to be the tree consisting of all common clusters of trees in T , i.e.,

C (T∗) =
⋂

τ∈T
C (τ) , (3.10)

and the loose consensus tree T ∗ of T is the tree each of whose clusters is a cluster of at least
one tree in T and is compatible with all trees in T , i.e.,

C (T ∗) =

{
I ∈

⋃

τ∈T
C (τ)

∣∣∣∣∣ ∀σ ∈ T I ⊲⊳ σ

}
. (3.11)

1In this chapter, we adopt the convention that a laminar family does not contain the empty set (as an
element).
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Note that the loose consensus tree T ∗ of T refines the strict consensus tree T∗, i.e.,
C (T ∗) ⊇ C (T∗).

3.1.2 Some Operations on Trees

NNI Moves

A convenient restatement of the standard definition of NNI walks of unrooted binary trees
[184, 160] for rooted binary trees, illustrated in Figure 3.2, is:

Definition 3.4 Let σ ∈ BTS. We say that τ ∈ BTS is the result of performing a nearest
neighbor interchange (NNI) move on σ at a grandchild G ∈ G (σ) (3.8) if

C (τ) =
(
C (σ) \

{
Pr (G,σ)

})
∪
{
Pr2 (G,σ) \G

}
. (3.12)

We often indicate this by writing τ = NNI(σ,G).

Note that the NNI move at cluster G on σ swaps cluster G with its parent’s sibling
Pr (G,σ)−σ to yield τ , depicted in Figure 3.2(left); and after an NNI move at cluster G
of σ, grandchild G of grandparent P = Pr2 (G,σ) with respect to σ becomes child G of
parent P = Pr (G, τ) with respect to τ .

It is standard to say that σ, τ ∈ BTS are NNI-adjacent if and only if one can be obtained
from the other by a single NNI move. Figure 3.2(left) illustrates the NNI moves on BTS

and their inverses.
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Figure 3.2: (left) An illustration of NNI moves between binary trees, each move (arrow) is
labeled by its source tree and the grandchild defining the move. (right) The NNI Graph:
a representation of the space of rooted binary trees, BTS , with NNI connectivity, for S =
[4] = {1, 2, 3, 4}.

The NNI Graph

The NNI graph is formed over the vertex set BTS by declaring two trees to be connected
by an edge if and only if they are NNI-adjacent, see e.g. Figure 3.2(right). We will work
with a directed version of this graph:
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Definition 3.5 The directed NNI graph NS = (BTS ,ENS
) is the directed graph on BTS

with (σ, τ) ∈ ENS
if and only if τ results from applying an NNI move to σ.

We will henceforth identify the notation for an NNI move (σ,G), G ∈ G (σ) with the
directed edge (σ,NNI(σ,G)) ∈ ENS

wherever there is no danger of confusion.

The (directed) NNI graph on n leaves is a regular graph of out-degree 2(n − 2) [184].
Our description clarifies this by parametrizing the set of neighbors of τ ∈ BTS with its
grandchildren, |G (τ)| = 2(|S| − 2). The vertex set of the NNI graph is known to grow
superexponentially with the number of leaves [35],

∣∣BT[n]

∣∣ = (2n− 3)!!
def.
= (2n− 3)(2n − 5) . . . 3 · 1 , n ≥ 2 . (3.13)

As a result, exploration of the NNI-graph (for example, searching for the shortest path
between hierarchies or an optimal phylogenetic tree model) rapidly becomes impractical
and costly as the number of leaves increases.

A useful observation for NNI-adjacent trees is:

Lemma 3.1 An ordered pair of hierarchies (σ, τ) is an edge in the NNI graph NS if and
only if there exists an ordered triple (A,B,C) of common clusters of σ and τ such that
{A ∪B} = C (σ) \ C (τ) and {B ∪ C} = C (τ) \ C (σ). The triple (A,B,C) is uniquely
determined by the pair (σ, τ) and will be referred to as the NNI-triplet associated with (σ, τ).

Proof The proof amounts to a formal restatement of the observations made in Figure 3.2.
Sufficiency is directly evident from Definition 3.4, because the cluster sets of a pair of

nondegenerate hierarchies differ exactly by one cluster if and only if they are NNI-adjacent.
To verify necessity, let the NNI move (σ, P ) on σ at P ∈ G (σ) joins σ to τ , and R = P−σ

and Q = Pr2 (P, σ) \ Pr (P, σ). By Definition 3.4, {Pr (P, σ)} = {P ∪R} = C (σ) \ C (τ)
and

{
Pr2 (P, σ) \ P

}
= {R ∪Q} = C (τ) \ C (σ). Further, (P,R,Q) is the only ordered

triple of common clusters of σ and τ with the property that {P ∪R} = C (σ) \ C (τ) and
{R ∪Q} = C (τ) \ C (σ), because the cluster sets of any two NNI-adjacent hierarchies differ
exactly by one element. �

Observe that the triplet in reverse order (C,B,A) is the NNI-triple associated with the edge
(τ, σ). Also note that the NNI moves on σ at A and on τ at C yield τ and σ, respectively.

Tree Restriction

Definition 3.6 Let S be a fixed finite set and K ⊆ S. The restriction map resK : P (S)→
P (K) is defined to be

resK (A) :=
{
A ∩K

∣∣A ∈ A , A ∩K 6= ∅
}

(3.14)

for any A ⊆ P (S). It is convenient to have A
∣∣
K

denote resK (A). For σ ∈ TK and τ ∈ TS

we will write:
σ = resK (τ) = τ

∣∣
K
⇐⇒ C (σ) = C (τ)

∣∣
K
. (3.15)

Remark 3.2. Let τ ∈ BTS and {L,R} = Ch (S, τ). Then one has C (τ) = C
(
τ
∣∣
L

)
∪
{
S
}
∪

C
(
τ
∣∣
R

)
.

44



Lemma 3.2 For any finite set S and K ⊆ S with |K| ≥ 2, resK (BTS) = BTK .

Proof To observe that resK (BTS) ⊇ BTK , consider any two nondegenerate trees σ ∈ BTK

and γ ∈ BTS\K , and let τ ∈ BTS be the nondegenerate tree with cluster set C (τ) =
C (σ) ∪ {S} ∪ C (γ). Note that Ch (S, τ) = {K,S \K}. Hence, we have from Remark 3.2
that σ = resK (τ).

To prove that resK (BTS) ⊆ BTK , let τ ∈ BTS and I ∈ C (τ) with the property that
|I ∩K| ≥ 2. Note that I ∩K is an interior cluster of τ

∣∣
K
. We shall show that the cluster

I ∩ K ∈ C
(
τ
∣∣
K

)
always admits a bipartition in τ

∣∣
K
. That is to say, there exist a cluster

A ∈ C (τ) with children {AL, AR} = Ch (A, τ) such that A ∩K = I ∩K and AL ∩K 6= ∅

and AR ∩K 6= ∅. Hence, Ch
(
I ∩K, τ

∣∣
K

)
= {AL ∩K,AR ∩K}.

Now observe that either IL ∩K 6= ∅ and IR ∩K 6= ∅ for {IL, IR} = Ch (I, τ), or there
exists one and only one descendant D ∈ Des (I, τ) with {DL,DR} = Ch (D, τ) such that
I ∩K = D ∩K and DL ∩K 6= ∅ and DR ∩K 6= ∅.

Thus, all the interior clusters of τ
∣∣
K

have exactly two children, which completes the
proof. �

3.1.3 Dissimilarities, Metrics and Ultrametrics

A dissimilarity measure on X, or simply a dissimilarity, is a real-valued nonnegative
symmetric function d : X × X → R≥0 on X × X satisfying d (x, x) = 0 for all x ∈ X.2

Recall that a dissimilarity d on X is positive definite if d (x, y) = 0 implies x = y for all
x, y ∈ X. For instance, many approximations of the (NP-hard) NNI metric are positive
definite dissimilarities [142, 64, 42]. A dissimilarity d is a metric if it satisfies the triangle
inequality,

d (x, y) ≤ d (x, z) + d (z, y) , ∀x, y, z ∈ X . (3.16)

For example, recall the definition of the commonly-used Robinson-Foulds metric onX = TS :

Definition 3.7 ([185]) The Robinson-Foulds distance dRF on TS is defined by: 3

dRF (σ, τ) =
1

2

∣∣C (σ)⊖ C (τ)
∣∣ , σ, τ ∈ TS . (3.17)

Recently a more discriminative metric was introduced:

Definition 3.8 ([36, 143]) Let σ, τ ∈ BTS and GS (σ, τ) denote the complete bipartite graph
with sides Cint (σ) and Cint (τ) with each edge (I, J) ∈ Cint (σ)×Cint (τ) carrying the weight
4 AS (I, J) = min

(∣∣∣I ⊖ J
∣∣∣ ,
∣∣I ⊖ JC

∣∣
)
.

The matching split distance dMS : BTS × BTS → R≥0 between a pair of hierarchies σ
and τ is defined to be the value of a minimum-weighted perfect matching in GS (σ, τ) .

It is known that dRF ≤ dMS ≤ |S|+1
2 dRF [36], which explains the improvement of dMS

over dRF in discriminative power. At the same time, the cost of computing a minimum
weighted perfect matching in any GS (σ, τ) is O(|S|2.5 log |S|), which motivates the search

2We use R and R≥0 to denote the real line and the set of nonnegative reals, respectively.
3Here, ⊖ denotes the symmetric set difference, i.e. A⊖B = (A \B) ∪ (B \ A) for any sets A and B.
4This corresponds to the Hamming distance of clusters.
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for dissimilarities producing similar improvement in discriminative power (bounding dRF

from above) yet having a lower computational cost than that of dMS .

Recall that an ultrametric d on X is a metric on X satisfying the strengthened triangle
inequality:

d (x, y) ≤ max
(
d (x, z) , d (z, y)

)
, ∀x, y, z ∈ X . (3.18)

A restatement of a well-known fact (see, e.g., [47, 115, 180]) revealing the relation between
hierarchies and ultrametrics is:

Lemma 3.3 Let τ ∈ TS and hτ : C (τ) → R≥0. For any i, j ∈ S, let (i∧j)τ denote the
smallest cluster in C (τ) containing the pair {i, j}. Then the dissimilarity on S given by

dτ (i, j) := hτ
(
(i∧j)τ

)
, i, j ∈ S, (3.19)

is an ultrametric if and only if the following conditions are satisfied for any I, J ∈ C (τ):
(i) if I ⊆ J , then hτ (I) ≤ hτ (J) ,
(ii) hτ (I) = 0 if and only if |I| = 1 .

Proof The proof of the sufficiency for being an ultrametric is as follows. Positive definite-
ness and symmetry of dτ are evident from (3.19) and Lemma 3.3.(i)-(ii). To show the strong
triangle inequality, let i 6= j 6= k ∈ S and I = (i∧j)τ , and so dτ (i, j) = hτ (I). Accordingly,
let {Ii, Ij} ⊆ Ch (I, τ) with the property that i∈Ii and j∈Ij.

If k ∈ I, without loss of generality, let k ∈ Ii, and so k 6∈ Ij . Then, using (3.19)
and Lemma 3.3.(i), one can verify that dτ (i, k) ≤ hτ (Ii) ≤ hτ (I) and dτ (j, k) = hτ (I)
because (i∧k)τ ⊆ Ii and (j∧k)τ = I. Also note that if neither k ∈ Ii nor k ∈ Ij (but still
k ∈ I), then dτ (i, k) = dτ (j, k) = hτ (I) since (i∧k)τ = (j∧k)τ = I. Similarly, if k 6∈ I,
then dτ (i, k) ≥ hτ (I) and dτ (j, k) ≥ hτ (I) because only some ancestors of I in τ might
contain all i, j, k. Therefore, overall, one always has dτ (i, j) ≤ max

(
dτ (i, k) , dτ (k, j)

)
,

which completes the proof of the sufficiency.
Let us continue with the necessity for being an ultrametric. Note that Lemma 3.3.(ii)

directly follows from positive definiteness of dτ . Let I ∈ C (τ) \ {S} be any nonsingleton
cluster of τ and i 6= j ∈ I with the property that (i∧j)τ = I. For any k ∈ I−τ , we always
have (i∧k)τ = (j∧k)τ = Pr (I, τ). Now, using the strong triangle inequality of dτ , one can
deduce Lemma 3.3.(i) from

hτ (I) = dτ (i, j) ≤ max
(
dτ (i, k) , dτ (j, k)

)
= hτ

(
Pr (I, τ)

)
, (3.20)

which completes the proof. �

Recall that a set X may always inherit a metric from a metric space (Y, dY ) by pull-
back: any injective map f : X → Y of X into Y yields a metric dX on X defined by
dX (x1, x2) :=dY (f (x1) , f (x2)), where x1, x2,∈ X, and known as the pullback of dY along
f . For example, the RF metric is a pullback: it is common knowledge that the set F (X)
of all finite subsets of a set X forms a metric space under the metric d (A,B) = |A⊖B|,
which is one of the ways of defining Hamming distance; thus, the RF distance is (one half
times) the pullback of this metric on F (P (S)) under the map τ 7→ C (τ).
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3.2 Quantifying Incompatibility

3.2.1 The Cluster-Cardinality Distance

We now introduce an embedding of hierarchies into the space of matrices based on the
relation between hierarchies and ultrametrics, summarized in Lemma 3.3:

Definition 3.9 The ultrametric representation is the map U : TS → R|S|×|S| defined by
U(τ)ij := h

(
(i∧j)τ

)
, where h : P (S)→ N is set to be h (I) := |I| − 1 for I ⊆ S.

Lemma 3.4 The map U is injective.

Proof To see the injectivity of U (Definition 3.9), we shall show that U (σ) 6= U (τ) for
any σ 6= τ ∈ TS .

Two trees σ, τ ∈ TS are distinct if and only if they have at least one unshared cluster.
Accordingly, for any σ 6= τ ∈ TS consider a common cluster I ∈ C (σ) ∩ C (τ) with distinct
parents Pr (I, σ) 6= Pr (I, τ). Depending on the cardinality of parent clusters:
• If |Pr (I, σ)| = |Pr (I, τ)|, then observe that there exists some j ∈ Pr (I, σ) such that
j 6∈ Pr (I, τ) because Pr (I, σ) 6= Pr (I, τ). In fact, notice that j ∈ I−σ and j 6∈ I−τ

(recall (3.7)). Hence, for any i ∈ I we have (i∧j)σ = Pr (I, σ) and Pr (I, τ) ( (i∧j)τ .
Thus, it follows from Definition 3.9 that for any i ∈ I

U (σ)ij =
∣∣Pr (I, σ)

∣∣− 1 < U (τ)ij =
∣∣ (i∧j)τ

∣∣− 1 . (3.21)

• Otherwise, without loss of generality, let |Pr (I, σ)| < |Pr (I, τ)|. Then, observe that
for any i ∈ I and j ∈ I−σ,

U (σ)ij = |Pr (I, σ)| − 1 < U (τ)ij =
∣∣ (i∧j)τ

∣∣− 1 , (3.22)

since (i∧j)τ ⊇ Pr (I, τ).
Therefore, for any σ 6= τ ∈ BTS one has U (σ) 6= U (τ), and the result follows. �

Using the embedding U of TS into R|S|×|S|, we can construct tree metrics as pullback
metrics induced from matrix norms, such as the one below:

Definition 3.10 The cluster-cardinality metric, dCC : TS ×TS → R≥0, on TS is defined to
be 5

dCC (σ, τ) :=
1

2

∥∥U (σ)−U (τ)
∥∥
1
, ∀σ, τ ∈ TS . (3.23)

Proposition 3.1 The cluster-cardinality distance dCC on TS is computable in O(|S|2) time.

Proof The 1-norm of the difference of a pair of |S|×|S| matrices obviously requires O(|S|2)
time to compute, giving a lower bound on the computation cost of dCC . It remains to show
that the embedding U (Definition 3.9) may be obtained at this cost.

We proceed by induction based on a post-order traversal of the trees involved, τ ∈ TS .

5Here ‖.‖1 denotes the 1-norm of a matrix, i.e., ‖U‖1 :=
∑n

i=1

∑n

j=1 |Uij | for U ∈ Rn×n. Our choice of
the 1-norm was guided by the resulting relationships between dCC and the dissimilarity measures dCM and
dnav introduced below. Other choices of norm on RS×S may prove useful.
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For the base case, consider the two-leaf tree τ ∈ BT[2], i.e. |S| = 2: then we simply

assign U (τ) =
[
0 1
1 0

]
.

For the induction step, assume |S| ≥ 3 and denote Ch (S, τ) = {Sk}1≤k≤K , where K ≥ 2
is the number of children of the root S in τ . We observe:
• For every singleton child {i} of S in τ (if any), then set U (τ)ii = 0, which takes up
O(1) time.
• Note that all clusters of τ and their sizes can be obtained in O(|S|2) time by a single
post-order traversal, as each individual cluster (as well as its cardinality) takes at
most linear time to compute from those of its children.
• Suppose that for any 1 ≤ k ≤ K and |Sk| ≥ 2 the elements of U (τ) associated with
the subtree rooted at Sk can be computed in O(|Sk|2) time. Then, the total number of
updates associated with the root S is

∑K
k=1

∑K
l=1 |Sk| |Sl| and corresponds to setting

U (τ)ij = U (τ)ji = |S| − 1 for all i ∈ Sk, j ∈ Sl and 1 ≤ k, l ≤ K.

In total, the cost of obtaining U (τ) is
∑K

k=1O(|Sk|2) +
∑K

k=1

∑K
l=1 |Sk| |Sl| + O(|S|2) =

O(|S|2), as required. �

The diameter, diam (X, d) := max
{
d (x, y)

∣∣x, y ∈ X
}
, of a finite metric space (X, d)

is always of interest in algorithmic applications. Some known diameters for hierarchies [36,
143, 201] are:

diam (TS , dRF ) = |S| − 2 , (3.24)

diam (BTS , dMS) = O(|S|2) , (3.25)

diam (BTS , dNNI) = O(|S| log |S|) , (3.26)

For the cluster-cardinality distance, we have:

Proposition 3.2 diam (TS , dCC) = O(|S|3) .

Proof From Definition 3.9, the minimum and maximum ultrametric distances between two
distinct elements of S are, respectively, 1 and |S| − 1, implying the bound

max
i,j∈S

(
U (σ)ij −U (τ)ij

)
≤ |S| − 2 ∀σ, τ ∈ TS . (3.27)

Hence, it follows from (3.23) that the diameter of TS with respect to dCC is bounded above
as follows:

diam (TS , dCC) ≤
1

2
|S| (|S| − 1) (|S| − 2) . (3.28)

Now consider two NNI-adjacent binary trees σ, τ ∈ BTS such that the NNI triple

(A,B,C) associated with (σ, τ) (see Lemma 3.1) satisfies |A| = |B| = |C| =
⌊
|S|
3

⌋
. It is

straightforward to observe that for |S| ≥ 3 there always exists such a pair of NNI-adjacent

trees, because A, B, and C are disjoint and |A|+ |B|+ |C| = 3
⌊
|S|
3

⌋
≤ |S|. Hence, we have

from Proposition 3.3 that dCC (σ, τ) = 2 |A| |B| |C| = 2
⌊
|S|
3

⌋3
, which yields the following
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lower bound on the diameter of TS with respect to dCC ,

2

⌊ |S|
3

⌋3
≤ diam (TS , dCC) . (3.29)

Note that these bounds on diam (TS , dCC) in (3.28) and (3.29) hold for all |S| ≥ 2. Thus,
the result follows. �

A common question regarding any distance being proposed for the space of trees is how it
behaves with respect to certain tree rearrangements. For instance, any pair of NNI-adjacent
trees, σ, τ ∈ BTS , are known to satisfy [36] 6

dNNI (σ, τ) = 1⇐⇒ dRF (σ, τ) = 1 , (3.30)

dNNI (σ, τ) = 1 =⇒ 2 ≤ dMS (σ, τ) ≤
⌊ |S|

2

⌋
. (3.31)

Similarly for dCC we have:

Proposition 3.3 Let (σ, τ) be an edge of the NNI-graph NS = (BTS ,ENS
) and (A,B,C)

be the associated NNI triplet (Lemma 3.1). Then

2 ≤ dCC (σ, τ) = 2 |A| |B| |C| ≤
⌊
2

27
|S|3

⌋
, (3.32)

and both bounds are tight.

Proof Let P = A∪B∪C and recall from Lemma 3.1 that A∪B ∈ C (σ) and B∪C ∈ C (τ).
Note that P ∈ C (σ)∩C (τ) is a common (grand)parent cluster, and A, B and C are pairwise
disjoint.

Since the NNI moves between σ and τ only change the relative relations of clusters A,B
and C, the distance between σ and τ can be rewritten as

dCC (σ, τ) =
1

2

∥∥U (σ)−U (τ)
∥∥
1
, (3.33)

=
∑

i∈A
j∈B

∣∣∣U (σ)ij−U (τ)ij

∣∣∣+
∑

i∈A
j∈C

∣∣∣U (σ)ij−U (τ)ij

∣∣∣+
∑

i∈B
j∈C

∣∣∣U (σ)ij−U (τ)ij

∣∣∣ , (3.34)

=
∑

i∈A
j∈B

|h (A ∪B)−h (P )|︸ ︷︷ ︸
=|C|

+
∑

i∈A
j∈C

|h (P )−h (P )|︸ ︷︷ ︸
=0

+
∑

i∈B
j∈C

|h (P )−h (B ∪ C)|︸ ︷︷ ︸
=|A|

, (3.35)

= 2 |A| |B| |C| . (3.36)

Clearly, the lower bound in (3.32) is realized when |A| = |B| = |C| = 1. Since the maximum
product of three numbers with a prescribed sum occurs when all the numbers are equal —

in our case, |A|+|B|+|C| ≤ |S| — we must have |A| |B| |C| ≤
⌊
|S|3
27

⌋
, as

∣∣.
∣∣ is integer-valued.

The result follows. �

6⌊.⌋ denotes the floor operator returning the largest integer not greater than its operand.
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Inequalities of the above form allow one to take advantage of the combinatorial nature
of dNNI through repeated application of the triangle inequality:

Corollary 3.1 Over BTS one has dRF ≤ dNNI .

Proof Let σ, τ ∈ BTS and let Γ = (γk)0≤k≤K be shortest path in the NNI graph NS =
(BTS,ENS

) from σ = γ0 to τ = γK . This means that (γk−1, γk) ∈ ENS
– or, equivalently,

dNNI (γk−1, γk) = 1 – for all 1 ≤ k ≤ K, and that K = dNNI (σ, τ). Repeatedly applying
the triangle inequality for dRF and then equation (3.30), we obtain:

dRF (σ, τ) ≤
K∑

k=1

dRF (γk−1, γk) =
K∑

k=1

dNNI (γk−1, γk) = K = dNNI (σ, τ) , (3.37)

which completes the proof. �

Indeed, the length of a path in NS produces a bound on the RF distance between its
endpoints by repeatedly applying the triangle inequality to (3.30). A similar argument
yields:

Corollary 3.2 Let d be a dissimilarity on BTS with the property that d (σ, τ) ≤ 1 for any
pair of NNI-adjacent hierarchies σ, τ ∈ BTS. If d (σ, τ) > dNNI (σ, τ) for some σ, τ ∈ BTS,
then d is not a metric.

Proof Assume, on the contrary, that d is a metric. Then the argument of the proof of
Corollary 3.1 may be repeated, replacing dRF with d and reaching the conclusion that
d (σ, τ) ≤ dNNI (σ, τ) for all σ, τ ∈ BTS – contradiction. �

3.2.2 The Crossing Dissimilarity

Definition 3.11 Let σ, τ ∈ TS. We define their compatibility matrix C (σ, τ) and their
crossing matrix X (σ, τ) to be 7

C (σ, τ)I,J := 1 (I ⊲⊳ J) , and X (σ, τ)I,J := 1−C (σ, τ)I,J , (3.38)

where I ∈ C (σ), J ∈ C (τ), and 1 (.) denotes the indicator function returning unity if its
argument holds true and zero otherwise. The crossing dissimilarity dCM is defined by 8

dCM (σ, τ) :=
∥∥X (σ, τ)

∥∥
1
, (3.39)

counting the pairs of incompatible clusters in C (σ) ∪ C (τ).

We list some useful properties of dCM :

7C (σ, τ ) and X (σ, τ ) can be defined only in terms of nontrivial clusters of σ and τ since any trivial
cluster of σ and τ is compatible with any cluster K ⊆ S. As a result, we are required to separately consider
the special case in which one of the trees has only trivial clusters whenever C or X are used to reason about
degenerate trees.

8We find that choosing to use the 1-norm of the crossing matrix easily reveals combinatorial relations
between dCM (3.39) and dCC (3.23); of course, one could use other matrix norms to construct alternative
dissimilarities.
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Remark 3.3. The crossing dissimilarity dCM on BTS is positive definite and symmetric,
but it is not a metric (apply Corollary 3.2 to the observations of Figure 3.3).

1 11 2 22 3 33 4 44

σ τ γ

dnav (σ, τ)=1 dnav (τ, γ)=1

dnav (σ, γ)=3

dCM (σ, τ) =1 dCM (τ, γ) =1

dCM (σ, γ) =3

Figure 3.3: dCM and dnav are not metrics: an example of the triangle inequality failing for
both dissimilarities.

Proposition 3.4 The crossing dissimilarity dCM over TS can be computed in O(|S|2) time.

Proof The crossing matrix X (σ, τ) (3.38) of a pair of hierarchies σ, τ ∈ TS has at most
2 |S|−1 rows and columns. Hence, the 1-norm of X (σ, τ) requires O(|S|2) time to compute,
bounding the cost of dCM from below. To obtain the upper bound, we show that X (σ, τ)
can be obtained in O(|S|2) time by post-order traversal.

Observe that for any cluster J ∈ C (τ) (and symmetrically, for any cluster of C (σ)) one
can check whether J is disjoint with or a superset of each cluster I of σ by a post-order
traversal of σ in O(|S|) time using the following recursion:
• If either I or J is a singleton then the cluster inclusions I ⊆ J , J ⊆ I and their
disjointness can be determined in constant time using a hash map.
• Otherwise (|I| ≥ 2 and |J | ≥ 2), we have

I ⊆ J ⇐⇒ ∀D ∈ Ch (I, σ) D ⊆ J, (3.40)

I ∩ J = ∅⇐⇒ ∀D ∈ Ch (I, σ) D ∩ J = ∅. (3.41)

Thus, it follows from Definition 3.1 that a complete list of compatibilities between σ
and τ can be produced in O(|S|2) time, and so X (σ, τ) can be obtained at the same cost,
O(|S|2). �

Proposition 3.5 diam (TS , dCM ) = (|S| − 2)2 .

Proof Two clusters of a pair of trees can only be incompatible if they are both nontrivial.
Recall from Remark 3.1 that the number of nontrivial clusters of a tree in TS is at most
|S| − 2. Hence, by definition (3.39), an upper bound on diam (TS , dCM ) is (|S| − 2)2. To
observe that this upper bound is realized, see Figure 3.4. �

Proposition 3.6 Two nondegenerate trees σ, τ ∈ BTS are NNI-adjacent if and only if
dCM (σ, τ) = 1.

Proof The result is evident from Remark 3.1 and Definition 3.4. �
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..... ..... 11 22 33 n−1n−1 nn

σ τdRF (σ, τ)=n−2

dCM (σ, τ)= (n−2)2

dnav (σ, τ)= 1
2

(n−1) (n−2)

Figure 3.4: A pair of nondegenerate hierarchies realizing diam
(
T[n], dCM

)
= (n− 2)2 and

diam
(
BT[n], dnav

)
= 1

2 (n− 1) (n− 2).

Despite the result of the last proposition, dCM does not provide a linear lower bound on
dNNI since diam (BTS, dNNI) = O(|S| log |S|) < diam (BTS, dCM ) = O(|S|2) (Proposition
3.5). This inequality provides us with an additional, more conceptual, argument that dCM

is not a metric, by applying Corollary 3.2.

Proposition 3.7 Over TS one has dRF ≤ dCM ≤ d2
RF . These bounds are tight.

Proof The lower bound directly follows from Remark 3.1. Because a pair of distinct binary
hierarchies always have uncommon clusters whose count is equal to dRF , and an unshared
cluster of one tree crosses at least one unshared cluster of the other tree. This bound is
tight since for any σ, τ ∈ BTS ,

dRF (σ, τ) = 1⇐⇒ dNNI (σ, τ) = 1⇐⇒ dCM (σ, τ) = 1 . (3.42)

For any σ, τ ∈ BTS , the columns and rows of X (σ, τ) (3.38) associated with common
clusters of σ, τ are necessarily null. Hence, each nonzero element of X (σ, τ) is associated
with a pair of unshared clusters of σ and τ , i.e., X (σ, τ)I,J 6= 0 for some I ∈ C (σ), J ∈ C (τ)

implies I /∈ C (τ) and J /∈ C (σ). By the definition of dRF , there are no more than dRF (σ, τ)2

such pairs — hence the claimed upper bound. To observe that this bound is also tight,
see Figure 3.4. �

Proposition 3.8 Over TS one has dCM ≤ dCC .

Proof Given any σ, τ ∈ TS , we claim that there is a function q : C (σ) × C (τ) → S × S
with the following properties:
(i) for any I ∈ C (σ) and J ∈ C (τ), I ⊲⊳ J if and only if (i, j) = q (I, J) with i = j,

(ii) for any i 6= j ∈ S,
∣∣q−1 (i, j)

∣∣ ≤
∣∣∣U (σ)ij −U (τ)ij

∣∣∣.
Observe that, if such a function does exist, then (i) implies:

⋃

i 6=j∈S
q−1
σ,τ (i, j) =

{
(I, J) ∈ C (σ)× C (τ)

∣∣∣ I 6⊲⊳ J
}
. (3.43)

It is then evident from (3.43) and (ii) that

dCM (σ, τ) ≤
∑

i 6=j∈S

∣∣q−1
σ,τ (i, j)

∣∣ ≤ dCC (σ, τ) , (3.44)

proving our proposition.
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We proceed to construct the function q. If I 6⊲⊳ J , then there exist i ∈ I∩J and j ∈ I \J
with the property that (i∧j)σ = I. Accordingly, define

Q (I, J) :=
{
(i, j) ∈ S × S

∣∣∣ i ∈ I ∩ J, j ∈ I \ J, (i∧j)σ = I
}
, (3.45)

R (I, J) :=
{
(i, j) ∈ S × S

∣∣∣ i ∈ I ∩ J, j ∈ J \ I, (i∧j)τ = J
}
. (3.46)

Note that if (i, j) ∈ Q (I, J) ∪R (I, J), then i 6= j.
Have S totally ordered (say, by enumerating its elements) and have S × S ordered

lexicographically according to the order of S. Then, define q : C (σ)× C (τ)→ S × S to be

q (I, J) :=





(
min (I ∪ J) ,min (I ∪ J)

)
, if I ⊲⊳ J ,

minQ (I, J) , if I 6⊲⊳ J , |I| ≤ |J | ,
minR (I, J) , if I 6⊲⊳ J , |I| > |J | .

(3.47)

Recall that Q (I, J) and R (I, J) both contain pairs of distinct elements of S. Hence, q
satisfies the property (i) above.

By construction, for any i 6= j, we have:

q−1 (i, j) ⊆ A (i, j) ∪B (i, j) , (3.48)

where

A (i, j) :=
{
(I, J) ∈ C (σ)× C (τ)

∣∣∣ I 6⊲⊳ J, |I| ≤ |J | , (i, j) ∈ Q (I, J)
}
, (3.49)

B (i, j) :=
{
(I, J) ∈ C (σ)× C (τ)

∣∣∣ I 6⊲⊳ J, |I| ≥ |J | , (i, j) ∈ R (I, J)
}
. (3.50)

Remark from (3.45) that if (I, J) ∈ A (i, j) then (i∧j)σ = I and (i∧j)τ ) J . Hence, if
| (i∧j)σ| ≥ | (i∧j)τ |, then A (i, j) = ∅. Similarly, (i∧j)σ ) I and (i∧j)τ = J whenever
(I, J) ∈ B (i, j); and B (i, j) = ∅ if | (i∧j)σ| ≤ | (i∧j)τ |. Thus, one can observe that for any
i, j ∈ S,

A (i, j) 6= ∅ =⇒ B (i, j) = ∅ . (3.51)

Recall that for any i, j ∈ S and (I, J) ∈ A (i, j), we have:

I = (i∧j)σ , J ( (i∧j)τ , |I| ≤ |J | and J ∈ Anc ({i} , τ) . (3.52)

Hence, one can conclude that

∣∣A (i, j)
∣∣ ≤

∣∣∣ | (i∧j)τ | − | (i∧j)σ|
∣∣∣ =

∣∣∣U (τ)ij −U (σ)ij

∣∣∣ . (3.53)

Similarly, for any i, j ∈ S,
∣∣B (i, j)

∣∣ ≤
∣∣∣ | (i∧j)σ| − | (i∧j)τ |

∣∣∣ =
∣∣∣U (σ)ij −U (τ)ij

∣∣∣ . (3.54)

Thus, overall, using (3.48) and (3.51), one can obtain the second property of q as follows:
for any i 6= j ∈ S,

∣∣q−1
σ,τ (i, j)

∣∣ ≤
∣∣A (i, j)

∣∣+
∣∣B (i, j)

∣∣ ≤
∣∣∣U (τ)ij −U (σ)ij

∣∣∣ , (3.55)

which completes the proof. �
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3.3 Navigation in the Space of Trees

We now introduce an abstract discrete dynamical system in the NNI graph NS = (BTS ,ENS
)

of binary hierarchies over a fixed finite leaf set S. First, we will introduce a discrete
transition policy (the NNI control law) for navigating toward a specified target hierarchy
τ ∈ BTS from any arbitrary hierarchy σ ∈ BTS with provable termination guarantees.
Next, we will present an alternative interpretation of the NNI control law from a hybrid
system perspective.

3.3.1 A Discrete-Time Dynamical System Perspective

Recall that in order to define a control policy for navigating in the NNI graph NS , we need
to construct an input bundle capturing the possible transitions (edges) in NS . Let Ê denote
the set of directed edges of the NNI graph with self-loops,

Ê :=
⋃

σ∈BTS

{σ} × Êσ, Êσ := G (σ) ∪ {∅} . (3.56)

Thus, every directed edge in Ê is referenced by a source tree and an associated grandchild
in that tree, defining a map NNI : Ê→ BTS where NNI(σ,G) is the result of applying the

NNI move at the grandchild cluster G ∈ Êσ to the nondegenerate hierarchy σ ∈ BTS . Note
that the NNI move at the empty cluster coincides with the identity mapping of BTS (that
is, σ = NNI (σ,∅) for all σ ∈ BTS). Thus, the transition structure captured by the map
NNI may be thought of as having been obtained from NS by simply adding a loop labelled
with ∅ at each vertex.

Accordingly, we will consider discrete-time dynamical systems in BTS of the form

σk+1 = NNI
(
σk, Gk

)
, (3.57a)

Gk = u(σk) , (3.57b)

where u is a control policy of σk ∈ BTS returning a grandchild Gk ∈ Êσk . Abusing notation,
we shall denote the closed-loop dynamical system as

σk+1 = (NNI ◦ u)
(
σk
)
. (3.58)

3.3.2 Special Crossings of Clusters

Throughout this section, we shall consider the compatibility of clusters with cluster splits.
Hence, it is useful to make the following simple observation:

Lemma 3.5 Let {KL,KR} be a bipartition of set K and I ( K. Then, the following
equivalence holds

I ⊲⊳ {KL,KR} ⇐⇒ (I ⊆ KL) ∨ (I ⊆ KR) . (3.59)
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Proof It follows from Definition 3.1 that

I ⊲⊳ KL ⇐⇒ (I ⊆ KL) ∨ (KL ⊆ I) ∨ (I ∩KL = ∅)︸ ︷︷ ︸
⇔I⊆KR

, (3.60)

⇐⇒ (I ⊆ KL) ∨ (KL ⊆ I) ∨ (I ⊆ KR) . (3.61)

Therefore, the lemma can be verified as follows:

I ⊲⊳ {KL,KR} = (I ⊲⊳ KL) ∧ (I ⊲⊳ KR) , (3.62)

= (I ⊆ KL) ∨ (I ⊆ KR) ∨
(
(KL ⊆ I) ∧ (KR ⊆ I)

)
︸ ︷︷ ︸

false since I(K=KL∪KR

, (3.63)

= (I ⊆ KL) ∨ (I ⊆ KR) . (3.64)

�

Any pair of binary trees in BTS has a common cluster (the cluster S, for example), and
one might hope to quantify the discrepancy between a pair of trees by counting common
clusters which split differently in the two trees (perhaps, somehow accounting for the depth
of these clusters). This motivates:

Definition 3.12 For any σ, τ ∈ BTS, let K (σ, τ) denote the set of common clusters of σ
and τ with crossing splits,

K (σ, τ) :=
{
K ∈ C (σ) ∩ C (τ)

∣∣∣Ch (K,σ) 6= Ch (K, τ)
}
. (3.65)

Remark 3.4. In BTS , σ = τ if and only if K (σ, τ) = ∅.

Corollary 3.3 For all σ, τ ∈ BTS, K (σ, τ) =
{
K ∈ C (σ) ∩ C (τ)

∣∣∣Ch (K,σ) 6⊲⊳ Ch (K, τ)
}
.

Proof Follows directly from Lemma 3.5 and the definitions. �

Let σ 6= τ ∈ BTS be two distinct trees which splits K ∈ K (σ, τ) into two different pairs
of children. Observe now that any cluster I ∈ C (σ) which is not a σ-descendant of K is
automatically compatible with Ch (K, τ). Thus, incompatibilities of σ with Ch (K, τ) could
only occur among σ-descendants of K. This motivates the following definition:

Definition 3.13 (Deep Incompatibility) For σ 6= τ ∈ BTS and K ∈ K (σ, τ), let denote
the set of clusters of σ incompatible with Ch (K, τ) as

I (σ, τ ;K) :=
{
I ∈ Des (K,σ)

∣∣∣ I 6⊲⊳ Ch (K, τ)
}
, (3.66)

and denote the subset of deep clusters incompatible with Ch (K, τ) as (see Figure 3.5)

D (σ, τ ;K) :=
{
I ∈ I (σ, τ ;K)

∣∣∣Ch (I, σ) ⊲⊳ Ch (K, τ) ,Ch
(
I−σ, σ

)
⊲⊳ Ch (K, τ)

}
. (3.67)

Note that I (σ, τ ;K) and D (σ, τ ;K) are nonempty since at least an element of Ch (K,σ) is
incompatible with Ch (K, τ), and vice versa, which is evident from Lemma 3.5.
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σ τ
KK

A

B

B−σ

I(σ, τ ;K)

D(σ; τ ;K)

Figure 3.5: An illustration of I (σ, τ ;K) (3.66) and D (σ, τ ;K) (3.67) of σ, τ ∈ BT[9], and
K = [9] ∈ K (σ; τ) (3.65). The vertices and edges associated with clusters of σ incompatible
with Ch (K, τ) are thickened. The only deep cluster of σ incompatible with Ch (K, τ) is
A = {1, 2}, which is also Type 1. B and B−σ are examples of Type 2 clusters incompatible
with Ch (K, τ).

Corollary 3.4 For any σ 6= τ ∈ BTS and K ∈ K (σ, τ), if I ∈ I (σ, τ ;K), then Anc (I, σ)∩
Des (K,σ) ⊆ I (σ, τ ;K).

Definition 3.14 (Incompatibility Types) For any σ 6= τ ∈ BTS and K ∈ K (σ, τ), a cluster
I ∈ I (σ, τ ;K) is said to be Type 1 if I−σ ⊲⊳ Ch (K, τ), and otherwise it is said to be Type
2 (see Figure 3.5).

Lemma 3.6 Let σ 6= τ ∈ BTS and K ∈ K (σ, τ). Siblings I, I−σ ∈ I (σ, τ ;K) are both Type
2 if and only if they are both incompatible with each child D of K in τ . That is to say, for
any I ∈ Des (K,σ) and D ∈ Ch (K, τ),

I 6⊲⊳ Ch (K, τ) , I−σ 6⊲⊳ Ch (K, τ) ⇐⇒ I 6⊲⊳ D, I−σ 6⊲⊳ D . (3.68)

Proof The sufficiency for being Type 2 directly follows from Definition 3.1,

I 6⊲⊳ D, I−σ 6⊲⊳ D =⇒ I 6⊲⊳ Ch (K, τ) , I−σ 6⊲⊳ Ch (K, τ) . (3.69)

To see the necessity for being Type 2, recall from Lemma 3.5 that

I ⊲⊳ Ch (K, τ)⇐⇒ (I ⊆ D) ∨ (I ⊆ (K \D))⇐⇒ (I ⊆ D) ∨ (I ∩D = ∅) , (3.70)

I−σ ⊲⊳ Ch (K, τ)⇐⇒
(
I−σ ⊆ D

)
∨
(
I−σ ∩D = ∅

)
.

Further, using Lemma 3.5, observe that

D ⊆ I =⇒ I−σ ⊆ (K \D) =⇒ I−σ ⊲⊳ Ch (K, τ) ,
D ⊆ I−σ =⇒ I ⊲⊳ Ch (K, τ) .

(3.71)

As a result, using (3.70) and (3.71), one can verify the necessity as

I 6⊲⊳ Ch (K, τ) , I−σ 6⊲⊳ Ch (K, τ) =⇒ I 6⊲⊳ D, I−σ 6⊲⊳ D, (3.72)

which completes the proof. �
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3.3.3 NNI Control Law

To navigate from an arbitrary tree σ ∈ BTS towards any desired tree τ ∈ BTS in the NNI-
graph, we propose an NNI control policy uτ that returns an NNI move on σ at a grandchild
G ∈ G (σ) ∪ {∅}, see Figure 3.6, as follows:

1. If σ = τ , then just return the identity move, G = ∅.
2. Otherwise,

(a) Select a common cluster K ∈ K (σ, τ) (3.65).
(b) Find a deep cluster I ∈ D (σ, τ ;K) (3.67) incompatible with Ch (K, τ).
(c) Return a proper NNI navigation move on σ at grandchild G ∈ Ch (I, σ) selected

as follows:
i. If I−σ ⊲⊳ Ch (K, τ) (Type 1), then return G ∈ Ch (I, σ) with the property

that G−σ, I−σ ⊂ J for some J ∈ Ch (K, τ).
ii. Otherwise (Type 2), return an arbitrary NNI move at a child of I in σ.

This NNI control law preserves common clusters of trees. As a result, the navigation
problem of trees can be divided into subproblems of disjoint 9 trees which then may be
solved in parallel. This is known as the decomposability property [217].

Start
σ, τ ∈ BTS

Is

Is

Is
σ=τ?

K ∈ K(σ, τ)

I ∈ D(σ, τ ;K),
G ∈ Ch (I, σ)

I−σ ⊲⊳ Ch (K, τ)?

∃ J ∈ Ch (K, τ) s.t.
G−σ, I−σ⊂ J?

G← G−σ

σ ← NNI(σ,G)Finish

Yes

Yes

Yes

No

No

No NNI Control Law uτ

uCh(K,τ)

Figure 3.6: A flowchart of navigating from σ ∈ BTS towards τ ∈ BTS based on the NNI
control law uτ — a nondeterministic hybrid control policy consisting of local controllers{
uCh(J,τ)

}
J∈C(τ),|J |>1

.

In brief, our NNI control scheme resolves incompatibilities between clusters of σ and
τ level by level, depending on the selected common cluster K and one of its deep clusters

9Two trees σ, τ ∈ TS are said to be disjoint if they have no nontrivial clusters in common [169].
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I in Step 2. More precisely, for a fixed K ∈ K (σ, τ), the clusters of σ incompatible with
Ch (K, τ) are replaced by compatible ones using NNI moves associated with deep clusters
in D (σ, τ ;K) in a bottom to top fashion. If desired, one can choose the highest common
cluster, K = arg minJ∈K(σ,τ) ℓσ (J)+ ℓτ (J) – a top-down strategy, to obtain common splits
at higher levels first, yielding higher priority resolution of incompatibilities for clusters closer
to the root.

By construction, the NNI control law uτ is nondeterministic, and therefore generates
multiple choices of paths from any given source σ to the target τ . All such paths will
be referred to as NNI navigation paths. We leave the making of systematic selections of
K and I in Step 2 to a future discussion of specific implementations of the control policy
[43, 81, 49]. Here we only mean to focus on properties of this control scheme pertinent to its
application as a means for constructing NNI navigation paths and computing their length:
since any two NNI navigation paths joining a given pair of vertices turn out (Theorem 3.2)
to have equal lengths, the NNI control scheme gives rise to a new dissimilarity, dnav (3.118).

Proposition 3.9 An output of the NNI control law uτ to navigate in the NNI graph NS =
(BTS,ENS

) towards a desired hierarchy τ ∈ BTS can be obtained in O(|S|) time.

Proof Let σ ∈ BTS . Using the algorithm in [67], the common clusters and equality of σ
and τ can be determined in linear time, O(|S|).

If σ = τ , then uτ returns the identity move. Otherwise, K (σ, τ) 6= ∅ and, given the
common clusters of σ and τ , a common cluster K ∈ K (σ, τ) with crossing splits can be
found in O(|S|) time by a traversal of σ. Given K ∈ K (σ, τ), as discussed in the proof
of Proposition 3.4, the clusters of σ incompatible with Ch (K, τ), i.e., I (σ, τ ;K), can be
determined in O(|K|) time using Lemma 3.5 and by the post-order traversal of subtree of σ
rooted at K. Given I (σ, τ ;K), a deep cluster I ∈ D (σ, τ ;K) and a proper NNI move on σ
at G∈Ch (I, σ) can be found in O(|K|) time by a traversal of the subtree of σ rooted at K.

Thus, the overall cost of computing the NNI control law uτ is O(|S|), which completes
the proof. �

In order to find a path from any given vertex σ ∈ BTS to any desired hierarchy τ ∈ BTS

one simply obeys the controller uτ . The rest of this section is dedicated to discussing the
termination time complexity of this algorithm.

Stability Properties

For a desired nondegenerate hierarchy τ ∈ BTS, a discrete Lyapunov candidate function
[127] Vτ : BTS → R≥0 can be defined using the crossing matrix X (3.38) as

Vτ (σ) := pT
σ X (σ, τ)pτ , (3.73)

where pτ :=
(

1
ρℓτ (I)

)
I∈C(τ)

∈ R
(2|S|−1)×1
≥0 is the hierarchical attenuation vector associated

with τ , Here, ρ ≥ 1 is a hierarchical attenuation constant and ℓτ (3.9) returns the level
(depth) of a cluster of τ . Note that since each nondegenerate hierarchy corresponds to a
unique set of compatible clusters of maximum cardinality (Remark 3.1), it is clear that
Vτ (τ) = 0 and Vτ (σ) > 0 for all σ ∈ BTS \ {τ}. Also, observe that Vτ (σ) is a weighted
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version (a continuous one-parameter deformation) of dCM (σ, τ) (3.39), where equality holds
for ρ = 1.

Lemma 3.7 For any cluster K ∈ C (τ) of a binary hierarchy τ ∈ BTS, the hierarchical
attenuation constant ρ satisfies

∑

I∈Des(K,τ)

1

ρℓτ (I)
<

2

ρ− 2

1

ρℓτ (K)
, ∀ρ > 2 . (3.74)

Proof Proof by induction.

• (Base Case) If |K| = 1, then the result trivially holds since Des (K, τ) = ∅.

• (Induction) Else, suppose the lemma holds for any child cluster in {KL,KR} =
Ch (K, τ). Then, using the hierarchical relation between descendants of cluster K
and its children, we can factor the left hand side and verify the upper bound as

∑

I∈Des(K,τ)

1

ρℓτ (I)
=

∑

I∈Ch(K,τ)

1

ρℓτ (I)

︸ ︷︷ ︸
= 2

ρℓτ (K)+1

+
∑

I∈Des(KL,τ)

1

ρℓτ (I)

︸ ︷︷ ︸
< 2

ρ−2
1

ρ
ℓτ (KL)

+
∑

I∈Des(KR,τ)

1

ρℓτ (I)

︸ ︷︷ ︸
< 2

ρ−2
1

ρ
ℓτ (KR)

, (3.75)

<
1

ρℓτ (K)

(
2

ρ
+

4

ρ (ρ− 2)

)
=

2

ρ− 2

1

ρℓτ (K)
, (3.76)

where the cluster depths satisfy ℓτ (KL) = ℓτ (KR) = ℓτ (K) + 1. �

Lemma 3.8 For any desired τ ∈ BTS and ρ > 2, the change in the value of Lyapunov
function Vτ (3.73) after the NNI move on σ ∈ BTS at a grandchild G ∈ G (σ) joining σ to
γ ∈ BTS is bounded from above as

Vτ (γ)− Vτ (σ) <
1

ρℓσ(P )+ℓτ (Q)+2



14ρ− 24

(ρ− 2)2
+

∑

I∈Ch(P,γ)
J∈Ch(Q,τ)

1 (I 6⊲⊳ J) −
∑

I∈Ch(P,σ)
J∈Ch(Q,τ)

1 (I 6⊲⊳ J)


 , (3.77)

where P = Pr2 (G,σ) = Pr (G, γ) and Q ∈ C (τ) satisfying P ⊆ Q.10

Proof Note that the NNI move on σ at G ∈ G (σ) joining σ to γ changes the hierarchical
organization of common clusters descending the (grand) parent cluster P = Pr2 (G,σ) =
Pr (G, γ) of (grand) child G and keeps the remaining clusters unchanged such that ℓσ (I) =
ℓγ (I) for all I ∈ C (σ) \ Des (P, σ) = C (γ) \ Des (P, γ). Hence, the change in the value of
Lyapunov function Vτ after the NNI move from σ to γ can be written as

Vτ (γ)− Vτ (σ) =
∑

I∈Des(P,γ)
J∈C(τ)

1

ρℓγ(I)+ℓτ (J)
1 (I 6⊲⊳ J) −

∑

I∈Des(P,σ)
J∈C(τ)

1

ρℓσ(I)+ℓτ (J)
1 (I 6⊲⊳ J) . (3.78)

10Such a cluster Q ∈ C (τ ) always exists since P ⊆ S and S ∈ C (τ ).
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Let Q ∈ C (τ) with P ⊆ Q. Then every cluster J in C (τ) \Des (Q, τ) either contains or
is disjoint with any cluster I ∈ Des (P, σ) ∪Des (P, γ), and so I ⊲⊳ J . Therefore, (3.78) can
be further simplified as

Vτ (γ)−Vτ (σ) =
∑

I∈Des(P,γ)
J∈Des(Q,τ)

1

ρℓγ(I)+ℓτ (J)
1 (I 6⊲⊳ J) −

∑

I∈Des(P,σ)
J∈Des(Q,τ)

1

ρℓσ(I)+ℓτ (J)
1 (I 6⊲⊳ J) . (3.79)

Now let (A,B,C) be the NNI-triplet associated with the pair (σ, γ) (Lemma 3.1). Note
that {A ∪B} = C (σ) \ C (γ) and {B ∪ C} = C (γ) \ C (σ) and P = A ∪ B ∪ C. Using the
hierarchical relations between the NNI triplet (A,B,C) and P in trees σ and γ and Lemma
3.7, (3.79) can be factored out and bounded from above for ρ > 2 as

Vτ (γ)−Vτ (σ)=
∑

I∈Des(A,γ)
J∈Des(Q,τ)

1

ρℓγ(I)+ℓτ (J)
1(I 6⊲⊳ J)−

∑

I∈Des(A,σ)
J∈Des(Q,τ)

1

ρℓσ(I)+ℓτ (J)
1(I 6⊲⊳ J)

︸ ︷︷ ︸
=

∑

I∈Des(A,σ)
J∈Des(Q,τ)

ρ−1

ρℓσ(I)+ℓτ (J)
1(I 6⊲⊳J) , since

Des(A,γ) = Des(A,σ),
ℓγ(I) = ℓσ(I)−1 ∀I∈Des(A,σ)

+
∑

I∈Des(B,γ)
J∈Des(Q,τ)

1

ρℓγ(I)+ℓτ (J)
1(I 6⊲⊳ J)−

∑

I∈Des(B,σ)
J∈Des(Q,τ)

1

ρℓσ(I)+ℓτ (J)
1(I 6⊲⊳ J)

︸ ︷︷ ︸
= 0 , since

Des(B,γ) = Des(B,σ),
ℓγ(I) = ℓσ(I) ∀I∈Des(B,σ)

+
∑

I∈Des(C,γ)
J∈Des(Q,τ)

1

ρℓγ(I)+ℓτ (J)
1(I 6⊲⊳ J)−

∑

I∈Des(C,σ)
J∈Des(Q,τ)

1

ρℓσ(I)+ℓτ (J)
1(I 6⊲⊳ J)

︸ ︷︷ ︸
=

∑

I∈Des(C,σ)
J∈Des(Q,τ)

1/ρ−1

ρℓσ(I)+ℓτ (J)
1(I 6⊲⊳J) ≤ 0 , since

Des(C,γ) = Des(C,σ),
ℓγ(I) = ℓσ(I)+1 ∀I∈Des(C,σ),

ρ≥2

+
∑

I∈Ch(B∪C,γ)
J∈Des(Q,τ)

1

ρℓγ(I)+ℓτ (J)
1(I 6⊲⊳ J)−

∑

I∈Ch(A∪B,σ)
J∈Des(Q,τ)

1

ρℓσ(I)+ℓτ (J)
1(I 6⊲⊳ J)

︸ ︷︷ ︸
≤

∑

J∈Des(Q,τ)
1

ρℓσ(P )+ℓτ (J)+2
since

ℓγ(C) = ℓσ(P )+2,
ℓγ(B) = ℓσ(B)

+
∑

I∈Ch(P,γ)
J∈Des(Q,τ)

1

ρℓγ(I)+ℓτ (J)
1 (I 6⊲⊳ J)−

∑

I∈Ch(P,σ)
J∈Des(Q,τ)

1

ρℓσ(I)+ℓτ (J)
1(I 6⊲⊳ J) , (3.80)

Vτ (γ)−Vτ (σ) ≤
∑

I∈Des(A,σ)
J∈Des(Q,τ)

ρ− 1

ρℓσ(I)+ℓτ (J)
1(I 6⊲⊳ J)

︸ ︷︷ ︸
<

4(ρ−1)

(ρ−2)2
1

ρℓσ(P )+ℓτ (Q)+2 by Lemma 3.7

+
∑

J∈Des(Q,τ)

1

ρℓσ(P )+ℓτ (J)+2

︸ ︷︷ ︸
< 2

ρ−2
1

ρℓσ(P )+ℓτ (Q)+2
by Lemma 3.7

+
∑

I∈Ch(P,γ)
J∈Des(Q,τ)

1

ρℓγ(I)+ℓτ (J)
1(I 6⊲⊳ J)−

∑

I∈Ch(P,σ)
J∈Des(Q,τ)

1

ρℓσ(I)+ℓτ (J)
1(I 6⊲⊳ J) , (3.81)
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Vτ (γ)− Vτ (σ) <
6ρ− 8

(ρ− 2)2
1

ρℓσ(P )+ℓτ (Q)+2
+

∑

I∈Ch(P,γ)
J∈Des(Q,τ)

1

ρℓγ(I)+ℓτ (J)
1 (I 6⊲⊳ J)

−
∑

I∈Ch(P,σ)
J∈Des(Q,τ)

1

ρℓσ(I)+ℓτ (J)
1 (I 6⊲⊳ J) . (3.82)

Finally, using the hierarchical relation between τ -descendants of cluster Q and its chil-
dren {QL, QR} = Ch (Q, τ), we obtain the result for ρ > 2 as follows:

Vτ (γ)− Vτ (σ) <
6ρ− 8

(ρ− 2)
2

1

ρℓσ(P )+ℓτ (Q)+2

+
∑

I∈Ch(P,γ)
J∈Ch(Q,τ)

1

ρℓγ(I)+ℓτ (J)
1 (I 6⊲⊳ J)−

∑

I∈Ch(P,σ)
J∈Ch(Q,τ)

1

ρℓσ(I)+ℓτ (J)
1(I 6⊲⊳ J)

+
∑

I∈Ch(P,γ)
J∈Des(QL,τ)

1

ρℓγ(I)+ℓτ (J)
1(I 6⊲⊳ J)

︸ ︷︷ ︸
< 4

ρ−2
1

ρℓσ(P )+ℓτ (Q)+2 by Lemma 3.7

−
∑

I∈Ch(P,σ)
J∈Des(QL,τ)

1

ρℓσ(I)+ℓτ (J)
1(I 6⊲⊳ J)

+
∑

I∈Ch(P,γ)
J∈Des(QR,τ)

1

ρℓγ(I)+ℓτ (J)
1(I 6⊲⊳ J)

︸ ︷︷ ︸
< 4

ρ−2
1

ρℓσ(P)+ℓτ (Q)+2
by Lemma 3.7

−
∑

I∈Ch(P,σ)
J∈Des(QR,τ)

1

ρℓσ(I)+ℓτ (J)
1(I 6⊲⊳ J) , (3.83)

Vτ (γ)− Vτ (σ) <
1

ρℓσ(P )+ℓτ (Q)+2



14ρ− 24

(ρ− 2)
2 +

∑

I∈Ch(P,γ)
J∈Ch(Q,τ)

1(I 6⊲⊳ J)−
∑

I∈Ch(P,σ)
J∈Ch(Q,τ)

1(I 6⊲⊳ J)


 , (3.84)

where we have ℓτ (QL) = ℓτ (QR) = ℓτ (Q) + 1. �

Remark 3.5. Let σ, τ ∈ BTS be two distinct trees, and K ∈ K (σ, τ) (3.65) and I ∈
D (σ, τ ;K) (3.67) be the cluster selected by the NNI control law uτ . After a single NNI
move,

• If I is Type 1, uτ replaces I by a cluster compatible with Ch (K, τ) (see Figure 3.7(a)).

• If I is Type 2, uτ replaces I by a Type 1 cluster incompatible with Ch (K, τ) and
its sibling I−σ, a Type 2 cluster in D (σ, τ ;K), becomes Type 1 incompatible with
Ch (K, τ) in the next hierarchy (see Figure 3.7(b)).

Meanwhile, the incompatibility types of the rest of clusters in C (σ)\{I, I−σ} with Ch (K, τ)
are kept unchanged in the next hierarchy.
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τ
K

(a)

σ σ′

I

I−σG

(σ,G)

(b)

σ σ′ σ′′ σ′′′

I I−σ

G

(σ,G)

(c)

Figure 3.7: An illustration of deep clusters incompatible with Ch (K, τ): Type 1 (b) and
Type 2 (c) incompatibilities with Ch (K, τ) (a) of a common cluster K ∈ K (σ, τ), and the
associated NNI navigation moves until resolving incompatibilities with Ch (K, τ). Clusters
are colored according to their inclusion relation, and the thickened vertices show a portion
of incompatible clusters in I (σ, τ ;K).

Theorem 3.1 The NNI control law uτ defines an abstract closed-loop discrete dynamical
system (3.58) in the NNI graph NS = (BTS,ENS

). There exists ǫ > 0 such that for every
ρ ≥ 9 +

√
53 and for any σ ∈ BTS \ {τ}, one has

Vτ
(
(NNI ◦ uτ ) (σ)

)
− Vτ (σ) < −ǫ < 0 . (3.85)

Hence all paths generated by the control policy uτ terminate at the goal, τ .

Proof Let K ∈ K (σ, τ) (3.65) and I ∈ D (σ, τ ;K) (3.67) be the clusters selected by the
NNI control policy uτ while determining the NNI move on σ at G ∈ Ch (I, σ) towards
γ = (NNI ◦ uτ ) (σ), and let P = Pr (I, σ) = Pr (G, γ) ⊆ K.

It follows from Lemma 3.8 that for any ρ ≥ 9 +
√
53, the change of Lyapunov function

Vτ after the aforementioned NNI move is bounded from above as

Vτ (γ)− Vτ (σ) <
1

ρℓσ(P )+ℓτ (K)+2


1 +

∑

E∈Ch(P,γ)
F∈Ch(K,τ)

1(E 6⊲⊳ F )−
∑

E∈Ch(P,σ)
F∈Ch(K,τ)

1(E 6⊲⊳ F )


 . (3.86)

To complete the proof of the theorem, we shall show that
∑

E∈Ch(P,γ)
F∈Ch(K,τ)

1 (E 6⊲⊳ F ) −
∑

E∈Ch(P,σ)
F∈Ch(K,τ)

1 (E 6⊲⊳ F ) ≤ −1 . (3.87)

Depending on the incompatibility of I with Ch (K, τ), one has:
• If I ∈ D (σ, τ ;K) is Type 1 (Definition 3.14), then I 6⊲⊳ Ch (K, τ) and I−σ ⊲⊳ Ch (K, τ).
Recall that {I, I−σ} = Ch (P, σ). Hence,

∑

F∈Ch(K,τ)

∑

E∈Ch(P,σ)

1 (E 6⊲⊳ F )

︸ ︷︷ ︸
=1(I 6⊲⊳F ), since I−σ⊲⊳ Ch(K,τ)

=
∑

F∈Ch(K,τ)

1 (I 6⊲⊳ F )

︸ ︷︷ ︸
≥1, since I 6⊲⊳ Ch(K,τ)

≥ 1 . (3.88)
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Further, the NNI control rule uτ replaces I by J = Pr2 (G,σ) \G = P \G whose local
complement J−γ in γ is G, and so {J, J−γ} = Ch (P, γ). Recall from Remark 3.5 that
J and J−γ are both compatible with Ch (K, τ). Therefore,

∑

E∈Ch(P,γ)
F∈Ch(K,τ)

1 (E 6⊲⊳ F )︸ ︷︷ ︸
=0, since E ⊲⊳ Ch(K,τ)

= 0 . (3.89)

As a result, (3.87) always holds for any Type 1 cluster.
• Otherwise (I is Type 2), by Definition 3.14, siblings I, I−σ ∈ D (σ, τ ;K) are both
incompatible with Ch (K, τ). In fact, by Lemma 3.6, for all E ∈ {I, I−σ} = Ch (P, σ)
and F ∈ Ch (K, τ), we have E 6⊲⊳ F . Thus,

∑

E∈Ch(P,σ)
F∈Ch(K,τ)

1 (E 6⊲⊳ F )︸ ︷︷ ︸
=1, by Lemma 3.6

= 4 . (3.90)

On the other hand, any arbitrary NNI move G ∈ Ch (I, σ) replaces cluster I by J =
Pr2 (G,σ) \G incompatible with Ch (K, τ). Note that its sibbling J−γ in γ is G and
compatible with split Ch (K, τ). Hence, we have J 6⊲⊳ Ch (K, τ) and J−γ ⊲⊳ Ch (K, τ)
for children clusters {J, J−γ} = Ch (P, γ), which yields

∑

F∈Ch(K,τ)

∑

E∈Ch(P,γ)

1 (E 6⊲⊳ F )

︸ ︷︷ ︸
=1(J 6⊲⊳F ), since J−γ ⊲⊳ Ch(K,τ)

=
∑

F∈Ch(K,τ)

1 (J 6⊲⊳ F ) ≤ 2 . (3.91)

Therefore, for any Type 2 cluster, we always have

∑

E∈Ch(P,γ)
F∈Ch(K,τ)

1 (E 6⊲⊳ F ) −
∑

E∈Ch(P,σ)
F∈Ch(K,τ)

1 (E 6⊲⊳ F ) ≤ −2 . (3.92)

To sum up, the NNI control policy uτ always guarantees that (3.87) holds after each
evolution of the dynamical system (3.57) at every σ away from τ , which completes the
proof. �

Tree Metrics and the NNI Control Law

The NNI control law is compatible with dRF (3.17) and dCC (3.23) in the sense that:

Proposition 3.10 The Robinson-Foulds, dRF (3.17), and the cluster cardinality, dCC

(3.23), distances to any desired hierarchy τ ∈ BTS are nonincreasing at each evolution
of the closed loop discrete dynamical system (3.58) obeying the NNI control law uτ , i.e., for
any d ∈ {dRF , dCC} and σ ∈ BTS

d
(
NNI ◦ uτ (σ) , τ

)
− d (σ, τ) ≤ 0 . (3.93)

Proof The result for dRF is evident from that the NNI control law uτ preserves the common
clusters of the current and goal hierarchies.
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For dCC , the statement holds trivially whenever σ = τ . If σ 6= τ , then let K ∈ K (σ, τ)
with {KL,KR} = Ch (K, τ) and I ∈ D (σ, τ ;K) be the selected clusters by the NNI control
law uτ while determining the NNI move on σ at G ∈ Ch (I, σ) yielding γ = (NNI ◦ uτ ) (σ).
Note that this restructuring of σ only changes relative relations of G, G−σ and I−σ be-
low P = Pr2 (G,σ) ⊆ K such that {G,G−σ} = Ch (I, σ), {I, I−σ} = Ch (P, σ) and
{G−σ ∪ I−σ, G} = Ch (P, γ). Further, by Definition 3.14, G ⊆ KA and G−σ ⊆ KB for
some A 6= B ∈ {L,R}, and so (i∧j)τ = K for any i ∈ G and j ∈ G−σ. Accordingly, the
change in dCC with respect to τ after the transition from σ to γ can be written as 11

dCC (γ, τ) − dCC (σ, τ) =
1

2

∥∥U (γ)−U (τ)
∥∥
1
− 1

2

∥∥U (σ)−U (τ)
∥∥
1
, (3.94)

=
∑

i∈G
j∈G−σ

∣∣∣U (γ)ij −U (τ)ij

∣∣∣−
∣∣∣U (σ)ij −U (τ)ij

∣∣∣

+
∑

i∈G
j∈I−σ

∣∣∣U (γ)ij −U (τ)ij

∣∣∣−
∣∣∣U (σ)ij −U (τ)ij

∣∣∣

+
∑

i∈G−σ

j∈I−σ

∣∣∣U (γ)ij −U (τ)ij

∣∣∣−
∣∣∣U (σ)ij −U (τ)ij

∣∣∣ , (3.95)

=
∑

i∈G
j∈G−σ

∣∣h(P )− h(K)
∣∣ −
∣∣h(I)− h(K)

∣∣
︸ ︷︷ ︸

=−h(P )+h(I)=−|I−σ |

+
∑

i∈G
j∈I−σ

∣∣∣h(P )−U (τ)ij

∣∣∣−
∣∣∣h(P )−U (τ)ij

∣∣∣

+
∑

i∈G−σ

j∈I−σ

∣∣∣h(G−σ ∪ I−σ)−U (τ)ij

∣∣∣−
∣∣∣h(P )−U (τ)ij

∣∣∣
︸ ︷︷ ︸
∈[h(G−σ∪I−σ)−h(P ),h(P )−h(G−σ∪I−σ)]=[−|G|,|G|]

, (3.96)

≤ −
∣∣∣G
∣∣∣
∣∣G−σ

∣∣ ∣∣I−σ
∣∣+
∣∣∣G
∣∣∣
∣∣G−σ

∣∣ ∣∣I−σ
∣∣ = 0. (3.97)

Note that the equality in (3.93) can hold for both dRF and dCC as depicted in Figure 3.8. �

1111 2222 3333 4444

σ γ θ τ

dRF (γ, τ)=2

dRF (θ, τ)=1

dRF (σ, τ)=2 dCC(γ, τ) =3

dCC(θ, τ)=2

dCC(σ, τ) =3

(σ, {4}) (γ, {4}) (θ, {3})

Figure 3.8: An NNI navigation path joining σ to τ and associated NNI navigation moves.
The NNI move from σ to γ = (NNI ◦ uτ ) (σ) illustrates that dCC and dRF to the desired
hierarchy τ might stay the same after an NNI navigation transition.

11Here, one can easily verify that dCC (γ, τ )−dCC (σ, τ )< 0 if I is Type 2 incompatible with split Ch (K, τ ).
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3.3.4 Resolving Incompatibilities with the Root Split

For any bipartition {SL, SR} of the leaf set S, define BT{SL,SR} to be the subset of BTS

containing nondegenerate hierarchies with the root split of {SL, SR},

BT{SL,SR} :=
{
τ ∈ BTS

∣∣∣Ch (S, τ) = {SL, SR}
}
. (3.98)

Now, instead of the original problem of navigating from any σ ∈ BTS towards a single
desired hierarchy τ ∈ BTS in the NNI-graph, consider a related and simpler problem of
navigating hierarchies towards the set BT{SL,SR} (3.98) containing binary trees with the
root split of {SL, SR}. Observe that the NNI control law in Section 3.3.3 can be used to
solve this new problem by selecting any desired hierarchy τ ∈ BT{SL,SR} and fixing the
common cluster K ∈ K (σ, τ), in Step 2a of the NNI control policy, as K = S. We denote
this version of the NNI control policy by u{SL,SR}.

In general, for any bipartition {ML,MR} of subset M ⊆ S, let u{ML,MR} be the local
controller, whose domain is

BTS (M) :=
{
σ ∈ BTS

∣∣M ∈ C (σ)
}
, (3.99)

that coincides with the NNI control law uτ for any τ ∈ BTS (M) if for every σ ∈ BTS (M)
the common cluster K ∈ K (σ, τ), selected by the NNI control policy uτ in Step 2a, is fixed
as K = M . One can use u{ML,MR} to replace children of M in σ ∈ BTS (M) with the
desired split {ML,MR} by resolving cluster incompatibilities of σ with {ML,MR}. Here,
observe that the closed-loop dynamical system (3.57) obeying the control law u{ML,MR}
guarantees the positive invariance of BTS (M) and terminates at

BT{ML,MR} :=
{
σ ∈ BTS (M)

∣∣∣Ch (M,σ) = {ML,MR}
}
. (3.100)

In fact, from a hybrid systems perspective, for any desired hierarchy τ ∈ BTS, the NNI
control law uτ consists of local controllers, uCh(K,τ)’s, associated with nonsingleton clusters,
K ∈ C (τ). For any hierarchy σ ∈ BTS \{τ}, by selecting K ∈ K (σ, τ), the NNI control law

uτ arbitrarily excites one, uCh(K,τ), of the local controllers,
{
uCh(J,τ)

}
J∈C(τ)
|J |>1

, whose domain

contains σ, illustrated in Figure 3.6.
For the sake of clarity, we restrict the discussion of resolution of incompatibilities to the

special case when the desired split is the root split {SL, SR}, but the results generalize to
any aforementioned local controller as well.

A critical observation regarding the location of endpoints of NNI navigation paths con-
sistent with the control law u{SL,SR} is:

Lemma 3.9 Let σ ∈ BTS and {SL, SR} be a bipartition of S. The closed loop dynami-
cal system (3.58) obeying the NNI control rule u{SL,SR} terminates at the nondegenerate
hierarchy γ ∈ BT{SL,SR} with cluster set

C (γ) = C

(
σ
∣∣
SL

)
∪ {S} ∪ C

(
σ
∣∣
SR

)
, (3.101)

where σ
∣∣
I
(3.14) denotes the subtree of σ rooted at cluster I ∈ S.
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Proof If Ch (S, σ) = {SL, SR}, then the results directly holds with γ = σ. Otherwise, let
{σ0 = σ, σ1, σ2, . . . , σk} be an NNI navigation path, consistent with the NNI control law
u{SL,SR}, starting from σ and ending at σk ∈ BT{SL,SR} such that σi 6∈ BT{SL,SR} for all
0 ≤ i ≤ k − 1 . We will show that for all 0 ≤ i ≤ k − 1 and J ∈ {SL, SR}

C
(
σi
∣∣
J

)
= C

(
σi+1

∣∣
J

)
. (3.102)

Hence, since σk ∈ BT{SL,SR}, by Remark 3.2 and (3.102), we have

C (σk) = C

(
σk
∣∣
SL

)
∪ {S} ∪ C

(
σk
∣∣
SR

)
= C

(
σ
∣∣
SL

)
∪ {S} ∪ C

(
σ
∣∣
SR

)
. (3.103)

Moreover, termination directly follows from Theorem 3.1, and so the result follows.
Now, to prove (3.102), for any 0 ≤ i ≤ k − 1, let Ii ∈ C (σi) and Gi ∈ Ch (Ii, σi) be,

respectively, the deep cluster incompatible with {SL, SR} and the grandchildren, selected
by u{SL,SR}, determining the NNI move from σi to σi+1 = NNI (σi, Gi). Note that, by
Definition 3.4, Ii ∈ C (σi) is replaced by Gi

−σi ∪ Ii−σi ∈ σi+1, and so {Ii} = C (σi) \C (σi+1)
and

{
Gi

−σi ∪ Ii−σi
}
= C (σi+1)\C (σi). Without loss of generality, let Gi ⊂ SL, and observe

that Ii ∩ SL = Gi and Ii ∩ SR = Gi
−σi are common clusters of σi and σi+1. Depending on

the type of incompatibility of Ii in σi with {SL, SR}:
• If Ii is Type 1 incompatible with {SL, SR} (Definition 3.14), then observe from Figure
3.7(a) that

(
Gi

−σi ∪ Ii−σi
)
∩ SL = ∅ and

(
Gi

−σi ∪ Ii−σi
)
∩ SR = Gi

−σi ∪ Ii−σi =
Pr (Ii, σi) ∩ SR from which (3.102) follows.
• Otherwise (Ii is Type 2 incompatible with {SL, SR}), observe from Figure 3.7(b) that(

Gi
−σi ∪ Ii−σi

)
∩ SL = Ii

−σi ∩ SL and
(
Gi

−σi ∪ Ii−σi
)
∩ SR = Pr (Ii, σi) ∩ SR. Since

Ii
−σi and Pr (Ii, σi) are common clusters of σi and σi+1, (3.102) holds.

This completes the proof. �

3.4 The NNI Navigation Dissimilarity

In Section 3.3, to navigate from any initial hierarchy in BTS towards a selected desired
hierarchy τ ∈ BTS in the NNI graph NS = (BTS ,ENS

), we design an abstract closed-loop
discrete dynamical system obeying a nondeterministic control rule, named the NNI control
law uτ . In this section, we will introduce a new dissimilarity between a pair of trees counting
the steps along a trajectory of this nondeterministic dynamical system joining these trees.

Definition 3.15 An NNI navigation path from σ ∈ BTS to τ ∈ BTS is a path in the NNI
graph NS that is consistent with the (nondeterministic) closed-loop dynamical system (3.58)
subject to the NNI control law uτ of Section 3.3.3.

The NNI navigation dissimilarity dnav (σ, τ) between the trees σ, τ is the length of an
NNI navigation path joining them.

Here we prove (Theorem 3.2) that all NNI navigation paths joining a pair of trees have the
same length, which guarantees that dnav is a well defined dissimilarity on BTS . Furthermore,
we will provide an explicit expression for the NNI navigation dissimilarity, dnav , and show
that it can be computed in O(|S|2) time (Proposition 3.13).
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We now introduce a version of the crossing matrix X (3.38) encoding weighted special
cluster crossings between trees, which will be shown to have a significant connection with
dnav later in Theorem 3.2.

Definition 3.16 The special crossing matrix S (σ, τ) of a pair of hierarchies σ, τ ∈ TS is
defined to be

S (σ, τ)I,J := (η ◦ κ)
(
Ch (I, σ)

∣∣
J
,Ch (J, τ)

∣∣
I

)
, (3.104)

where I ∈ C (σ), J ∈ C (τ), and (.)
∣∣
J
denotes restriction to J (see Definition 3.6), and

κ (A,B) :=
∑

A∈A
1 (A 6⊲⊳ B) , η (x) :=

1

2

(
x2 + x

)
. (3.105)

Remark 3.6. While κ (A,B) returns the number of elements of A ⊆ P (S) incompatible
with B ⊆ P (S),12 the quantity η (x) heuristically encodes the required number of NNI
moves to resolve a certain number of cluster crossings.

Note that X (σ, τ)I,J = (η ◦ κ) ({I} , {J}) for all I ∈ C (σ) and J ∈ C (τ) (3.38). Recall
that the crossing matrix X (σ, τ)(3.38) encodes the pairwise cluster incompatibilities of
trees. Similarly, S (σ, τ)I,J measures how consistent the grouping of common elements of
I ∈ C (σ) and J ∈ C (τ) in σ and τ is. Additionally, note that for any bipartitions A and B

of S, κ (A,B) = κ (B,A) (by Lemma 3.10 below), and so for binary hierarchies σ, τ ∈ BTS

we have S (σ, τ) = S (τ, σ)T. 13

Lemma 3.10 Let {SL, SR} and {S∗
L, S

∗
R} be two bipartitions of a fixed finite set S. The

sum of compatible elements of one bipartition with the other bipartition is symmetric,

∑

I∈{SL,SR}
1
(
I ⊲⊳ {S∗

L, S
∗
R}
)
=

∑

I∗∈{S∗
L,S

∗
R}

1
(
I∗ ⊲⊳ {SL, SR}

)
, (3.106)

and is only two when the bipartitions are the same.

Proof If the bipartitions are the same, both sides of (3.106) simply sum to two.
Otherwise, since {SL, SR} and {S∗

L, S
∗
R} are distinct binary partitions of S, at most

an element of {SL, SR} is a proper subset of an element of {S∗
L, S

∗
R} and vice versa. One

way to observe this is a proof by contradiction. Let each element of {SL, SR} is a proper
subset of an element of {S∗

L, S
∗
R}, then SL ( S∗

L ∪ S∗
R and SR ( S∗

L ∪ S∗
R. Hence, we have

SL ∪ SR ( S∗
L ∪ S∗

R = S, which is a contradiction.
Now, if an element of one bipartition is a proper subset of an element of the other

bipartition, i.e., without loss of generality, SL ( S∗
L (and so S∗

R ( SR, SR 6⊆ S∗
L and

S∗
L 6⊆ SR), then using Lemma 3.5 one can verify that both sides of (3.106) sum to one.

Otherwise, the summations on both sides of (3.106) are equal to zero, because every pair
of elements of the bipartitions are not subset of each other and so are incompatible. Thus,
the result follows. �

12Here, for any A ⊆ P (S) we set κ (A,∅) = κ (∅,A) = 0.
13AT denotes the transpose of a matrix A.
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Corollary 3.5 Let σ, τ ∈ BTS. Then for any I ∈ C (σ) and J ∈ C (τ), the following
symmetry holds,

κ
(
Ch (I, σ)

∣∣
J
,Ch (J, τ)

∣∣
I

)
= κ

(
Ch (J, τ)

∣∣
I
,Ch (I, σ)

∣∣
J

)
, (3.107)

where κ is defined as in (3.105).

Proof Consider a special case where Ch (I, σ)
∣∣
J
= {I ∩ J,∅} or Ch (J, τ)

∣∣
I
= {J ∩ I,∅}.

Then, since the empty cluster and I ∩ J are always compatible with any subset of I ∩ J ,
both sides of (3.107) are zero.

Otherwise, observe that Ch (I, σ)
∣∣
J
and Ch (J, τ)

∣∣
I
are bipartitions of I ∩ J , and so

(3.107) takes the specific form in Lemma 3.10, which completes the proof. �

Lemma 3.11 Let {SL, SR} be a bipartition of set S, and I and J be sets with the property
that I ⊆ S and I ⊆ J . Then the following equivalence holds

I ⊲⊳ {SL, SR} = I ⊲⊳ {SL, SR}
∣∣
J
, (3.108)

where {SL, SR}
∣∣
J
is the restriction of {SL, SR} to J (Definition 3.6).

Proof If I = S, then S ⊆ J and {SL, SR}
∣∣
J
= {SL, SR}, and so the result follows.

Otherwise (I ( S), observe that for any sets X ⊆ Z and Y , one always has X ⊆ Y ⇐⇒
X ⊆ Y ∩ Z. Accordingly, one can verify the result using Lemma 3.5 as follows:

I ⊲⊳ {SL, SR} ⇐⇒ (I ⊆ SL)︸ ︷︷ ︸
⇔I⊆SL∩J

∨ (I ⊆ SR)︸ ︷︷ ︸
⇔I⊆SR∩J

⇐⇒ I ⊲⊳ {SL ∩ J, SR ∩ J} , (3.109)

⇐⇒ I ⊲⊳
(
{SL ∩ J, SR ∩ J} \ {∅}

)
︸ ︷︷ ︸

={SL,SR}
∣∣
J

⇐⇒ I ⊲⊳ {SL, SR}
∣∣
J
. (3.110)

�

An NNI navigation path joining σ, τ ∈ BTS might not be unique since the NNI control
law in Section 3.3.3 is nondeterministic. However:

Lemma 3.12 For any bipartition {SL, SR} of S, the lengths of all NNI navigation paths
from σ ∈ BTS to BT{SL,SR} (3.98) are the same, and the NNI navigation dissimilarity
dnav

(
σ,BT{SL,SR}

)
is given by

dnav
(
σ,BT{SL,SR}

)
=
∑

I∈C(σ)
(η ◦ κ)

(
Ch (I, σ) , {SL, SR}

)
, (3.111)

where κ and η are, respectively, defined as in (3.105).

Proof Proof by induction.
(Base Case) If σ ∈ BT{SL,SR}, then the result directly follows.
(Induction) Otherwise, let {σ0 = σ, σ1, σ2, . . . , σk} be an NNI navigation path, consistent

with the NNI control law u{SL,SR}, starting from σ and ending at σk ∈ BT{SL,SR} such that
for all 0 ≤ i < k σi 6∈ BT{SL,SR}.
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Observe that (σ1, σ2, . . . , σk) is also an NNI navigation path, consistent with the NNI
control law u{SL,SR}, starting from σ1 and ending in BT{SL,SR}.

For any γ ∈ BTS let α (γ) and β (γ), respectively, denote the numbers of Type 1 and
Type 2 clusters of γ incompatible with {SL, SR} (Definition 3.14).

Now suppose (3.111) holds for the path (σ1, σ2, . . . , σk), and so one can rewrite
dnav

(
σ1,BT{SL,SR}

)
as

dnav
(
σ1,BT{SL,SR}

)
= α (σ1) +

3

2
β (σ1) . (3.112)

As a result,

dnav
(
σ,BT{SL,SR}

)
= α (σ1) +

3

2
β (σ1) + 1 . (3.113)

Let I ∈ C (σ) be the selected cluster by u{SL,SR} so that the NNI move on σ at a child
G ∈ Ch (I, σ) yields σ1.

• If I is Type 1 incompatible with {SL, SR}, then using Remark 3.5, one can verify that

α (σ) = α (σ1) + 1 , and β (σ) = β (σ1) . (3.114)

Hence, (3.113) yields

dnav
(
σ,BT{SL,SR}

)
= α (σ) +

3

2
β (σ) . (3.115)

• Otherwise (I is Type 2 incompatible with {SL, SR}), using Remark 3.5, one can
similarly observe that

α (σ) = α (σ1)− 2 , and β (σ) = β (σ1) + 2 , (3.116)

and so (3.113) becomes

dnav
(
σ,BT{SL,SR}

)
= α (σ) +

3

2
β (σ) . (3.117)

Therefore, the result holds. �

The observation made in Lemma 3.12 is a good example of how the dual representation
of dnav — both in terms of paths in the NNI graph, and in terms of a closed-form formula
quantifying inter-cluster incompatibility — offers a practical compromise between the
heretofore separate traditional approaches to constructing dissimilarities on BTS , those of
edge comparison and of estimation of edit distances. A particular application of this dual
nature is that dnav coincides with the standard 1-norm of the special crossing matrix and
possesses a nice decomposability property (as defined in [217]):
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Theorem 3.2 All NNI navigation paths joining σ, τ ∈ BTS are of equal length, given by:14

dnav (σ, τ) =
∥∥S (σ, τ)

∥∥
1
, (3.118a)

= dnav
(
σ,BTCh(S,τ)

)
+ dnav

(
σ
∣∣
SL
, τ
∣∣
SL

)
+ dnav

(
σ
∣∣
SR
, τ
∣∣
SR

)
, (3.118b)

where S (σ, τ) (3.104) is the special crossing matrix of σ and τ , and {SL, SR} = Ch (S, τ),
and dnav

(
σ,BTCh(S,τ)

)
(3.111) is the NNI navigation dissimilarity of σ to BTCh(S,τ) (3.98).

Proof If Ch (S, σ) = Ch (S, τ), then the result directly follows from the decomposability
property of the NNI control law in Section 3.3.3.

Otherwise, let Γ =
{
σ0 = σ, σ1, σ2, . . . , σM = τ

}
be an NNI navigation path, consis-

tent with the NNI control uτ , from σ to τ , where M ∈ N is the length of Γ. Let
G =

(
G0, G1, . . . , GM−1

)
and K =

(
K0,K1, . . . ,KM−1

)
be the ordered set of grandchild and

common clusters with crossing splits selected by the NNI control law uτ while constructing
Γ. That is to say, for all 0 ≤ m ≤M−1, we have Gm = uτ (σ

m) and σm+1 = NNI (σm, Gm).
Now consider a reordering of G and K into Gf =

(
Gf(0), Gf(1), . . . , Gf(M−1)

)
and Kf =(

Kf(0),Kf(1), . . . ,Kf(M−1)
)
, respectively, using an a bijective function f : [0,M − 1] →

[0,M − 1] with the property that for any i, j ∈ [0,M − 1]
• the order relation of any pair of common clusters is consistent with inclusion: that is,
if i ≤ j, then Kf(i) ⊇ Kf(j) or Kf(i) ∩Kf(j) = ∅.
• the order relation of any pair of grandchildren in G associated with the same common
cluster K ∈ K is preserved in Gf , i.e., if K

i = Kj , then f(i) ≤ f(j)⇐⇒ i ≤ j.
For example, consider the following order relation ≤f on [0,M − 1]: for any i, j ∈ [1,M − 1],

i ≤f j ⇐⇒





i ≤ j , if Ki = Kj ,
min(Ki) ≤ min(Kj) , if Ki ∩Kj = ∅ ,

Ki ⊇ Kj , otherwise .
(3.119)

The total ordering of {0,M − 1} according to ≤f defines f , i.e. for any i, j ∈ [0,M − 1]
f(i) ≤f f(j).

Observe that, by decomposability property of the NNI control law, the NNI moves
associated with Gf define an NNI navigation path Γf joining σ to τ . Note that Γ and Γf

might be different, but they have the same length.
Hence, all NNI navigation paths from σ to τ can be rearranged in an appropriate

way so that they first solve the incompatibilities of σ with the root split Ch (S, τ) of τ and
continue with joining subtrees of the root. To put it another way, using the decomposability
property of the NNI control law, the length of any NNI navigation path Γ joining σ to τ
can be recursively obtained as

M = dnav
(
σ,BTCh(S,τ)

)
+ dnav

(
σ
∣∣
SL
, τ
∣∣
SL

)
+ dnav

(
σ
∣∣
SR
, τ
∣∣
SR

)
, (3.120)

where {SL, SR} = Ch (S, τ).

14Note that dnav (σ, τ ) is always zero for |J | = 2, which is the base case of the recursion in (3.118). For
any I ⊆ S with |I | = 1 we must set dnav

(

σ
∣

∣

I
, τ
∣

∣

I

)

= 0 in order for dnav to be a dissimilarity.
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Moreover, using Lemma 3.9, one can rewrite (3.120) as

M =
∑

J∈C(τ)
I∈C

(

σ
∣∣
J

)

(η ◦ κ)
(
Ch
(
I, σ
∣∣
J

)
,Ch (J, τ)

)
, (3.121)

where κ and η are, respectively, defined as in (3.105).
Let J ∈ C (τ) with |J | ≥ 2. As discussed in the proof of Lemma 3.2, an interior

cluster K of σ
∣∣
J

is associated with a unique cluster I of σ such that K = I ∩ J and

Ch (I, σ)
∣∣
J
6= {I ∩ J,∅}. Hence, observe that C

(
σ
∣∣
J

)
can be written as

C
(
σ
∣∣
J

)
=
{
I ∩ J

∣∣∣ I ∈ C (σ) , I ∩ J 6= ∅
}
, (3.122)

=
{
I ∩ J

∣∣∣ I ∈ C (σ) ,Ch (I, σ)
∣∣
J
6= {I ∩ J,∅}

}
∪
⋃

i∈J
{i} . (3.123)

Accordingly, let CJ (σ) denote the set of all clusters of σ defining the interior clusters of σ
∣∣
J
,

CJ (σ) =
{
I ∈ C (σ)

∣∣∣Ch (I, σ)
∣∣
J
6= {I ∩ J,∅}

}
. (3.124)

Now, we manipulate (3.121) into the desired form of the result:

M =
∑

J∈C(τ)
I∈C

(

σ
∣∣
J

)

η

( ∑

A∈Ch
(

I,σ
∣∣
J

)

1
(
A 6⊲⊳ Ch (J, τ)

)
︸ ︷︷ ︸

=A 6⊲⊳Ch(J,τ)
∣∣
I

by Lemma 3.11

)
=
∑

J∈C(τ)
I∈C

(

σ
∣∣
J

)

η

( ∑

A∈Ch
(

I,σ
∣∣
J

)

1
(
A 6⊲⊳ Ch (J, τ)

∣∣
I

)

︸ ︷︷ ︸
=0 if |I|=1,

otherwise there is exactly one Ĩ ∈ CJ (σ) s.t.

Ch
(

I,σ
∣∣
J

)

=Ch(Ĩ,σ)
∣∣
J

)
, (3.125)

=
∑

J∈C(τ)
I∈CJ(σ)

η

( ∑

A∈Ch(I,σ)
∣∣
J

1
(
A 6⊲⊳ Ch (J, τ)

∣∣
I

)

︸ ︷︷ ︸
=0 for all I∈C(σ)\CJ (σ)

since Ch(I,σ)
∣∣
J
={I∩J,∅}

)
=
∑

J∈C(τ)
I∈C(σ)

η




∑

A∈Ch(I,σ)
∣∣
J

1
(
A 6⊲⊳ Ch (J, τ)

∣∣
I

)



︸ ︷︷ ︸
=κ

(

Ch(I,σ)
∣∣
J
,Ch(J,τ)

∣∣
I

)

, (3.126)

=
∑

J∈C(τ)
I∈C(σ)

(η ◦ κ)
(
Ch (I, σ)

∣∣
J
,Ch (J, τ)

∣∣
I

)
=
∥∥S (σ, τ)

∥∥
1
. (3.127)

Thus, in addition to (3.120), the length of any NNI navigation path from σ to τ is
equivalently given by ‖S (σ, τ)‖1. Due to symmetry, the length of any NNI navigation path
from τ to σ is equal to ‖S (τ, σ)‖1. Recall from Corollary 3.5 that ‖S (σ, τ)‖1 = ‖S (τ, σ)‖1
for any binary tree σ, τ ∈ BTS . Therefore, the length of any NNI navigation path joining σ
and τ is equal to ‖S (σ, τ)‖1 = ‖S (τ, σ)‖1, and the result follows. �
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3.4.1 Basic Properties

We now continue with a list of significant properties of dnav and its relation with other tree
measures:

Proposition 3.11 The NNI navigation dissimilarity dnav is positive definite and symmet-
ric, but it does not define a metric.

Proof That dnav is positive definite follows directly from its definition. Lemma 3.10 proves
it is symmetric and Corollary 3.2 and Figure 3.3 show where the triangle inequality fails. �

Theorem 3.2 yields the following (very crude) bounds on the performance of the corre-
sponding NNI navigation algorithm:

Proposition 3.12 The length of a navigation path through NS does not exceed O(|S|2).

Proof Let n = |S|. For all σ, τ ∈ BTS, we have |C (τ)| = O(n), implying S (σ, τ) has
O(n2) entries. The value of dnav (σ, τ) never exceeds three times the number of entries in
S (σ, τ). �

The decomposability of the NNI navigation dissimilarity may be used for its efficient
computation:

Lemma 3.13 For any bipartition {SL, SR} of S and σ ∈ BTS, the NNI navigation dissim-
ilarity dnav

(
σ,BT{SL,SR}

)
(3.111) can be computed in linear time, O(|S|).

Proof As discussed in the proof of Proposition 3.4, all cluster compatibilities of σ with
{SL, SR} can be determined in O(|S|) time using Lemma 3.5 and by the post order traversal
of σ. Therefore, the NNI navigation dissimilarity dnav

(
σ,BT{SL,SR}

)
in (3.111) can be

computed in O(|S|) by a complete traversal of σ. �

Proposition 3.13 The NNI navigation dissimilarity dnav on BTS is computable in O(|S|2)
time.

Proof Let σ, τ ∈ BTS and {SL, SR} = Ch (S, τ). The recursion in (3.118) requires
dnav

(
σ,BTCh(S,τ)

)
, which can be obtained in O(|S|) time (Lemma 3.13), and the restric-

tions of σ to SL and SR, which can be computed using the post-order traversal of σ in linear
time, O(|S|). Hence, dnav requires a complete (depth-first) traversal of τ each of whose iter-
ation costs linear time with the number of leaves. Thus, the recursive computation of dnav
can be preformed in O(|S|2) time. Also note that S (σ, τ) (3.104) can be obtained with the
same cost, O(|S|2), similar to our computation of X (σ, τ) (3.38) in the proof of Proposition
3.4. �

Lemma 3.14 Let {SL, SR} be a bipartition of S. An NNI navigation path, consistent with
the control law u{SL,SR}, starting from σ ∈ BTS ending in BT{SL,SR} can be computed in
O(|S|) time.
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Proof Let τ ∈ BT{SL,SR}. All cluster of σ incompatible with {SL, SR}, i.e. I (σ, τ ;S),
can be determined in O(|S|) time as discussed in the proof of Lemma 3.13. Hence, if
σ 6∈ BT{SL,SR}, then a deep cluster I ∈ D (σ, τ ;S) incompatible with {SL, SR} can be found
in O(|S|) by the post-order traversal of σ.

Let G ∈ Ch (I, σ) be the grandchild chosen by u{SL,SR} yielding the next hierarchy
γ = NNI (σ,G). Recall from Remark 3.5 that if I is Type 1, then I is replaced by a
compatible cluster in γ, and so I (γ, τ ;S) = I (σ, τ ;S) \ {I}. Hence, all the descendant of
Pr (I, σ) in γ are compatible with {SL, SR}. If I is Type 2, then I is replaced by G−σ ∪ I−σ

incompatible with {SL, SR}, and so I (γ, τ ;S) = (I (σ, τ ;S) ∪ {G−σ ∪ I−σ})\{I}. Note that
I−σ and G−σ ∪ I−σ are the only descendent of Pr (I, σ) in γ incompatible with {SL, SR}.
Since both I−σ and G−σ ∪ I−σ in σ are Type 1, it requires two more NNI moves to resolve
all incompatibilities descending Pr (I, σ) in γ with {SL, SR}.

Thus, instead of searching for a deep cluster in γ starting from the root S, using Corollary
3.4, one can continue the post-order search for a deep cluster in γ at Pr (I, σ).

In fact, observe that I (σ, τ ;S) ∪ {S} defines a tree-like data structure (see Figure 3.5).
Therefore, one can conclude that the overall construction of a NNI navigation path only
requires a complete post-order traversal of σ for I (σ, τ ;S) in O(|S|) time. �

Proposition 3.14 An NNI navigation path joining σ ∈ BTS to τ ∈ BTS consistent with
the NNI control uτ can be computed in O(|S|2) time.

Proof Similar to the recursive expression of dnav (3.118b), an NNI navigation path join-
ing σ to τ can be found using the decomposability property within a divide-and-conquer
approach as follows: first obtain an NNI navigation path from σ to BT{SL,SR} in O(|S|)
(Lemma 3.14) and then find NNI navigation paths between subtrees. Hence, this requires
the pre-order traversal of τ each of whose step costs O(|S|). Thus, an NNI navigation path
joining σ to τ can be recursively computed in O(|S|2) time, which completes the proof. �

Lemma 3.15 Let {SL, SR} be a bipartition of S and σ ∈ BTS. Then we have the tight
bound:

dnav
(
σ,BT{SL,SR}

)
≤ |S|+min (|SL| , |SR|)− 3 . (3.128)

Proof For any σ ∈ BTS and I ∈ C (σ) observe that

(i) if I is a singleton or |I| = 2, we have (η ◦ κ)
(
Ch (I, σ) , {SL, SR}

)
= 0,

(ii) otherwise for larger clusters (η ◦ κ)
(
Ch (I, σ) , {SL, SR}

)
equals 3 or 1 only if, respec-

tively, both clusters or only one cluster of Ch (I, σ) are incompatible with {SL, SR}.
Here, κ and η are, respectively, defined as in (3.105). Since there are at least |S|+1 clusters
of the first kind, there are at most |S| − 2 clusters of the second kind. Thus, applying
Lemma 3.12 we have

dnav
(
σ,BT{SL,SR}

)
≤ (|S| − 2) + |X| , (3.129)

where X is the set of all I ∈ C (σ) both of whose children are incompatible with {SL, SR},

X :=
{
I∈C (σ)

∣∣∣∀D ∈ Ch (I, σ) ,D 6⊲⊳ {SL, SR}
}
. (3.130)
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For each I ∈ X, both I ∩ SL and I ∩ SR are nonsingleton clusters of σ
∣∣
SL

and σ
∣∣
SR

,

respectively (each child of I intersects each of SL, SR). Suppose now that I, J ∈ X are
distinct. There are two cases, without loss of generality:
• If I ∩ J = ∅, then I ∩ SL 6= J ∩ SL (and similarly for SR);
• If I ( J , then J has a child I ′ disjoint from I, and this child must intersect SL. Hence,
I ∩ SL ( J ∩ SL.

We conclude that the map I 7→ I ∩ SL (respectively I ∩ SR) of X to C

(
σ
∣∣
SL

)
(re-

spectively to C

(
σ
∣∣
SR

)
) is injective, and has no singleton clusters in its image. Thus,

|X| ≤ min (|SL| − 1, |SR| − 1), proving the desired inequality.

The example σ, τ ∈ BT[n] in Figure 3.4 with {SL, SR} = Ch ([n] , τ) = {{1} , {2, 3, . . . , n}}
shows that the upper bound in (3.128) is tight (where dnav

(
σ,BT{SL,SR}

)
= n− 2). �

Proposition 3.15 diam (BTS , dnav) =
1
2 (|S| − 1) (|S| − 2) .

Proof We proceed by induction over |S|, with the base case |S| = 2 satisfying |BTS| = 1.
The formula then holds trivially, as dnav = 0.

For the induction step, assume |S| ≥ 3 and that σ, τ ∈ BTS satisfy dnav
(
σ
∣∣
K
, τ
∣∣
K

)
≤

1
2 (|K| − 1) (|K| − 2) for every K ∈ Ch (S, τ) = {SL, SR}. Then, using the recursive formula
of dnav in (3.118) in Theorem 3.2, we obtain:

dnav (σ, τ) = dnav
(
σ,BTCh(S,τ)

)
︸ ︷︷ ︸

by Lemma 3.15
≤|S|+min (|SL|,|SR|)−3

+ dnav

(
σ
∣∣
SL
, τ
∣∣
SL

)

︸ ︷︷ ︸
by induction

≤ 1
2
(|SL|−1) (|SL|−2)

+ dnav

(
σ
∣∣
SR
, τ
∣∣
SR

)

︸ ︷︷ ︸
by induction

≤ 1
2
(|SR|−1) (|SR|−2)

, (3.131)

≤ 1

2

(
|SL|2 + |SR|2

)
− 3

2
(|SL|+ |SR|)︸ ︷︷ ︸

|S|

+ |S|+min (|SL| , |SR|)− 1, (3.132)

=
1

2

(
|S|2 − 2 |SL| |SR|︸ ︷︷ ︸
=min (|SL|,|SR|) (|S|−min (|SL|,|SR|))

)
− 1

2
|S|+min (|SL| , |SR|)− 1, (3.133)

=
1

2
(|S|−1) (|S|−2) +

(
1−min (|SL| , |SR|)

)
(|S| −min (|SL| , |SR|)− 2)︸ ︷︷ ︸

≤0,∀|S|≥3

, (3.134)

≤ 1

2
(|S| − 1) (|S| − 2) . (3.135)

Here, recall that dnav
(
σ
∣∣
I
, τ
∣∣
I

)
= 0 for any I ⊂ S with |I| = 1. Finally, the trees in Figure

3.4 realize this bound on the diameter. �

3.4.2 Relations with Other Tree Measures

Although dnav is not a true metric, like dCM (Proposition 3.7), it can be tightly bounded
from below and above in terms of dRF as follows:

Proposition 3.16 Over BTS one has dRF ≤ dnav ≤ 1
2d

2
RF + 1

2dRF and both bounds are
tight.
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Proof Since dnav is realized by paths in the NNI graph we have dNNI ≤ dnav . The lower
bound then follows from dRF ≤ dNNI (Corollary 3.1). The bound is tight because for any
σ, τ ∈ BTS ,

dRF (σ, τ) = 1⇐⇒ dNNI (σ, τ) = 1⇐⇒ dnav (σ, τ) = 1 . (3.136)

Let us deduce the upper bound now. In the case when σ and τ have no nontrivial
clusters in common, dRF (σ, τ) = |S| − 2 and the result follows from Proposition 3.15. We
argue by induction over |S| to prove the upper bound in the generic case, keeping in mind
that for |S| = 2 the result holds trivially, because

∣∣BT[2]

∣∣ = 1. For the induction step
(|S| ≥ 3), let I ∈ C (σ)∩C (τ) be a nontrivial common cluster and prune σ and τ at cluster
I yielding subtrees σI = σ

∣∣
I
and τI = τ

∣∣
I
. Accordingly, let σ¬I = σ

∣∣
¬I and τ¬I = τ

∣∣
¬I ,

respectively, denote the remaining parts of σ and τ after pruning subtrees rooted at cluster
I, where ¬I = IC ∪ {i} and i ∈ I. Here, both σ¬I and τ¬I contain leaf i as a representative
of each associated pruned subtree. Note that |I| ≥ 2 and |¬I| ≥ 2.

Since the NNI control law preserves the common edges and possess the decomposability
property (see Section 3.3.3), the length of the NNI navigation path can be written as

dnav (σ, τ) = dnav (σI , τI) + dnav (σ¬I , τ¬I) . (3.137)

Similarly, by definition of dRF , we have

dRF (σ, τ) = dRF (σI , τI) + dRF (σ¬I , τ¬I) . (3.138)

Let α = dRF (σI , τI) and β = dRF (σ¬I , τ¬I), and so dRF (σ, τ) = α+ β. We may apply
the induction hypothesis in BTI and BT¬I to conclude that

dnav (σI , τI) ≤
1

2
α (α+ 1) and dnav (σ¬I , τ¬I) ≤

1

2
β (β + 1) . (3.139)

It then follows from (3.137) that

dnav (σ, τ) ≤
1

2
α (α+ 1) +

1

2
β (β + 1) ≤ 1

2
(α+ β) (α+ β + 1) , (3.140)

=
1

2
dRF (σ, τ) (dRF (σ, τ) + 1) . (3.141)

Finally, Proposition 3.15 ensures that this bound is tight. �

Proposition 3.17 Over BTS one has dnav (σ, τ) ≤ 3
2dCM (σ, τ) .

Proof Consider the closed form expression of dnav (3.118a) in terms of the special crossing
matrix S (σ, τ) (3.104),

dnav (σ, τ) =
∥∥S (σ, τ)

∥∥
1
=
∑

I∈C(σ)
J∈C(τ)

(η ◦ κ)
(
Ch (I, σ)

∣∣
J
,Ch (J, τ)

∣∣
I

)
. (3.142)

Note that κ (A,B) ∈ {0, 1, 2} for any A,B ⊆ P (S) with the property that |A| = 2, and
η (x) = 1

2x
2 + 1

2x ≤ 3
2x for all x ∈ [0, 2]. Hence, dnav can be bounded from above as
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dnav (σ, τ) ≤
3

2

∑

I∈C(σ)
J∈C(τ)

κ
(
Ch (I, σ)

∣∣
J
,Ch (J, τ)

∣∣
J

)
, (3.143)

=
3

2

∑

I∈C(σ)
J∈C(τ)

∑

A∈Ch(I,σ)
∣∣
J

1
(
A 6⊲⊳ Ch (J, τ)

∣∣
I

)
︸ ︷︷ ︸
≤

∑

B∈Ch(J,τ)

∣∣
I

1(A 6⊲⊳B)

, (3.144)

≤ 3

2

∑

I∈C(σ)
J∈C(τ)

1

( (
I∩Pr (J, τ)

)
6⊲⊳
(
J ∩ Pr (I, σ)

))
. (3.145)

Now, let A,B,C be sets satisfying B ⊆ C. Then A ⊲⊳ B implies (A ∩ C) ⊲⊳ B (the reverse
may not be true), producing 1 (A ⊲⊳ B) ≤ 1 ((A ∩ C) ⊲⊳ B). Using the contra-positive, the
upper bound (3.145) on dnav may be rewritten as

dnav (σ, τ) ≤
3

2

∑

I∈C(σ)
J∈C(τ)

1 (I 6⊲⊳ J) = 3

2

∥∥X (σ, τ)
∥∥
1
=

3

2
dCM (σ, τ) , (3.146)

which completes the proof. �

The overall ordering of tree dissimilarities in Corollary 3.1, Proposition 3.8 and Propo-
sition 3.17 can be combined as:

Theorem 3.3 For nondegenerate hierarchies,

2

3
dRF ≤

2

3
dNNI ≤

2

3
dnav ≤ dCM ≤ dCC . (3.147)

Finally, we remark that the NNI navigation dissimilarity dnav can be generalized to a
pair of trees, σ and τ , in TS as

dnav (σ, τ) =
1

2

( ∥∥S (σ, τ)
∥∥
1
+
∥∥S (τ, σ)

∥∥
1

)
, (3.148)

which is nonnegative and symmetric. For nondegenerate trees σ, τ ∈ BTS , one has S (σ, τ) =
S (τ, σ)T (which is evident from Lemma 3.10), so that dnav in (3.148) simplifies back to
(3.118a). Although the closed form expression of dnav in Theorem 3.2 enables the gener-
alization of dnav to degenerate trees as above, the notion of NNI moves (Definition 3.4) is
generally not valid in TS .

As for nondegenerate trees in Proposition 3.17, the generalized dnav in TS can be
bounded above by dCM as follows:

Proposition 3.18 Over TS one has dnav ≤
(
1
8 |S|

2 + 1
4 |S|

)
dCM .

Proof Note that the number of nontrivial children of a cluster in a tree can be at most
1
2 |S|. Hence one can verify the result following similar steps as in the proof of Proposition
3.17. �
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3.5 Discussion and Statistical Analysis

3.5.1 Consensus Models and Median Trees

Let us recall a definition: a median tree of a set of sample trees is a tree whose sum of
distances to the sample trees is minimum. Although the notion of a median tree is simple
and well-defined, finding a median tree of a set of trees is generally a hard combinatorial
problem. On the other hand, a consensus model of a set of sample trees is a computationally
efficient tool to identify common structures of sample trees. In particular, a remark relating
dCM and dnav to commonly used consensus models of a set of trees and their median tree(s)
is:

Proposition 3.19 Both the strict and loose consensus trees, T∗ and T ∗, of any set of trees
T in TS (Definition 3.3) are median trees with respect to both the crossing, dCM (3.39), and
NNI navigation, dnav (3.118), dissimilarities. In fact, for any d ∈ {dCM , dnav} one has:

∑

τ∈T
d (τ, T∗) =

∑

τ∈T
d (τ, T ∗) = 0 . (3.149)

Moreover, the loose consensus tree is the maximal (finest) median tree sharing each of its
clusters with at least one sample tree.

Proof By Definition 3.3, both strict and loose consensus trees only contain clusters that
are compatible with the clusters of every tree in T , and the loose consensus tree is the finest
median tree containing only clusters from the sample trees. Thus, the result follows for
both dCM and dnav due their relation in Proposition 3.18. �

3.5.2 Sample Distribution of Dissimilarities

To compare their discriminative power, we use a standard statistical analysis of empirical
distributions of different tree measures. The shape of the distribution of a tree measure
tells how informative it is; for example, a highly concentrated distribution means that the
associated tree measure behaves like the discrete metric 15 as in the case of the Robinson-
Foulds distance — see Figure 3.9. Finding a closed form expression for the distribution
of a tree measure is a hard problem, and so extensive numerical simulations are generally
applied to obtain its sample distribution. In particular, using the uniform and Yule model
[197] for generating random trees, we compute the empirical distributions of dRF , dMS ,
dCC , dCM , and dnav as illustrated in Figure 3.9.16 Moreover, in Table 3.1 we present two
commonly used statistical measures, skewness and kurtosis, for describing the shapes of
the probability distributions of all these tree measures. Here, recall that the skewness of a
probability distribution measures its tendency on one side of the mean, and the concept of
kurtosis measures the peakedness of the distribution [181]. In addition to their computa-
tional advantage over dMS , as illustrated in both Figure 3.9 and Table 3.1, like dMS , our
tree measures, dCC , dCM and dnav , are significantly more discriminative, with wider ranges
of values and symmetry, than dRF .

15The discrete metric d : X×X→R≥0 on a set X is defined as for any x 6=y∈X, d(x, x)=0 and d(x, y)=1.
16In our numerical simulations for any chosen tree measure we observe the same pattern of sample distri-

bution for different numbers of leaves, and so here we only include results for BT[25].
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Figure 3.9: Empirical distribution of tree dissimilarities in BT[25]: (from left to right)
the Robinson-Foulds distance dRF (3.17), the matching split distance dMS (Def.3.8), the
cluster-cardinality distance dCC (3.23), the crossing dissimilarity dCM (3.39), and the NNI
navigation dissimilarity dnav (3.118). 100000 sample hierarchies are generated using (a) the
uniform and (b)Yule model [197]. The resolutions of histograms of tree measures, from left
to right, are 1, 4, 32, 4, 2 unit(s), respectively.

Table 3.1: Skewness and Kurtosis Values for the Distributions of Tree Measures in BT[25]

Skewness Kurtosis

Uniform Yule Uniform Yule

dRF (3.17) −2.6162 −2.0740 9.8609 7.3998

dMS (Def. 3.8) 0.1293 −0.0117 3.0060 3.1136

dCC (3.23) −0.9294 −1.2507 3.8601 5.2724

dCM (3.39) 0.1390 −0.0405 3.1275 3.2103

dnav (3.118) 0.8809 −0.1195 4.8707 3.0746

3.6 Summary

In this chapter, we present three new tree measures for efficient discriminative comparison
of trees. First, using the well known relation between trees and ultrametrics, the cluster-
cardinality metric dCC is constructed as the pullback of matrix norms along an embedding
of trees into the space of matrices. Second, we present the crossing dissimilarity dCM that
counts the pairwise incompatibilities of trees. Third, the NNI navigation dissimilarity dnav
while presented in closed form is constructed as the length of a navigation path in the space
of trees.
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All of our dissimilarities can be computed in O(n2) with the number of leaves n, and they
generalize to the degenerate trees as well. Moreover, we provide a closed form expression
for each proposed dissimilarity and present an ordering relation between these tree dissim-
ilarities and related tree metrics in the literature (Theorem 3.3). Our numerical studies,
summarized in Figure 3.9, suggest that the proposed tree measures are significantly more
informative and discriminative than the Robinson-Foulds distance dRF , while maintaining a
computational advantage other distances such as the matching-split distance dMS [36, 143].

Finally, an NNI navigation path joining a pair of nondegenerate hierarchies is compati-
ble with dRF , dCM and dCC in the sense of Theorem 3.1 and Proposition 3.10, and can be
efficiently computed with the same cost of dnav in O(n2) time (Proposition 3.14). Conse-
quently, NNI navigation paths are likely of some significance for consensus/average models
or statistical analysis of trees.
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Chapter 4

Sensor-Based Reactive Navigation

in Unknown Convex Sphere Worlds

Agile navigation in dense human crowds [212, 106], or in natural forests, such as now
negotiated by rapid flying [124, 170] and legged [224, 119] robots, strongly motivates the
development of sensor-based reactive motion planners. By the term reactive [55, 140], we
mean that motion is generated by a vector field arising from some closed-loop feedback
policy issuing online force or velocity commands in real time as a function of instantaneous
robot state. By the term sensor-based, we mean that information about the location of
the environmental clutter to be avoided is limited to structure perceived within some local
neighborhood of the robot’s instantaneous position — its sensor footprint.

In this chapter, we propose a new reactive motion planner taking the form of a feedback
law for a first-order (velocity-controlled), perfectly, relatively (to a fixed goal location)
sensed and actuated disk-shaped robot, that can be computed using only information about
the robot’s instantaneous position and structure within its local sensor footprint. We assume
the a priori unknown environment is a static topological sphere world [132], whose obstacles
are convex and possess smooth boundaries whose curvature is “reasonably” high relative to
their mutual separation. Under these assumptions, the proposed closed-loop vector field is
guaranteed to bring all but a measure zero set of initial conditions to the desired goal. To
the best of our knowledge, this is the first time a sensor-based reactive motion planner has
been shown to be provably correct with respect to a general class of environments.

Motivation and Related Work Prior literature on reactive feedback motion planning
has embraced the simple, computationally efficient artificial potential field 1 approach to
real-time obstacle avoidance [128] that incurs topologically necessary critical points [129],
which, in practice, with no further remediation often include (topologically unnecessary)
spurious local minima. Even in topologically simple settings such as the sphere worlds
addressed here, constructions that eliminate these spurious attractors — e.g., navigation
functions [183], or other methods 2 [58] — have largely come at the price of complete prior
information.

1We adopt standard usage to denote by this term the use of the negative gradient field of a scalar valued
function as the force or velocity control law for a fully actuated, kinematic (first order dynamics) robot.

2Although harmonic functions are utilized to design potential functions without local minima [58], such
intrinsically numerical constructions forfeit the reactive nature of feedback motion planners under discussion
here.
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Figure 4.1: Exact navigation of a disk-shaped robot using separating hyperplanes of the
robot body (red at the goal) and convex obstacles (black solid shapes). Separating hyper-
planes between the robot and obstacles define an obstacle free convex neighborhood (the
yellow region when the robot at the goal) of the robot, and the continuous feedback motion
towards the metric projection of a given desired goal (red) onto this convex set asymptoti-
cally steers almost all robot configurations (green) to the goal without collisions along the
way. The grey regions represent the augmented workspace boundary and obstacles, and the
arrows show the direction of the resulting vector field.

Extensions to the navigation function framework partially overcoming the necessity
of global prior knowledge of (and consequent parameter tuning for) a topologically and
metrically simple environment have appeared in the last decade. Adjustable navigation
functions are proposed to gradually update the tuning parameter upon the discovery of new
obstacles [83], and locally computable navigation functions are introduced by restricting the
effect of each obstacle in its immediate vicinity such that a robot is required to deal with
at most one obstacle at a time [145]. What is more, sequential composition [45] has been
used to cover metrically complicated environments with convex cell-based local potential
decompositions [56] (and extended to nonholonomically constrained finite size robots [57]),
but still necessitating prior global knowledge of the environment.

Contributions We herein abandon the smooth potential field approach to reactive plan-
ning, achieving an algorithm that is “doubly reactive” in the sense that not merely the
integrated robot trajectory, but also its generating vector field can be constructed on the
fly in real time using only local knowledge of the environment. Our piecewise smooth vector
field combines some of the ideas of sensor-based exploration [53] with those of hybrid reac-
tive control [56]. We use separating hyperplanes of convex bodies [37] to identify an obstacle
free convex neighborhood of a robot configuration, and build our safe robot navigation field
by control action towards the metric projection of the designated point destination onto
this convex set.

Our construction requires no parameter tuning and requires only local knowledge of
the environment in the sense that the robot needs only locate those proximal obstacles
determining its collision free convex neighborhood. When the obstacles are sufficiently
separated (Assumption 4.1 stipulates that the robot must be able to pass in between them)
and sufficiently strongly convex at their “antipode” (Assumption 4.2 stipulates that they
curve away from the enclosing sphere centered at the destination which just touches their
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boundary at the most distant point), the proposed vector field generates a smooth flow
with a unique attractor at the specified goal location along with (the topologically necessary
number of) saddles — at least one associated with each obstacle. Since all of its critical
points are nondegenerate, our vector field is guaranteed to steer almost all collision free
robot configurations to the goal, while avoiding collisions along the way, as illustrated in
Figure 4.1.

It proves most convenient to develop the theoretical properties of this construction
under the assumption that the robot can identify and locate those nearby obstacles whose
associated separating hyperplanes define the robot’s obstacle free convex neighborhood
(a capability termed Voronoi-adjacent obstacle sensing in Section 4.2.2), no matter how
physically distant they may be. Thus, to accommodate more physically realistic sensors,
we adapt the initial construction (and the proof) to the case of two different limited range
sensing modalities, while extending the same formal guarantees as in the erstwhile (local but
unbounded range) idealized sensor model. Similarly, in the interest of greater practicability,
we further extend the construction (and the proof) to the case of the commonly encountered
kinematic differential drive vehicle model (retaining the convergence and collision avoidance
guarantees, at the necessary cost of a discontinuous feedback law).

This chapter is based on the papers [13, 9]. In the conference paper [13], we propose a
different construction based on power diagrams [20] navigating among spherical obstacles
using knowledge of Voronoi-adjacent12 obstacles to construct the robot’s local workspace
[13, Eqn. (9)]. The submitted conference paper [9] introduces a new construction, presented
in detail in this chapter, for that set in (4.9) based on separating hyperplanes, permitting an
extension of the navigable obstacles to the broader class of convex bodies specified by As-
sumption 4.2, while providing the same guarantee of almost global asymptotic convergence
(Theorem 4.3) to a given goal location. From the view of applications, the new appeal to
separating hyperplanes permits the central advance of a purely reactive construction from
limited range sensors (4.30), e.g., in the planar case from immediate line-of-sight appearance
(4.40), with the same global guarantees.

4.1 Problem Formulation

Consider a disk-shaped robot, of radius r ∈ R>0 centered at x ∈ W, operating in a closed
compact convex environment W in the n-dimensional Euclidean space Rn, where n ≥ 2,
punctured with m ∈ N open convex sets O := {O1, O2, . . . , Om} with twice differentiable
boundaries, representing obstacles. 3 Hence, the free space F of the robot is given by

F :=
{
x ∈W

∣∣∣ B (x, r) ⊆W \
⋃m

i=1
Oi

}
. (4.1)

where B (x, r) :=
{
q ∈ Rn

∣∣ ‖q− x‖ < r
}
is the open ball centered at x with radius r, and

B (x, r) denotes its closure, and ‖.‖ denotes the standard Euclidean norm.

3Here, N is the set of all natural numbers; R and R>0 (R≥0) denote the set of real and positive (nonneg-
ative) real numbers, respectively.
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To maintain the local convexity of obstacle boundaries in the free space F, we assume
that our disk-shaped robot can freely fit in between (and thus freely circumnavigate) any
of the obstacles throughout the workspace W: 4

Assumption 4.1 Obstacles are separated from each other by clearance of at least

d (Oi, Oj) > 2r , ∀i 6= j , (4.2)

and from the boundary ∂W of the workspace W as

d (Oi, ∂W) > 2r , ∀i . (4.3)

where d (A,B) := inf
{
‖a− b‖

∣∣ a ∈ A,b ∈ B
}
.

Before formally stating our navigation problem, it is useful to recall a known topological
limitation of reactive planners: if a continuous vector field planner on a generalized sphere
world has a unique attractor, then it must have at least as many saddles as obstacles [132].
In consequence, the robot navigation problem that we seek to solve is stated as:

Reactive Navigation Problem Assuming the first order (completely actuated single in-
tegrator) robot dynamics,

ẋ = u (x) , (4.4)

find a Lipschitz continuous vector field controller, u : F → Rn, that leaves the robot’s free
space F positively invariant and asymptotically steers almost all robot configurations in F

to any given goal location x∗ ∈ F.

4.2 Encoding Collisions via Separating Hyperplanes

In this section, we briefly recall a separating hyperplane theorem of disjoint convex sets,
and then adapt it to identify a collision free neighborhood of a disk-shaped robot.

4.2.1 Separating Hyperplane Theorem

A fundamental theorem of convex sets states that any two disjoint convex sets can be
separated by a hyperplane such that they lie on opposite sides of this hyperplane:

Theorem 4.1 (Separating Hyperplane Theorem [219, 37]) For any two nonintersecting
convex sets A,B ∈ Rn (i.e., A ∩ B = ∅), there exists a ∈ Rn and b ∈ R such that aTx ≥ b
for all x ∈ A and aTx ≤ b for all x ∈ B.

For example, a usual choice of such a hyperplane is [37]:

Definition 4.1 The maximum margin separating hyperplane of any two disjoint convex
sets A,B ⊂ Rn, with d (A,B) > 0, is defined to be 5

H (A,B) :=
{
x ∈ Rn

∣∣∣ ‖x− a‖ = ‖x− b‖ , ‖a− b‖ = d (A,B) , a ∈ A,b ∈ B
}
, (4.5)

where d (x,H (A,B)) ≥ d(A,B)
2 for all x ∈ A ∪B.

4Assumption 4.1 is equivalent to the “isolated” obstacles assumption of [183].

83



It is useful to remark that although there can be more than one pair of points a ∈ A and
b ∈ B achieving ‖a− b‖ = d (A,B), they all define the same maximum margin separating
hyperplane (Lemma C.1).

Another useful tool for finding a separating hyperplane between a point and a convex
set is metric projection:

Theorem 4.2 ([219]) Let A ⊂ Rn be a closed convex set and x ∈ Rn be a point. Then there
exists a unique point a∗ ∈ A such that

a∗ = ΠA (x) := arg min
a∈A

‖a− x‖ , (4.6)

and one has (x−ΠA (x))T (ΠA (x)− a) ≥ 0 for all a ∈ A.
The map ΠA (x) is called the metric projection of x onto the closed convex set A.

Note that the separating hyperplane
{
y ∈ Rn

∣∣(y−ΠA (x)
)T

(ΠA (x)− x) = 0
}
between point

x ∈ Rn \A and convex set A is referred to as the support hyperplane of A at ΠA (x), which
is tangent to the surface of A at ΠA (x) [37].

It is also straightforward to observe that:

Lemma 4.1 The maximum margin separating hyperplane of a convex set A ⊂ Rn and the
ball B (x, r) of radius r ∈ R>0 centered at x ∈ Rn, satisfying d (x, A) ≥ r, is given by

H (A,B (x, r)) =
{
y ∈ Rn

∣∣∣
∥∥∥y− (ΠB(x,r) ◦ ΠA) (x)

∥∥∥ =
∥∥y −ΠA (x)

∥∥
}
, (4.7)

where (ΠB(x,r) ◦ΠA) (x) = x− r x−ΠA(x)

‖x−ΠA(x)‖ .

Proof By definition (4.6), the metric projection ΠA (x) of the ball’s centroid x onto the
convex set A is the unique closest point of A to x. Hence, due to the symmetry of the ball,
the closest point of B (x, r) to A lies on the line segment joining x and ΠA (x), and is given

by (Π
B(x,r)

◦ ΠA) (x) = x− r x−ΠA(x)

‖x−ΠA(x)‖ , and so the closest point of A to B (x, r) is ΠA (x).

Thus, the result follows. �

A common application of separating hyperplanes of a set of convex bodies is to discover
their organizational structure. For instance, to model its topological structure, we define
the generalized Voronoi diagrams V = {V1, V2, . . . , Vm} of a convex environment W in Rn

populated with disjoint convex obstacles O = {O1, O2, . . . , Om} (i.e., d (Oi, Oj) > 0 ∀i 6= j),
based on maximum margin separating hyperplanes, to be 6 7

Vi :=
{
q∈W

∣∣∣ ‖q−pi‖ ≤ ‖q−pi‖ , ‖pi−pj‖=d (Oi, Oj) ,pi∈Oi,pj ∈Oj ∀j 6= i
}
, (4.8)

which yields a convex cell decomposition of a subset of W such that, by construction, each
obstacle is contained in its Voronoi cell, i.e., Oi ⊂ Vi, see Figure 4.2. Note that for point

5Note that one can equivalently represent the maximum margin separating hyperplane of any two distinct

points a 6= b ∈ Rn as
{

x ∈ Rn
∣

∣

∣
‖x− a‖ = ‖x− b‖

}

=
{

x ∈ Rn
∣

∣

∣
(a− b)T

(

x− a+b
2

)

= 0
}

.
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obstacles, say Oi = {pi} for some pi ∈ Rn, the generalized Voronoi diagram of W in (4.8)
simplifies back to the standard Voronoi diagram of W, generated by points {p1, . . . ,pm},
i.e., Vi =

{
q ∈W

∣∣ ‖q− pi‖ ≤ ‖q− pi‖ , ∀j 6= i
}
[167].

4.2.2 The Safe Neighborhood of a Disk-Shaped Robot

Throughout the sequel, we consider a disk-shaped robot, centered at x ∈ W with radius
r ∈ R>0, moving in a closed compact convex environment W ⊆ Rn populated with open
convex obstacles, O = {O1, O2, . . . , Om}, satisfying Assumption 4.1. Since the workspace,
obstacles, and the robot radius are fixed, we suppress all mention of the associated terms
wherever convenient, in order to simplify the notation.

Using the robot body and obstacles as generators of a generalized Voronoi diagram of
W, we define the robot’s local workspace, LW (x), illustrated in Figure 4.2(left), as, 8

LW (x) :=

{
q ∈W

∣∣∣∣∣

∥∥∥∥∥q− x + r
x−ΠOi

(x)
∥

∥

∥
x−ΠOi

(x)
∥

∥

∥

∥∥∥∥∥ ≤
∥∥∥q−ΠOi

(x)
∥∥∥ , ∀i

}
. (4.9)

Note that we here take the advantage of having a disk-shaped robot and construct the
maximum margin separating hyperplane between the robot and each obstacle using the
robot’s centroid (Lemma 4.1), which will become more significant in the sequel when we
extend this construction to a fixed radius sensory footprint and a limited range line-of-sight
sensor.

Figure 4.2: Local workspace LW (yellow) and local free space LF (green) of a disk-shaped
robot (blue) for different sensing modalities: (left) Voronoi-adjacent 12 obstacle sensing,
(middle) a fixed radius sensory footprint (red), (right) a limited range line-of-sight sensor
(red). The boundary of each generalized Voronoi cell is defined by the maximum margin
separating hyperplanes of the robot body (blue) and obstacles (black).

6Generalized Voronoi diagrams and cell decomposition methods are traditionally encountered in the de-
sign of roadmap methods [140, 165, 53]. A major distinction between our construction and these roadmap
algorithms is that the latter typically seek a global, one-dimensional graphical representation of a robot’s en-
vironment (independent of any specific configuration), whereas our approach uses the local open interior cells
of the robot-centric Voronoi diagram to determine a locally safe neighborhood of a given free configuration.

7It seems worth noting that our use of generalized Voronoi diagrams is motivated by another application
of Voronoi diagrams in robotics for coverage control of distributed mobile sensor networks [60, 137, 178, 12].

8Here, to solve the indeterminacy, we set x
‖x‖

= 0 whenever x = 0.
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A critical property of the local workspace LW is:

Proposition 4.1 A robot placement x ∈ W \⋃m
i=1Oi is collision free, i.e., x ∈ F, if and

only if the robot body is contained in its local workspace LW (x), i.e., 9

x ∈ F ⇐⇒ B (x, r) ⊆ LW (x) . (4.10)

Proof To prove the result, it is convenient to rewrite (4.9), in terms of the intersection
of the half-spaces defined by separating hyperplanes of the robot and the obstacles, as
LW (x) = W ∩⋂

i
HSi, where

HSi :=

{
q ∈ Rn

∣∣∣∣
∥∥∥∥q− x + r

x−ΠOi
(x)

‖x−Π
Oi

(x)‖

∥∥∥∥ ≤
∥∥∥q−ΠOi

(x)
∥∥∥
}
. (4.11)

Note that for any x ∈ F, HSi is the half space defined by the maximum margin separating
hyperplane between the robot body B (x, r) and obstacle Oi (Lemma 4.1), and contains the
robot. Moreover, since Oi is open, we have Oi∩HSi = ∅ for any x ∈ F. On the other hand,
for any colliding configuration x ∈ W \ (F ∪⋃m

i=1Oi), there is no separating hyperplane

between the robot body and some obstacles, and so B (x, r) 6⊆ HSi and Oi ∩HSi 6= ∅ for
some i ∈ {1, . . . ,m}.

Hence, using (4.1), one can verify the result as follows: for any x ∈W \⋃m
i=1Oi,

x ∈ F ⇐⇒ B (x, r) ⊆W , and B (x, r) ∩Oi = ∅ ∀i , (4.12)

⇐⇒ B (x, r) ⊆W , and B (x, r) ⊆ HSi ∀i , (4.13)

⇐⇒ B (x, r) ⊆ LW (x) , (4.14)

which completes the proof. �

Accordingly, we define the robot’s local free space, LF (x), by eroding LW (x), removing
the volume swept along its boundary, ∂LW (x), by the robot body radius, illustrated on
the left in Figure 4.2, as 10 [103]

LF (x) := LW (x) \
(
∂LW (x)⊕B (0, r)

)
=
{
q ∈ LW (x)

∣∣∣B (q, r) ⊆ LW (x)
}
. (4.15)

Note that, for any x ∈ F, LF (x) is a nonempty closed convex set, because x ∈ LF (x) and
the erosion of a closed convex set by an open ball is a closed convex set. 11

9Note that F ( W \ ⋃m

i=1 Oi for a disk-shaped robot of radius r > 0; and one can generalize the same
result in (4.10) for any x ∈ W if the robot’s local workspace LW (x) is defined to be

cl

({

q ∈ W

∣

∣

∣

∣

∣

∥

∥

∥

∥

q− x + r
x−Π

Oi
(x)

∥

∥

∥
x−Π

Oi
(x)

∥

∥

∥

∥

∥

∥

∥

<
∥

∥q− ΠOi
(x)
∥

∥ , ∀i
})

,

which is empty whenever x ∈ Oi for some i = 1, . . . ,m; otherwise, is equal to (4.9). Here, cl (A) denotes the
closure of a set A.

10Here, 0 is a vector of all zeros with the appropriate size, and A⊕B denotes the Minkowski sum of sets
A and B defined as A⊕B = {a+ b | a ∈ A, b ∈ B}.

11The erosion of a closed half-space by an open ball is a closed half-space. Hence, since the erosion
operation is distributed over set intersection [103], and a closed convex set can be defined as (possibly
infinite) intersection of closed half-spaces [37], and an arbitrary intersection of closed sets is closed [161], the
erosion of a closed convex set by an open ball is a closed convex set.
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An immediate consequence of Proposition 4.1 is:

Corollary 4.1 Any robot placement in the local free space LF (x) of a collision free robot
location x ∈ F is also collision free, i.e.,

LF (x) ⊆ F , ∀ x ∈ F . (4.16)

Finally, it is useful to emphasize that to construct its local workspace, the robot re-
quires only local knowledge of the environment in the sense that the robot only needs to
locate proximal obstacles — those whose Voronoi cells are adjacent 12 to the robot’s (local
workspace). This can be achieved by assuming an adjustable radius sensory footprint and
gradually increasing its sensing range until the set of obstacles in the sensing range sat-
isfies a certain geometric criterion guaranteeing that the detected obstacles exactly define
the robot’s local workspace [60]. We will refer to this sensing model as Voronoi-adjacent
obstacle sensing.

4.3 Robot Navigation via Separating Hyperplanes

In this section, first assuming Voronoi-adjacent obstacle sensing, we introduce a new prov-
ably correct vector field controller for safe robot navigation in a convex sphere world, and
list its important qualitative properties. Then we present its extensions for two more real-
istic sensor models (illustrated, respectively, in the middle and the right panels of Figure
4.2): a fixed radius sensory footprint and a limited range line-of-sight sensor. We further
adapt our construction to the widely used nonholonomically constrained differential drive
vehicle.

4.3.1 Feedback Robot Motion Planner

Assuming the fully-actuated single-integrator robot dynamics in (4.4), for a choice of a
desired goal location x∗ ∈ F, we propose a robot navigation strategy, called the “move-to-
projected-goal” law, u : F → Rn that steers the robot at location x ∈ F towards the global
goal x∗ through the “projected goal”, ΠLF(x) (x

∗), as follows: 13

u (x) = −k
(
x−ΠLF(x) (x

∗)
)
, (4.17)

where k ∈ R>0 is a fixed control gain and ΠA (4.6) is the metric projection onto a closed
convex set A ⊂ Rn, and LF (x) is continuously updated using the Voronoi-adjacent obstacle
sensing and its relation with LW (x) in (4.15).

12 A pair of Voronoi cells in Rn is said to be adjacent if they share a n− 1 dimensional face.
13In general, the metric projection of a point onto a convex set can be efficiently computed using a standard

convex programming solver [37]. If W is a convex polytope, then the robot’s local free space, LF (x), is also
a convex polytope and can be written as a finite intersection of half-spaces. Hence, the metric projection
onto a convex polytope can be recast as quadratic programming and can be solved in polynomial time [133].
In the case of a convex polygonal environment, LF (x) is a convex polygon and the metric projection onto
a convex polygon can be solved analytically because the solution lies on one of its edges, unless the input
point is inside the polygon.
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4.3.2 Qualitative Properties

We now continue with a list of its qualitative (continuity, existence & uniqueness, invariance
and stability) properties.

Proposition 4.2 The “move-to-projected-goal” law in (4.17) is piecewise continuously dif-
ferentiable.

Proof An important property of generalized Voronoi diagrams in (4.8) inherited from the
standard Voronoi diagrams of point generators is that the boundary of each Voronoi cell is a
piecewise continuously differentiable function of generator locations [44, 186]. In particular,
for any x ∈ F, the boundary of the robot’s local workspace LW (x) is piecewise continu-
ously differentiable, because it is defined by the boundary of the workspace and separating
hyperplanes between the robot and the obstacles, parametrized by x and ΠOi

(x), and met-
ric projections onto convex cells are piecewise continuously differentiable [135]. Hence, the
boundary of the local free space LF (x) is also piecewise continuously differentiable, because
LF (x) is the nonempty erosion of LW (x) by a fixed open ball. Therefore, one can con-
clude using the sensitivity analysis of metric projections onto moving convex sets [199, 146]
that the “move-to-projected-goal” law is Lipschitz continuous and piecewise continuously
differentiable. �

Proposition 4.3 The robot’s free space F in (4.1) is positively invariant under the “move-
to-projected” law (4.17).

Proof Since x and ΠLF(x) (x
∗) are both in LF (x) for any x ∈ F, and LF (x) is an obstacle

free convex neighborhood of x (Corollary 4.1), the line segment joining x and ΠLF(x) (x
∗)

is free of collisions. Hence, at the boundary of F, the robot under the “move-to-projected-
goal” law either stays on the boundary or moves towards the interior of F, but never crosses
the boundary, and so the result follows. �

Proposition 4.4 For any initial x ∈ F, the “move-to-projected-goal” law (4.17) has a
unique continuously differentiable flow in F (4.1) defined for all future time.

Proof The existence, uniqueness and continuous differentiability of its flow follow from the
Lipschitz continuity of the “move-to-projected-goal” law in its compact domain F, because
a piecewise continuously differentiable function is locally Lipschitz on its domain [50], and
a locally Lipschitz function on a compact set is globally Lipschitz on that set [127]. �

Proposition 4.5 The set of stationary points of the “move-to-projected-goal” law (4.17) is
{x∗} ∪⋃m

i=1 Si, where

Si :=

{
x ∈ F

∣∣∣∣ d (x, Oi) = r,
(x−ΠOi

(x))T(x−x∗)

‖x−ΠOi
(x)‖‖x−x∗‖ = 1

}
. (4.18)

Proof It follows from (4.6) that the goal location x∗ is a stationary point of (4.17), because
x∗ ∈ LF (x∗). In fact, for any x ∈ F, one has ΠLF(x) (x

∗) = x∗ whenever x∗ ∈ LF (x). Hence,
in the sequel of the proof, we only consider the set of robot locations satisfying x∗ 6∈ LF (x).
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Let x ∈ F such that x∗ 6∈ LF (x). Recall from (4.9) and (4.15) that LW (x) is determined
by the maximum margin separating hyperplanes of the robot body and the obstacles, and
LF (x) is obtained by eroding LW (x) by an open ball of radius r. Hence, x lies in the
interior of LF (x) if and only if d (x, Oi) > r for all i. As a result, since x∗ 6∈ LF (x), one
has x = ΠLF(x) (x

∗) only if d (x, Oi) = r for some i.
Note that if d (x, Oi) = r, then, since d (Oi, Oj) > 2r (Assumption 4.1), d (x, Oj) > r

for all j 6= i. Therefore, there can be only one obstacle index i such that x = ΠLW(x) (x
∗)

and d (x, Oi) = r. Further, given d (x, Oi) = r, since ΠLF(x) (x
∗) is the unique closest point

of the closed convex set LF (x) to the goal x∗ (Theorem 4.2), its optimality [37] implies that
one has x = ΠLW(x) (x

∗) if and only if the maximum margin separating hyperplane between
the robot and obstacle Oi is tangent to the level curve of the squared Euclidean distance to
the goal, ‖x− x∗‖2, at ΠOi

(x), and separates x and x∗, i.e.,

(x−ΠOi
(x))T (x− x∗)

‖x−ΠOi
(x) ‖ ‖x− x∗‖ = 1 . (4.19)

Thus, one can locate the stationary points of the “move-to-projected-goal” law in (4.17)
associated with obstacle Oi as in (4.18), and so the result follows. �

Remark 4.1. For any equilibrium point si ∈ Si in (4.18) associated with obstacle Oi, one
has that the equilibrium si, its projection ΠOi

(si) and the goal x∗ are all collinear.

Lemma 4.2 The “move-to-projected-goal” law (4.17) in a small neighborhood of the goal
x∗ is given by

u (x) = −k (x− x∗) , ∀ x ∈ B (x∗, ǫ) , (4.20)

for some ǫ > 0; and around any stationary point si ∈ Si (4.18), associated with obstacle
Oi, it is given by

u (x)=−k


x−x∗+

(
x−ΠOi

(x)
)T
(x∗−hi)

∥∥∥x−ΠOi
(x)
∥∥∥
2

(
x−ΠOi

(x)
)

 , (4.21)

for all x∈B (si, ε) and some ε>0, where

hi :=
x + ΠOi

(x)

2
+
r

2

x−ΠOi
(x)∥∥∥x−ΠOi
(x)
∥∥∥
. (4.22)

Proof The result for the goal location x∗ follows from the continuity of Voronoi diagrams
in (4.8) and x∗ ∈ LF (x∗).

To see the result for any stationary point si ∈ Si, recall from the proof of Proposition 4.5
that si lies on the boundary segment of LF (si) defined by the separating hyperplane between
the robot and ith obstacle, and si has a certain nonzero clearance from the boundary segment
of LF (si) defined by the separating hyperplane between the robot and any other obstacle.
Hence, using the continuity of Voronoi diagrams, for any x ∈ B (si, ε), the “projected-goal”
ΠLF(x) (x

∗) can be located by taking the projection of x∗ onto (a shifted version of) the
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maximum margin separating hyperplane between the robot and obstacle Oi as

ΠLF(x) (x
∗) = x∗ −

(
x−ΠOi

(x)
)T

(x∗ − hi)
∥∥∥x−ΠOi

(x)
∥∥∥
2

(
x−ΠOi

(x)
)
, (4.23)

where hi is defined as in (4.22), and this completes the proof. �

Since our “move-to-projected-goal” law strictly decreases the (squared) Euclidean dis-
tance to the goal x∗ away from its stationary points (Proposition 4.7), to guarantee the
existence of a unique stable attractor at x∗ we require the following assumption14, whose
geometric interpretation is discussed in detail in Appendix C.1.

Assumption 4.2 (Obstacle Curvature Condition) The Jacobian matrix JΠ
Oi

(si) of the

metric projection of any stationary point si ∈ Si onto the associated obstacle Oi satisfies
15

JΠOi
(si) ≺

∥∥∥x∗−ΠOi
(si)
∥∥∥

r +
∥∥∥x∗−ΠOi

(si)
∥∥∥
I ∀i , (4.24)

where I is the identity matrix of appropriate size.

Proposition 4.6 If Assumption 4.2 holds for the goal x∗ and for all obstacles, then x∗ is
the only locally stable equilibrium of the “move-to-projected-goal” law (4.17), and all the
stationary points, si∈Si (4.18), associated with obstacles, Oi, are nondegenerate saddles.

Proof It follows from (4.20) that the goal x∗ is a locally stable point of the “move-to-
projected-goal” law, because its Jacobian matrix, Ju (x

∗), at x∗ is equal to −k I.
Now, to determine the type of any stationary point si ∈ Si associated with obstacle Oi,

define

g (x) :=

(
x∗ −ΠOi

(x)
)T (

x−ΠOi
(x)
)

∥∥∥x−ΠOi
(x)
∥∥∥
2 − r

2
∥∥∥x−ΠOi

(x)
∥∥∥
− 1

2
, (4.25)

and so the “move-to-projected-goal” law in a small neighborhood of si in (4.21) can be
rewritten as

u (x) = −k
(
x− x∗ + g (x)

(
x−ΠOi

(x)
))

. (4.26)

Hence, using
∥∥∥si−ΠOi

(si)
∥∥∥ = r, one can verify that its Jacobian matrix at si is given by

Ju (si) = −kg (si)




∥∥∥x∗ −ΠOi
(si)
∥∥∥

r +
∥∥∥x∗ −ΠOi

(si)
∥∥∥
Q− JΠOi

(si)


− k

2
(I−Q) , (4.27)

14A similar obstacle curvature condition is necessarily made in the design of navigation functions for spaces
with convex obstacles in [174].

15For any two symmetric matrices A,B ∈ RN×N , A ≺ B (and A 4 B) means that B − A is positive
definite (positive semidefinite, respectively).
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where g (si) = −
∥

∥

∥
x∗−Π

Oi
(si)

∥

∥

∥

r − 1 < −2, and

Q = I−

(
si −ΠOi

(si)
)(

si −ΠOi
(si)
)T

∥∥∥si −ΠOi
(si)
∥∥∥
2 . (4.28)

Note that JΠ
Oi

(x)
(
x−ΠOi

(x)
)
= 0 for all x ∈ Rn \Oi [109, 85]. Hence, if Assumption 4.2

holds, then one can conclude from g (si) < −2 and (4.27) that the only negative eigenvalue

of Ju (si) and the associated eigenvector are −k
2 and

(
si −ΠOi

(si)
)
, respectively; and all

other eigenvalues of Ju (si) are positive. Thus, si is a nondegenerate saddle point of the
“move-to-projected-goal” law associated with Oi. �

Proposition 4.7 Given that the goal location x∗ and the obstacles satisfy Assumption 4.2,
the goal x∗ is an asymptotically stable equilibrium of the “move-to-projected-goal” law (4.17),
whose basin of attraction includes F, except a set of measure zero.

Proof Consider the squared Euclidean distance to the goal as a smooth Lyapunov function
candidate, i.e., V (x) := ‖x− x∗‖2, and it follows from (4.6) and (4.17) that

V̇ (x) = −k 2(x− x∗)T
(
x−ΠLF(x) (x

∗)
)

︸ ︷︷ ︸
≥‖x−ΠLF(x)(x

∗)‖2
since x∈LF(x) and ‖x−x∗‖2≥‖ΠLF(x)(x

∗)−x∗‖2

≤ − k
∥∥x−ΠLF(x) (x

∗)
∥∥2 ≤ 0 , (4.29)

which is zero iff x is a stationary point. Hence, we have from LaSalle’s Invariance Principle
[127] that all robot configurations in F asymptotically reach the set of equilibria of (4.17).
Therefore, the result follows from Proposition 4.2 and Proposition 4.6, because, under
Assumption 4.2, x∗ is the only stable stationary point of the piecewise continuous “move-
to-projected-goal” law (4.17), and all other stationary points are nondegenerate saddles
whose stable manifolds have empty interiors [108]. �

Finally, we find it useful to summarize important qualitative properties of the “move-
to-projected-goal” law as: 16

Theorem 4.3 The piecewise continuously differentiable “move-to-projected-goal” law in
(4.17) leaves the robot’s free space F (4.1) positively invariant; and if Assumption 4.2 holds,
then its unique continuously differentiable flow, starting at almost any configuration x ∈ F,
asymptotically reaches the goal location x∗, while strictly decreasing the squared Euclidean
distance to the goal, ‖x− x∗‖2, along the way.

4.3.3 Extensions for Limited Range Sensing Modalities

Navigation using a Fixed Radius Sensory Footprint

A crucial property of the “move-to-projected-goal” law (4.17) is that it only requires
the knowledge of the robot’s Voronoi-adjacent 12 obstacles to determine the robot’s lo-

16Since the “move-to-projected-goal” law is piecewise continously differentiable, it can be lifted to higher
order dynamical models [130, 131, 82].
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cal workspace and so the robot’s local free space. We now exploit that property to relax
our construction so that it can be put to practical use with commonly available sensors
that have bounded radius footprint. 17 We will present two specific instances, pointing out
along the way how they nevertheless preserve the sufficient conditions for the qualitative
properties listed in Section 4.3.2.

Suppose the robot is equipped with a sensor with a fixed sensing range, R ∈ R>0, whose
sensory output, denoted by SR (x) := {S1, S2, . . . , Sm}, at a location, x ∈W, returns some
computationally effective dense representation of the perceptible portion, Si :=Oi∩B(x, R),
of each obstacle, Oi, in its sensory footprint, B (x, R). Note that Si is always open and might
possibly be empty (if Oi is outside the robot’s sensing range), see Figure 4.2(middle); and
we assume that the robot’s sensing range is greater than the robot body radius, i.e., R > r.

As in (4.9), using the maximum margin separating hyperplanes of the robot and sensed
obstacles, we define the robot’s sensed local workspace, illustrated in Figure 4.2(middle), as,

LWS (x) :=

{
q∈W ∩B

(
x, r+R

2

)∣∣∣∣
∥∥∥∥q−x+r

x−ΠSi
(x)

‖x−ΠSi
(x)‖

∥∥∥∥≤
∥∥∥q−ΠSi

(x)
∥∥∥ ,∀i s.t. Si 6=∅

}
. (4.30)

Note that B
(
x, r+R

2

)
is equal to the intersection of the closed half-spaces containing the

robot body and defined by the maximum margin separating hyperplanes of the robot body,
B (x, r), and all individual points, q ∈ Rn \B (x, R), outside its sensory footprint. 18

An important observation revealing a critical connection between the robot’s local
workspace LW in (4.9) and its sensed local workspace LWS in (4.30) is:

Proposition 4.8 LWS (x)=LW (x) ∩B
(
x, r+R

2

)
for all x∈W.

Proof As discussed in the proof of Proposition 4.1, for any x ∈ W, we have LW (x) =
W∩⋂

i
HSi, whereHSi is defined as in (4.11). Similarly, one can rewrite (4.30) as LWS (x) =

W ∩B
(
x, r+R

2

)
∩
⋂
i
ĤSi, where

ĤSi :=

{
q ∈ Rn

∣∣∣
∥∥∥∥q− x + r

x−ΠSi
(x)

‖x−ΠSi
(x)‖

∥∥∥∥ ≤
∥∥∥q−ΠSi

(x)
∥∥∥
}
. (4.31)

Note that if Si = ∅, then the predicate in (4.31) is trivially holds and so ĤSi = Rn;

otherwise, since Si=Oi∩B (x, R), we have ΠSi
(x) = ΠOi

(x) and so ĤSi = HSi. Moreover,
if Si = ∅ (i.e., d (x, Oi) > R), then we also have from Definition 4.1 and Lemma 4.1 that

B
(
x, r+R

2

)
⊂ HSi. Thus, we obtain that

ĤSi ∩B
(
x, r+R

2

)
=HSi ∩B

(
x, r+R

2

)
, ∀i . (4.32)

17 This extension results from the construction of the robot’s local workspace (4.9) in terms of the maximum
margin separating hyperplanes of convex sets. In consequence, because the intersection of convex sets is a
convex set [37], perceived obstacles in the robot’s (convex) sensory footprint are, in turn, themselves always
convex.

18Since d(q,B (x, r)) ≥ R − r for any q ∈ Rn \ B (x,R), it follows from Theorem 4.1 that the distance
of B (x, r) from the associated maximum margin separating hyperplane H(q,B (x, r)) (defined in (4.5) and
(4.7)), between the robot body and point q, is at least R−r

2
, i.e., d(B (x, r),H(q,B (x, r)))≥ R−r

2
, and so the

robot’s centroidal distance to the separating hyperplane is R+r
2

.
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Therefore, one can verify the result as follows:

LWS (x) = W ∩B
(
x, r+R

2

)
∩
⋂

i

ĤSi = W ∩
⋂

i

(
ĤSi ∩B

(
x, r+R

2

))
, (4.33)

= W ∩
⋂

i

(
HSi ∩B

(
x, r+R

2

))
=

(
W ∩

⋂

i

HSi

)
∩B

(
x, r+R

2

)
, (4.34)

= LW (x) ∩B
(
x, r+R

2

)
. (4.35)

�

In accordance with its local free space LF (x) in (4.15), we define the robot’s sensed local
free space LFS (x) by eroding LWS (x) by the robot body, illustrated in Figure 4.2(middle),
as,

LFS (x) :=
{
q ∈ LWS (x)

∣∣∣B (q, r) ⊆ LWS (x)
}
= LF (x) ∩B

(
x, R−r

2

)
, (4.36)

where the latter follows from Proposition 4.8 and that the erosion operation is distributed
over set intersection [103]. Note that, for any x ∈ F, LFS (x) is a nonempty closed convex
set containing x as is LF (x).

To safely steer a single-integrator disk-shaped robot towards a given goal location x∗ ∈ F

using a fixed radius sensory foot-print, we propose the following “move-to-projected-goal”
law,

u (x) = −k
(
x−ΠLFS(x) (x

∗)
)
, (4.37)

where k > 0 is a fixed control gain, and ΠLFS(x) (4.6) is the metric projection onto the
robot’s sensed local free space LFS (x), and LFS (x) is assumed to be continuously updated.

Due to the nice relations between the robot’s different local neighborhoods in Proposition
4.8 and (4.36), the revised “move-to-projected-goal” law for a fixed radius sensory footprint
inherits all qualitative properties of the original one presented in Section 4.3.2, summarized
as:

Proposition 4.9 The “move-to-projected-goal” law of a disk-shaped robot equipped with
a fixed radius sensory footprint in (4.37) is piecewise continuously differentiable; and if
Assumption 4.2 holds, then its unique continuously differentiable flow asymptotically steers
almost all configurations in its positively invariant domain F towards any given goal location
x∗ ∈ F, while strictly decreasing the (squared) Euclidean distance to the goal along the way.

Proof The proof of the result follows patterns similar to those of Proposition 4.2 - Propo-
sition 4.7, because of the relations between the robot’s local neighborhoods in Proposition
4.8 and (4.36), and so it is omitted for the sake of brevity. �

Navigation using a 2D LIDAR Range Scanner

We now present another practical extension of the “move-to-projected-goal” law for safe
robot navigation using a 2D LIDAR range scanner in an unknown convex planar environ-
ment W ⊆ R2 populated with convex obstacles O = {O1, O2, . . . , Om}, satisfying Assump-
tion 4.1. Assuming an angular scanning range of 360 degrees and a fixed radial range of
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R ∈ R>0, we model the sensory measurement of the LIDAR scanner at location x∈W by a
polar curve [206] ρx : (−π, π]→ [0, R], defined as,

ρx (θ) := min




R ,

min
{
‖p− x‖

∣∣∣p ∈ ∂W, atan2 (p− x) = θ
}
,

min
i

{
‖p− x‖

∣∣∣p ∈ Oi, atan2 (p− x) = θ
}


 . (4.38)

We further assume that the LIDAR sensing range is greater than the robot body radius,
i.e., R > r.

Suppose ρi : (θli , θui
)→ [0, R] is a convex curve segment of the LIDAR scan ρx (4.38) at

location x ∈W (please refer to Appendix C.4 for the notion of convexity in polar coordinates
which we use to identify convex polar curve segments in a LIDAR scan, corresponding to
the obstacle and workspace boundary), then we define the associated line-of-sight obstacle
as the open epigraph of ρi whose pole is located at x [206], 10 19

Li := {x} ⊕ e̊piρi = {x} ⊕
{
(̺ cos θ, ̺ sin θ)

∣∣∣ θ∈(θli , θui
) , ̺ > ρi (θ)

}
, (4.39)

which is an open convex set. Accordingly, we assume the availability of a sensor model
LR (x) := {L1, L2, . . . , Lt} that returns the list of convex line-of-sight obstacles detected by
the LIDAR scanner at location x, where t denotes the number of detected obstacles and
changes as a function of robot location.

Following the lines of (4.9) and (4.15), we define the robot’s line-of-sight local workspace
and line-of-sight local free space, illustrated in Figure 4.2(right), respectively, as

LWL (x) :=

{
q ∈ Lft (x) ∩B

(
x, r+R

2

)∣∣∣∣
∥∥∥∥q−x+r

x−ΠLi
(x)

‖x−ΠLi
(x)‖

∥∥∥∥ ≤
∥∥∥q−ΠLi

(x)
∥∥∥ , ∀i

}
. (4.40)

LFL (x) :=
{
q ∈ LWL (x)

∣∣∣B (q, r) ⊆ LWL (x)
}
, (4.41)

where Lft (x) denotes the LIDAR sensory footprint at x, given by the hypograph of the
LIDAR scan ρx (4.38) at x, i.e.,

Lft (x) := {x} ⊕ hypρx = {x} ⊕
{
(̺ cos θ, ̺ sin θ)

∣∣∣θ ∈ (−π, π], 0 ≤ ̺ ≤ ρx (θ)
}
. (4.42)

Similar to Proposition 4.1 and Corollary 4.1, we have:

Proposition 4.10 For any x ∈ F, LWL (x) is an obstacle free closed convex subset of W
and contains the robot body B (x, r). Therefore, LFL (x) is a nonempty closed convex subset
of F and contains x.

Proof For any x ∈ F, the LIDAR sensory footprint in (4.42) can be equivalently rewritten
using the global knowledge of the robot’s workspace as

Lft (x) = W ∩B (x, R) \
⋃

i

Ai . (4.43)

19Here, Å denotes the interior of a set A.

94



where Ai is the augmented line-of-sight obstacle associated with obstacle Oi, defined as

Ai :=
{
α (p− x) + p

∣∣∣p ∈ Oi, α ∈ [0,∞)
}
. (4.44)

Hence, since R > r, it follows from (4.40) that

LWL (x) = L̂WL (x) \
⋃

i

Ai , (4.45)

where

L̂WL (x) :=

{
q ∈W ∩B

(
x, r+R

2

) ∣∣∣∣
∥∥∥∥q−x+r

x−ΠLi
(x)

‖x−ΠLi
(x)‖

∥∥∥∥ ≤
∥∥∥q−ΠLi

(x)
∥∥∥ , ∀i

}
. (4.46)

Note that, as discussed in the proof of Proposition 4.1, since x ∈ F, L̂WL (x) is a closed

convex set and free of any line-of-sight obstacle Li, i.e., L̂WL (x) ∩ Li = ∅ for all i; and it

contains the robot body, i.e., B (x, r) ⊆ L̂WL (x).
Now observe that if obstacle Oi is in the LIDAR’s sensing range, i.e, Oi ∩B (x, R) 6= ∅,

then Ai ∩ B (x, R) = Lj ∩ B (x, R) for some j. Hence, since L̂WL (x) is free of line-of-

sight obstacles, we have from (4.45) that LWL (x) = L̂WL (x). Recall that L̂WL (x) is an
obstacle-free closed convex set, and so is LWL (x). Thus, the result follows because LFL (x)
is the erosion of LWL (x) by the robot body radius r. �

Accordingly, to navigate a fully-actuated single-integrator robot using a LIDAR scanner
towards a desired goal location x∗ ∈ F, with the guarantee of no collisions along the way,
we propose the following “move-to-projected-goal” law

u (x) = −k
(
x−ΠLFL(x) (x

∗)
)
, (4.47)

where k > 0 is fixed, and ΠLFL(x) (4.6) is the metric projection onto the robot’s line-of-sight
free space LFL (x) (4.41), which is assumed to be continuously updated.

We summarize important properties of the “move-to-projected-goal” law for navigation
using a LIDAR scanner as:

Proposition 4.11 The “move-to-projected-goal” law of a LIDAR-equipped disk-shaped robot
in (4.47) leaves the robot’s free space F (4.1) positively invariant; and if Assumption 4.2
holds, then its unique, continuous and piecewise differentiable flow asymptotically brings all
but a mesure zero set of initial configurations in F to any designated goal location x∗ ∈ F,
while strictly decreasing the (squared) Euclidean distance to the goal along the way.

Proof As discussed in the proof of Proposition 4.3, the positive invariance of F under
the “move-to-projected-goal” law in (4.47) follows from that for any x ∈ F, the robot’s
line-of-sight local free space LFL (x) (4.41) is an obstacle free closed convex subset of
F, and contains both x and ΠLWL(x) (x

∗) (Proposition 4.10 and Theorem 4.2). Hence,
−k
(
x−ΠLWL(x) (x

∗)
)
∈ TxF is either interior directed or, at worst, tangent to the bound-

ary of F.
The existence, uniqueness and continuity of its flow can be observed using a partitioning

of F such that the “move-to-projected-goal” law is piecewise continuously differentiable in
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each connected component of any partition element. Let Dt denote the set of collision free
robot locations at which the number of detected line-of-sight obstacles is equal to t∈N, i.e.,

Dt :=
{
x ∈ F

∣∣∣
∣∣LR (x)

∣∣ = t
}
. (4.48)

Recall that LR (x) = {L1, L2, . . . , Lt} is our sensor model that returns the list of convex
line-of-sight obstacles detected by the LIDAR at location x. Hence, the collection of Dt’s
defines a partition of F.

Note that Dt is generally disconnected, because each line-of-sight obstacle is associ-
ated with an open convex segment of a LIDAR scan. Further, observe that the “move-to-
projected-goal” law is piecewise continuously differentiable when its domain is restricted
to any connected component of Dt, because each connected component of Dt is associated
with a certain collection of obstacles and workspace boundary segments, i.e, the robot per-
sistently perceives the same set of environmental clutter in every connected component of
Dt. Hence, since a piecewise continuously differentiable function is Lipschitz continuous
on a compact set [50, 127], the “move-to-projected-goal” law has a unique continuously
differentiable flow in every connected component of Dt. Further, when the robot enters
a connected component of Dt, it stays in that connected component for a nonzero time,
because a line-of-sight obstacle Li is an open set and can not instantaneously appear or
disappear under any continuous motion. Thus, the unique, continuous and piecewise dif-
ferentiable flow of the move-to-projected-goal” law in F is constructed by piecing together
its unique, continuously differentiable trajectories in every connected component of Dt’s.

Finally, using a similar pattern to the proofs of Proposition 4.5 and Proposition 4.6, one

can verify that the set of stationary points of (4.47) is {x∗}∪
m⋃
i=1

Si, where Si is defined as

in (4.18); and if Assumption 4.2 holds, then the goal x∗ is the only locally stable point of
(4.47), and all the stationary points, Si, associated with obstacles, Oi, are nondegenerate
saddles. Moreover, as discussed in the proof of Proposition 4.7, the “move-to-projected-
goal” law in (4.47) strictly decreases the (squared) Euclidean distance to x∗ away from its
stationary points, and so x∗ is the unique attractor of (4.47), whose basin of attraction
includes all but a measure zero set of F. �

As a final remark, it is useful to note that the “move-to-projected-goal” law in (4.47)
might have discontinuities because of possible occlusions between obstacles. If there is no
occlusion between obstacles in the LIDAR’s sensing range, then the LIDAR scanner provides
exactly the same information about obstacles as does the fixed radius sensory footprint of
Section 4.3.3, and so the “move-to-projected-goal” law in (4.47) is piecewise continuously
differentiable as is its version in (4.37). In this regard, one can avoid occlusions between
obstacles by properly selecting the LIDAR’s sensing range so that Ai ∩ Aj ∩ B (x, R) = ∅

for all x ∈ F and i 6= j, where Ai is the augmented line-of-sight obstacle associated with Oi,
defined as in (4.44). For example, since d (x, Oi) ≥ r for any x ∈ F and d (Oi, Oj) > 2r for
any i 6= j (Assumption 4.1), a conservative choice of R that prevents occlusions between
obstacles is r < R ≤ 3r.
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4.3.4 An Extension for Differential Drive Robots

Maintaining the specialization to the plane, W ⊂ R2, we now consider a disk-shaped differ-
ential drive robot described by state (x, θ) ∈ F×(−π, π], centered at x ∈ F with body radius
r ∈ R>0 and orientation θ ∈ (−π, π], moving in W. The kinematic equations describing its
motion are

ẋ = v

[
cos θ
sin θ

]
, and θ̇ = ω , (4.49)

where v ∈ R and ω ∈ R are, respectively, the linear (tangential) and angular velocity inputs
of the robot.

In contrary to the “move-to-projected-goal” law of a fully actuated robot in (4.17), a
differential drive robot can not directly move towards the projected goal ΠLF(x) (x

∗) of a

given goal location20 x∗ ∈ F̊, unless it is perfectly aligned with ΠLF(x) (x
∗), because it is

underactuated due to the nonholonomic constraint
[
− sin θ
cos θ

]T
ẋ = 0. In consequence, to

determine the robot’s linear motion, we restrict the robot’s local free space LF (x) (4.15)
to conform to the nonholonomic constraint as

LFv (x) := LF (x) ∩HN , (4.50)

where HN :=

{
q ∈ Rn

∣∣∣
[
− sin θ
cos θ

]T
(q− x) = 0

}
is the straight line motion range due to the

nonholonomic constraint. Note that LF (x)∩HN is a closed line segment in W and contains
x. Similarly, to determine the robot’s angular motion, we define

LFω (x) := LF (x) ∩HG, (4.51)

where HG :=
{
ωx + (1− ω) x∗ ∈ Rn

∣∣ ω ∈ R
}
is the line going through x and x∗.

Accordingly, based on a standard differential drive controller [19], we propose the fol-
lowing “move-to-projected-goal” law for a differential drive robot,21 22

v = −k
[
cos θ
sin θ

]T (
x−ΠLFv(x) (x

∗)
)
, (4.52a)

ω = k atan




[
− sin θ
cos θ

]T (
x− ΠLFω(x)(x

∗)+ΠLF(x)(x
∗)

2

)

[
cos θ
sin θ

]T (
x− ΠLFω(x)(x∗)+ΠLF(x)(x∗)

2

)


 , (4.52b)

where k > 0 is fixed, and LFv (x), LFω (x) and LF (x) are assumed to be continuously
updated.

20Here, we require the goal to be in the interior F̊ of F to guarantee that the robot can nearly align its
orientation with the (local) goal in finite time.

21We follow the paper [19] by resolving the indeterminacy through setting angular velocity ω = 0 when-

ever x =
ΠLFω(x)(x∗)+ΠLF(x)(x∗)

2
. Note that this introduces the discontinuity necessitated by Brockett’s

condition [40].
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We summarize some important properties of the “move-to-projected-goal” law of a dif-
ferential drive robot as:

Proposition 4.12 Given the goal and obstacles satisfy Assumption 4.2, the “move-to-
projected-goal” law of a disk-shaped differential drive robot in (4.52) asymptotically steers
almost all configurations in its positively invariant domain F × (−π, π] towards any given
goal location x∗ ∈ F̊, without increasing the Euclidean distance to the goal along the way.

Proof The positive invariance of F×(−π, π] under the “move-to-projected-goal” law (4.52)
and the existence and uniqueness of its flow can be established using similar patterns of the
proofs of Proposition 4.2, Proposition 4.3 and Proposition 4.4, and the flow properties of
the differential drive controller in [19].

As in the proof of Proposition 4.7, using the squared distance to goal, V (x) = ‖x− x∗‖2,
as a smooth Lypunov function candidate, one can verify the stability properties from (4.6),
(4.49), and (4.52) as follows: for any (x, θ) ∈ F × (−π, π],

V̇ (x) = −k 2(x− x∗)T
(
x−ΠLFv(x) (x

∗)
)

︸ ︷︷ ︸
≥‖x−ΠLFv(x)(x

∗)‖2
since x∈LFv(x) and ‖x−x∗‖2≥‖ΠLFv(x)(x

∗)−x∗‖2

≤ − k
∥∥x−ΠLFv(x) (x

∗)
∥∥2 ≤ 0 . (4.53)

Hence, it follows from LaSalle Invariance Principle [127] that all configurations in F×(−π, π]
asymptotically reach the set of configurations, where the robot is located at the associated
projected goal ΠLFv(x) (x

∗) at any arbitrary orientation,

{
(x, θ) ∈ F × (−π, π]

∣∣∣ x = ΠLFv(x) (x
∗)
}
. (4.54)

Note that if ΠLFv(x) (x
∗), ΠLFω(x) (x

∗) and ΠLF(x) (x
∗) are assumed to be fixed, then the stan-

dard differential drive controller asymptotically aligns the robot with
ΠLFω(x)(x

∗)+ΠLF(x)(x
∗)

2 ,

i.e.,
[
− sin θ
cos θ

]T(
x− ΠLFω(x)(x

∗)+ΠLF(x)(x
∗)

2

)
= 0. Hence, using the optimality of metric pro-

jection in (4.6), one can conclude that ΠLFv(x) (x
∗) = ΠLFω(x) (x

∗) = ΠLF(x) (x
∗) whenever

x = ΠLFv(x) (x
∗) and

[
− sin θ
cos θ

]T(
x− ΠLFω(x)(x

∗)+ΠLF(x)(x
∗)

2

)
= 0.

Therefore, using a similar approach to the proofs of Proposition 4.5, Lemma 4.2 and
Proposition 4.6, one can verify that the set of stationary points of (5.44) is given by

{x∗} × (−π, π]
⋃{

(si, θ) ∈ F × (−π, π]
∣∣∣∣ si ∈ Si,

[
− sin θ
cos θ

]T
(si − x∗) = 0

}
, (4.55)

where Si is defined as in (4.18); and every robot configuration located at x∗ is locally stable
and all stationary points associated with obstacles are nondegenerate saddles with stable
manifolds of measure zero. Thus, the result follows. �

22In the design of angular motion, we particularly select a local target location,
ΠLFω(x)(x∗)+ΠLF(x)(x∗)

2
∈ F̊

given x∗ ∈ F̊, in the interior F̊ of F to increase the convergence rate of the resulting vector field. One can
consider other convex combinations of ΠLFω(x) (x

∗) and ΠLF(x) (x
∗), and the resulting vector field retains

qualitative properties.
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Note that the “move-to-projected-goal” law of a differential drive robot in (4.52) can be
extended to limited range sensing models by using the robot’s sensed local free space LFS

(4.36) or the robot’s line-of-sight local free space LFL (4.41) instead of the local free space
LW (4.15), and the resulting vector field planner maintains qualitative properties.

4.4 Numerical Simulations

To demonstrate the motion pattern generated by our “move-to-projected-goal” law around
and far away from the goal, we consider a 10×10 and a 50×10 environment cluttered with
convex obstacles and a desired goal located at around the upper right corner, as illustrated
in Figure 4.3 and Figure 4.4, respectively. 23 We present in these figures example navi-
gation trajectories of the “move-to-projected-goal” law for different sensing and actuation
modalities. We observe a significant consistency between the resulting trajectories of the
“move-to-projected-goal” law and the boundary of the Voronoi diagram of the environment,
where the robot balances its distance to all proximal obstacles while navigating towards its
destination — a desired autonomous behaviour for many practical settings instead of follow-

23For all simulations, we set r = 0.5, R = 2 and k = 1, and all simulations are obtained through numerical
integration of the associated “move-to-projected-goal” law using the ode45 function of MATLAB.

Figure 4.3: Example navigation trajectories of the “move-to-projected-goal” law, starting
at a set of initial configurations (green) towards a designated point goal (red), for different
sensing and actuation models: (top) a fully actuated robot, (bottom) a differential drive
robot, (left) Voronoi-adjacent 12 obstacle sensing, (center) a fixed radius sensory footprint,
(right) a limited range LIDAR sensor.
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Figure 4.4: Example navigation trajectories of the “move-to-projected-goal” law in (4.17)
starting at a set of initial positions (green) far away from the goal (red).24

ing the obstacle boundary tightly. In our simulations, we avoid occlusions between obstacles
by properly selecting the LIDAR’s sensing range, and in so doing both limited range sens-
ing models provide the same information about the environment away from the workspace
boundary, and the associated “move-to-projected-goal” laws yield almost the same naviga-
tion paths. As observed in Figure 4.3, although they are initiated at the same location, a
fully actuated and a differential drive robot may follow significantly different trajectories
due to their differences in system dynamics and controller design. It is also useful to note
that the “move-to-projected-goal” law decreases not only the Euclidean distance, ‖x− x∗‖,
to the goal, but also the Euclidean distance,

∥∥ΠLF(x) (x
∗)− x∗

∥∥, between the projected goal,
ΠLF(x) (x

∗), and the global goal, x∗, illustrated in Figure 4.5.

Figure 4.5: The Euclidean distance,
∥∥ΠLF(x) (x

∗)− x∗
∥∥, between the projected goal,

ΠLF(x) (x
∗), and the global goal, x∗, for different sensing modalities: (left) Voronoi-

adjacent 12 obstacle sensing, (middle) a fixed radius sensory footprint, (right) a limited
range line-of-sight sensor.

24 Please refer to Appendix C.6 for additional figures illustrating the navigation pattern far away from
the goal for different sensing and actuation models.
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4.5 Summary

In this chapter, we construct a sensor-based feedback law that provably solves the real-time
collision free robot navigation problem in a domain cluttered with unknown but sufficiently
separated and strongly convex obstacles. Our algorithm introduces a novel use of separating
hyperplanes for identifying the robot’s local obstacle free convex neighborhood, affording a
piecewise smooth velocity command instantaneously pointing toward the metric projection
of the designated goal location onto this convex set. Given sufficiently separated (Assump-
tion 4.1) and appropriately “strongly” convex (Assumption 4.2) obstacles, we show that
the resulting vector field has a smooth flow with a unique attractor at the goal location
(along with the topologically inevitable saddles — at least one for each obstacle). Since
all of its critical points are nondegenerate, our vector field asymptotically steers almost all
configurations in the robot’s free space to the goal, with the guarantee of no collisions along
the way. We also present its practical extensions for two limited range sensing models and
the widely used differential drive model, while maintaining formal guarantees. We illustrate
the effectiveness of the proposed navigation algorithm in numerical simulations.
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Chapter 5

Voronoi-Based Coverage Control of

Heterogeneous Disk-Shaped Robots

Among the many proposed multiple mobile sensor coordination strategies [196], Voronoi-
based coverage control [60] uniquely combines both deployment and allocation in an intrin-
sically distributed manner [167] via gradient descent (the “move-to-centroid” law) down a
utility function minimizing the expected event sensing cost to adaptively achieve a centroidal
Voronoi configuration (depicted on the left in Figure 5.1). Since the original application to
homogeneous point robots [60], a growing literature considers the extension to heterogeneous
groups of robots differing variously in their sensorimotor capabilities [178, 122, 177, 137] by
recourse to power diagrams — generalized Voronoi diagrams with additive weights [20].

Although it inherits many nice properties of a standard Voronoi diagram such as convex-
ity and dual triangulability, a power diagram may possibly have empty cells associated with
some (unassigned) robots and/or some robots may not be contained in their nonempty cells
[20], as situation depicted on the middle in Figure 5.1. Such occupancy defects (Definition
5.1) generally cost resource inefficiency or redundancy 1, and, crucially, they re-introduce
the problem of collision avoidance — the chief motivation for the present chapter.

Voronoi-based coverage control implicitly entails collision avoidance for point robots
since robots move in their pairwise disjoint Voronoi cells [60], but an additional collision
avoidance strategy is mandatory for safe navigation of finite size robots. Existing work
on combining coverage control and collision avoidance generally uses (i) either heuristic
approaches based on repulsive fields [71, 179] and reciprocal velocity obstacles [38] causing
robots to converge to configurations far from optimal sensing configurations; or (ii) the
projection of a vector field whenever a robot reaches the boundary of its partition cell
[178, 121] introducing a source of discontinuity. An important observation made in [178]
is that it is sufficient to restrict robot bodies to respective Voronoi regions for collision
avoidance, but this is a conservative assumption for robot groups with different body sizes
(as illustrated on the right in Figure 5.1).

1Note that a power diagram with an occupancy defect can be beneficial in certain applications to
save/balance energy across a mobile network of power limited agents [137].
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Figure 5.1: An illustration of (left) the Voronoi and (middle) power diagrams of an environ-
ment based on a noncolliding placement of point robots, where the weights of power cells
are shown in parentheses. Although each point robot is always contained in its Voronoi cell,
power cells associated with some robots (e.g. the 7th robot) may be empty and/or some
robots (e.g. the 1st and 4th robots) may not be contained in their nonempty power cells.
(right) A collision free disk configuration does not necessarily have Voronoi cells containing
respective robot bodies.

In this chapter, we provide a necessary and sufficient condition for identifying collision-
free configurations of finite size robots in terms of their power diagrams, and accordingly
propose a constrained coverage control (“move-to-constrained-centroid”) law, whose con-
tinuous and piecewise smooth flow asymptotically converges to an optimal sensing config-
uration, while avoiding any collisions along the way. We extend the practicability of the
result by adding a congestion management heuristic for unassigned robots that hastens
the assigned robots’ progress, and, finally, adapt the fully actuated point particle vector
field planner to the widely used kinematic differential drive vehicle model (retaining the
convergence and collision avoidance guarantees in both extensions).

This chapter is based on the conference paper [12], and presents a new robot-centric
application of Voronoi diagrams to exactly encode (multi)robot collisions.

5.1 Coverage Control of Point Robots

5.1.1 Location Optimization of Homogeneous Robots

Let Q be a convex environment in the n-dimensional Euclidean space Rn with a priori
known event distribution function φ : Q → R>0 that models the probability of some event
occurs in Q, and p := (p1,p2, . . . ,pm) ∈ Qm be a (noncolliding) placement of m ∈ N point
robots in Q. 2 Suppose that the event detection (sensing) cost of ith robot at location
q ∈ Q is a nondecreasing differentiable function, f : R → R, of the Euclidean distance,
‖q− pi‖, between q and pi. Further assume that robots are assigned to events based on a
partition of Q yielding a cover, W:= {W1,W2, . . . ,Wm}, a collection of subsets (“cells”), Wi,

2Here, N is the set of all natural numbers; R and R>0 (R≥0) denote the set of real and positive (nonneg-
ative) real numbers, respectively.
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whose union returns Q but whose cells have mutually disjoint interiors. 3 A well established
approach (arising in both facility location [101, 167] and quantization [149, 73] problems)
achieves such a cover by minimizing the expected event sensing cost,

H (p,W) :=

m∑

i=1

∫

Wi

f (‖q− pi‖)φ (q) dq . (5.1)

Now observe that, for any fixed p, the optimal task assignment minimizing H is the
standard Voronoi diagram V (p) := {V1, . . . , Vm} of Q based on the configuration p,

Vi =
{
q ∈ Q

∣∣∣ ‖q− pi‖ ≤ ‖q− pj‖ ,∀j 6= i
}
. (5.2)

Thus, given the optimal task assignment of robots, the objective function H takes the
following form

HV (p) :=H (p,V (p)) =

m∑

i=1

∫

Vi

f (‖q− pi‖)φ (q) dq , (5.3)

and it is common knowledge that [73, 167, 60]

∂HV (p)

∂pi
=

∫

Vi

∂

∂pi
f (‖q− pi‖)φ (q) dq . (5.4)

In the special case of f (x) = x2, the partial derivative of HV has a simple physical inter-
pretation as follows:

∂HV (p)

∂pi
= 2µVi

(pi − cVi
) , (5.5)

where µVi
and cVi

, respectively, denote the mass and the center of mass of Vi according to
the mass density function φ,

µVi
:=

∫

Vi

φ (q) dq , cVi
:=

∫

Vi

q φ (q) dq . (5.6)

Hence, at a critical point of HV, the robots are located at the centroid of their respective
Voronoi cells, called a centroidal Voronoi configuration.

Assuming first-order (completely actuated single-integrator) robot dynamics,

ṗi = ui , (5.7)

the standard “move-to-centroid” law asymptotically steering point robots to a centroidal
Voronoi configuration with the guarantee of no collision along the way is

ui = −k (pi − cVi
) , (5.8)

where k ∈ R>0 is a fixed control gain and the Voronoi diagram V (p) of Q is assumed
to be continuously updated. Note that µVi

and cVi
are both continuously differentiable

3We will generally refer to such decompositions as “diagrams” but also occasionally allow the slight abuse
of language to follow tradition and refer to W as a partition.
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functions of p as are both HV and ui [44]. Finally, observe, again, that the coverage control
ui supports a distributed implementation whose local communications structure is specified
by the associated Delaunay graph [60].

5.1.2 Location Optimization of Heterogeneous Robots

In distributed sensing applications, heterogeneity of robotic networks in sensing and ac-
tuation [178, 122, 177, 137] is often modelled by recourse to power diagrams, generalized
Voronoi diagrams with additive weights [20]. More precisely, for a given multirobot con-
figuration p ∈ Qm, the event sensing cost of ith robot at location q ∈ Q is assumed to
be given by the power distance, ‖q− pi‖2 − ρ2i where ρi ∈ R≥0 is the power radius of ith
robot. Accordingly, the task assignment of robots are determined by the power diagram
P (p,ρ) := {P1, P2, . . . , Pm} of Q based on the configuration p and the associated power
radii ρ := (ρ1, ρ2, . . . , ρm),

Pi :=
{
q ∈ Q

∣∣∣ ‖q− pi‖2 − ρ2i ≤ ‖q− pj‖2 − ρ2j ,∀j 6= i
}
, (5.9)

and the location optimization function becomes

HP (p,ρ) =

m∑

i=1

∫

Pi

(
‖q− pi‖2 − ρ2i

)
φ (q) dq . (5.10)

Note that in the special case of ρi = ρj for all i 6= j the power diagram P (p,ρ) and the
Voronoi diagram V (p) of Q are identical, i.e., Pi = Vi, and the utility functions HP and HV

are related by a constant offset, i.e., HP (p,ρ) = HV (p) + c (ρ) for some c (ρ) ∈ R.
Similar to (5.5), for fixed ρ, the partial derivative of HP takes the following simple form

[178, 137, 179],
∂HP (p,ρ)

∂pi
= 2µPi

(pi − cPi
) , (5.11)

where µPi
and cPi

are the mass and the center of mass 4 of Pi, respectively, as defined in
(5.6).

For the single integrator robot model (5.7), the standard “move-to-centroid” law of
heterogeneous robotic networks asymptotically driving robots to a critical point of HP (.,ρ),
where robots are located at the centroids of their respective power cells, is defined as

ui = −k (pi − cPi
) , (5.12)

for some fixed k ∈ R>0 and the power diagram P (p,ρ) of Q is assumed to be continuously
updated. Notwithstanding its welcome inheritance of many standard Voronoi properties
(e.g., convexity, dual triangulability), a power diagram may yield empty cells associated
with some robots and/or some robots may not be contained in their nonempty power cells,
illustrated in Figure 5.1. In consequence, contrary to the case of homogeneous robots,
the “move-to-centroid” law of heterogeneous point robots is discontinuous and it cannot
guarantee collision-free navigation. Thus, in past literature, for robots of finite but hetero-

4 To be well defined we set cPi = pi whenever Pi has an empty interior.
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geneous size, the standard “move-to-centroid” law inevitably requires an additional heuristic
collision avoidance strategy for safe navigation.

5.2 Occupancy Defects of Power Diagrams

Definition 5.1 (Occupancy Defect) The power partition, P (p,ρ), associated with config-
uration p ∈ Qm and radii ρ ∈ (R≥0)

m is said to have an occupancy defect if pi 6∈ Pi for
some i ∈ {1, 2, . . . m}.

Configurations incurring this unfortunate occupancy defects introduce a number of prob-
lems. First of all, empty partition cells cause resource redundancy, because some robots may
never be assigned to any event happening around them. Such robots do not only become
redundant, but also complicate collision avoidance as (moving or stationary) obstacles and
limit the mobility of others. In general, robots that are not contained in their respective
cells require an extra care for collision avoidance.

A straightforward characterization of an occupancy defective configuration is: 5

Proposition 5.1 Given radii ρ ∈ (R≥0)
m, configuration p ∈ Qm does not incur an occu-

pancy defective power diagram if and only if ‖pi − pj‖2 ≥
∣∣∣ρ2i − ρ2j

∣∣∣ for all i 6= j.

Proof By Definition 5.1, P (p,ρ) has no occupancy defect if and only if pi ∈ Pi for all i,
which is the case if and only if

‖pi − pi‖2 − ρ2i ≤ ‖pi − pj‖2 − ρ2j , (5.13)

‖pj − pj‖2 − ρ2j ≤ ‖pj − pi‖2 − ρ2i , (5.14)

for all i 6= j. Thus, the result follows. �

In what follows, we present a novel use of power diagrams for identifying collision-
free multirobot configurations and propose a constrained optimization combining coverage
control and collision avoidance for heterogeneous robots.

5.3 Combining Coverage Control and Collision Avoidance

Throughout the rest of paper, we consider heterogeneous disk-shaped multirobot configu-
rations, p = (p1,p2, . . . ,pm) ∈ Qm, in Q with associated vectors of nonnegative body radii
β := (β1, β2, . . . , βm) ∈ (R≥0)

m and sensory footprint radii σ := (σ1, σ2, . . . , σm) ∈ (R≥0)
m,

where ith robot is centered at pi ∈ Q and has body radius βi ≥ 0 and sensory footprint
radius σi ≥ 0. Accordingly, we will denote by B (p,β) = {B1, B2, . . . , Bm}, a cover we term
the body diagram of Q, solving the power problem (5.9), (5.10), defined from HB (p,β);
and we will denote by S (p,σ) = {S1, S2, . . . , Sm}, a cover we term the sensor diagram of

5In [122], the authors note the issue of empty power cells and give a similar sufficient condition for each
robot to be contained in its power cell, but this sufficiency condition is neither used in the design of the
proposed coverage control law nor guaranteed to hold during the evaluation of the proposed coverage control
algorithm.
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Q, solving the corresponding problem defined by HS (p,σ). We also find it convenient to
denote the configuration space of body-noncolliding disks of radii β in Q as

Conf (Q,β) :=
{
p ∈ Qm

∣∣∣ ‖pi−pj‖ > βi+βj ∀i 6= j, D (pi, βi) ⊂ Q̊ ∀i
}
, (5.15)

where D (x, r) :=
{
y ∈ Rn

∣∣ ‖x− y‖ ≤ r
}
is the closed disk in Rn centered at x ∈ Rn with

radius r ≥ 0, and Q̊ is the interior of Q. Note that the vectors of body radii β and sensory
footprint radii σ are not necessary equal, because β models the heterogeneity of robots in
body size, σ models their heterogeneity in sensing and actuation.

5.3.1 Encoding Collisions via Body Diagrams

A geometric characterization of collision-free multirobot configurations in Q via their body
diagrams is:

Proposition 5.2 Let B (p,β) be the body diagram of Q associated with configuration
p ∈ Qm (such that pi 6= pj for all i 6= j) and body radii β ∈ (R≥0)

m. Then p is collision-free
if and only if every robot body is contained in the interior of its body cell, i.e.,

p ∈ Conf (Q,β) ⇐⇒ D (pi, βi) ⊂ B̊i ∀i . (5.16)

Proof The sufficiency (⇐=) follows because B (p,β) is a cover of Q whose elements have
disjoint interiors. Hence, given D (pi, βi) ⊂ B̊i for all i, we have D (pi, βi) ⊂ Q̊ and
D (pi, βi) ∩D (pj, βj) = ∅ for all i 6= j, and so ‖pi − pj‖ > βi + βj . Thus, p ∈ Conf (Q,β).

To see the necessity (=⇒), for any p ∈ Conf (Q,β), we will show that pi ∈ Bi for
all i, and the distance between pi and the boundary ∂Bi of Bi is greater than βi, i.e.,
minx∈∂Bi

‖x− pi‖ > βi, and so D (pi, βi) ⊂ B̊i.
It follows from Proposition 5.1 that for any p ∈ Conf (Q,β), B (p,β) has no occupancy

defect (Definition 5.1), i.e., pi ∈ Bi ∀i.
The boundary ∂Bi of Bi is defined by the boundary ∂Q of Q and the separating sepa-

rating hyperplane between body cells Bi and Bj for some j 6= i [20]. By definition (5.15),
we have minx∈ ∂Q ‖x− pi‖ > βi for any p ∈ Conf (Q,β).

Now observe that, for any i 6= j, the separating hyperplane between body cells Bi and
Bj is perpendicular to the line joining pi and pj and is given by [20]

Hij :=
{
x ∈ Rn

∣∣∣ 2xT (pi − pj) = β2j − β2i + ‖pi‖2 − ‖pj‖2
}
, (5.17)

and the perpendicular distance of pi to Hij is given by

d (pi,Hij) :=
‖pi − pj‖

2
+

β2i − β2j
2 ‖pi − pj‖

. (5.18)

Note that d (pi,Hij) is negative when B (p,β) has an occupancy defect; and we have
from Proposition 5.1 that B (p,β) is free of such a defect for any p ∈ Conf (Q,β) and
so d (pi,Hij) ≥ 0. One can further show that for any i 6= j,
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Figure 5.2: (left) Encoding collision free configurations via body diagrams: A configuration
of disks is nonintersecting iff each disk is contained in the interior of its body cell. (right)
Free subcells, obtained by eroding each body cell with its associated disk radius.

d (pi,Hij) = βi +
‖pi − pi‖2 + β2i − β2j − 2βi ‖pi − pi‖

2 ‖pi − pi‖
,

= βi +
(‖pi − pi‖ − βi)2 − β2j

2 ‖pi − pi‖︸ ︷︷ ︸
>0, since p∈Conf(Q,β)

> βi , (5.19)

which completes the proof. �

To determine a collision-free neighborhood of a configuration p ∈ Conf (Q,β) with a
vector of body radii β ∈ (R≥0)

m, we define a free subdiagram F (p,β) := {F1, F2, . . . , Fm}
of the body diagram B (p,β) = {B1, B2, . . . , Bm} by eroding each cell removing the volume
swept along its boundary, ∂Bi, by the associated body radius,6 see Figure 5.2, as [103]

Fi :=Bi \
(
∂Bi ⊕D (0, βi)

)
=

{
q ∈ Bi

∣∣∣∣ min
x∈ ∂Bi

‖x− q‖ > βi

}
. (5.20)

Note that Fi is a nonempty convex set because pi ∈ Fi and the erosion of a convex set by
a ball is convex.7

The following observation yields a (possibly conservative) convex inner approximation
of the free configuration space neighborhood surrounding free configuration as

p ∈ Conf (Q,β)⇒
∏

F (p,β) ⊂ Conf (Q,β) , (5.21)

where
∏

F (p,β) = F1 × F2 × . . .× Fm.

Lemma 5.1 Let p ∈ Conf (Q,β) be a multirobot configuration with a vector of body radii
β ∈ (R≥0)

n, and F (p,β) be the free subdiagram of the body diagram B (p,β).

6Here, 0 is a vector of all zeros with the appropriate size, and A ⊕ B := {a+ b | a ∈ A, b ∈ B} is the
Minkowski sum of sets A and B.

7It is obvious that the erosion of a half-space by a ball is a half-space. Hence, since the erosion operation
is distributed over set intersection [103], and a convex set can be defined as (possibly infinite) intersection
of half-spaces [37], the erosion of a convex set by a ball is convex.
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Then q ∈ Qm is a collision-free multirobot configuration in Conf (Q,β) if qi ∈ Fi (i.e.,
D (qi, βi) ⊂ B̊i) for all i.

Proof The results directly follows from B (p,β) covering a partition of Q, as discussed in
the proof of Proposition 5.2. �

5.3.2 Coverage Control of Heterogeneous Disk-Shaped Robots

Based on our observations in Proposition 5.2 and Lemma 5.1, we now introduce a con-
strained optimization framework combining coverage control and collision avoidance.

Consider a heterogeneous multirobot configuration p ∈ Conf (Q,β + ǫ) with associated
vectors of body radii β ∈ (R≥0)

m, safety margins ǫ ∈ (R>0)
m and sensory footprint radii

σ ∈ (R≥0)
m, and let S (p,σ) = {S1, S2, . . . , Sm} be the sensory diagram of Q based on

robot locations p and sensory footprint radii σ, and F (p,β + ǫ) = {F1, F2, . . . , Fm} be the
free subdiagram associated with configuration p and enlarged body radii β + ǫ. Here we
use ǫ to guarantee the clearance between any pair i 6= j of robots to be at least ǫi + ǫj.

8

Now, in contrast to the standard “move-to-centroid” law that steers each robot directly
towards the centroid, cSi

, of its sensory cell, Si, we propose a coverage control policy that
selects a safe target location, called the constrained centroid of Si, that solves the following
convex programming 9

minimize ‖qi − cSi
‖2

subject to qi ∈ F i

(5.22)

where F i is a closed convex set. It is well known that the unique solution of (5.22) is given
by [37, Section 8.1.1] 10

cSi
:=

{
cSi
, if cSi

∈ F i ,
ΠF i

(cSi
) , otherwise ,

(5.23)

where ΠC (x) denotes the metric projection of x ∈ Rn onto a convex set C ⊂ Rn, and note
that ΠC is piecewise continuously differentiable [135, 199, 146].11 Accordingly, for the single
integrator robot dynamics (5.7), our “move-to-constrained-centroid” law is defined as

ui = −k (pi − cSi
) , (5.24)

where k ∈ R>0 is a fixed control gain, and we assume that S (p,σ) and F (p,β + ǫ) are
continuously updated. We find it convenient to have GS (Q,β + ǫ,σ) denote the set of

8Having a positive vector of safety margins ǫ enables us to consider collision-free multirobot configurations
in Conf (Q,β + ǫ) ⊂ Conf (Q,β). Throughout the rest of the paper, in order to simplify the notation, we
will abuse the notation and use Conf (Q,β + ǫ) to refer to the closure of the configuration space in (5.15).

9Here, A is the closure of set A.
10In general, the metric projection of a point onto a convex set can be efficiently computed using a standard

convex programming solver [37]. If Q is a convex polytope, then a free subcell, Fi, is also a convex polytope
and can be written as a finite intersection of half-spaces. Hence, the metric projection onto a convex polytope
can be recast as quadratic programming and can be solved in polynomial time [133]. In the case of a convex
polygonal environment, Fi is a convex polygon and the metric projection onto a convex polygon can be
solved analytically since the solution lies on one of its edges unless the input point is inside the polygon.

11 Note that cSi is well defined (see footnote 4), hence cSi must be as well given Fi 6= ∅.
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equilibria of our “move-to-constrained-centroid” law, where robots are located at the con-
strained centroid of their respective sensory cells, 12

GS (Q,β + ǫ,σ) :=
{
p ∈ Conf (Q,β + ǫ)

∣∣∣pi = cSi
∀i
}
. (5.25)

In the special case of identical sensory footprint radii, i.e., σi = σj for all i 6= j, these
stationary configurations are called the constrained centroidal Voronoi configurations [74].
Also note that for homogeneous point robots, our “move-to-constrained-centroid” law in
(5.24) simplifies back to the standard “move-to-centroid” law in (5.8).

We summarize the qualitative properties of our “move-to-constrained-centroid” law as
follows:

Theorem 5.1 For any choice of vectors of body radii β ∈ (R≥0)
m, safety margin

ǫ ∈ (R>0)
m and sensory footprint radii σ ∈ (R≥0)

m, the configuration space of noninter-
secting disks Conf (Q,β + ǫ) (5.15) is positive invariant under the “move-to-constrained-
centroid” law in (5.24) whose unique, continuous and piecewise differentiable flow, starting
at any configuration in Conf (Q,β + ǫ), asymptotically reaches a locally optimal sensing con-
figuration in GS (Q,β + ǫ,σ), while strictly decreasing the utility function HS (·,σ) (5.10)
along the way. If an equilibrium in GS (Q,β + ǫ,σ) is isolated, then it is locally asymptot-
ically stable.

Proof The instantaneous “target” in (5.24) lies in the closure of the convex inner approx-
imation to the freespace neighborhood of any free configuration, cS(p,σ) ∈

∏
F (p,β + ǫ) ⊂

Conf (Q,β + ǫ), hence, according to Lemma 5.1, the configuration space tangent vector
defined by (5.24), −k

(
p− cS(p,σ)

)
∈ TpConf (Q,β + ǫ), is either interior directed or, at

worse, tangent to the boundary of
∏

F (p,β + ǫ). Therefore, by construction (5.22), the
“move-to-constrained-centroid” law leaves Conf (Q,β + ǫ) positively invariant.

The existence, uniqueness and continuity of its flow can be observed using an equivalent
hybrid system consisting of a family of piecewise continuously differentiable local vector
fields as follows. Let uI : DI → (Rn)m be a local controller associated with a subset I of
{1, 2, . . . ,m} defined as

uIi =

{
−k (pi − cSi

) , if i ∈ I ,
0 , otherwise ,

(5.26)

where its domain is

DI :=
{
p ∈ Conf (Q,β + ǫ)

∣∣∣ S̊i 6= ∅ ∀i ∈ I
}
. (5.27)

Note that for a given configuration in its domain, DI , a local policy index, I, indicates
which robots are assigned to sensory cells with nonempty interiors, and so the domains,
DI , of local controllers defines a finite open cover of Conf (Q,β + ǫ). Hence, since all
unassigned robots are stationary under the “move-to-constrained-centroid” law and every
robot whose sensory cell has a nonempty interior is assigned to the coverage task, one can

12 Note that this set cannot be empty since it contains the minima of a smooth function over a compact
set (5.22).
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further conclude that these local controllers can be composed using the policy selection
strategy, g : Conf (Q,β + ǫ)→ P (m) maximizing the number of assigned robots,13

g (p) := arg max
I ⊆{1, ... ,m},

p∈DI

|I| , (5.28)

such that the resulting hybrid vector field is the same as the “move-to-constrained-centroid”
law in (5.24), i.e., for any p ∈ Conf (Q,β + ǫ),

u (p) = ug(p) (p) . (5.29)

Note that, since a sensory cell with a nonempty interior can not instantaneously appear or
disappear under any continuous motion, each time when a local controller is selected by g,
the local controller steers the robots for a nonzero time.

Now the continuity properties of each local control policy can be observed as follows.
As in the case of Voronoi diagrams [44], we have that the boundary of a sensory cell with
a nonempty interior is a piecewise continuously differentiable function of robot locations,
and its centroid is continuously differentiable with respect to robot locations. Similarly, the
boundary of each element of F (p,β + ǫ) is piecewise continuously differentiable, because
each free cell is a nonempty erosion of an element of the body diagram B (p,β + ǫ) by a
fixed closed ball. Hence, one can conclude that each local control policy is piecewise contin-
uously differentiable, because metric projections onto (moving) convex cells are piecewise
continuously differentiable [135, 199, 146], and the composition of piecewise continuously
differentiable functions are also piecewise continuously differentiable [50].

Therefore, the existence, uniqueness and continuously differentiability of the flow of
each local controller uI follow from the Lipschitz continuity of uI in its compact domain
DI , because a piecewise continuously differentiable function is also locally Lipschitz on its
domain [50] and a locally Lipschitz function on a compact set is globally Lipschitz on that
set [127]. Hence, since their domains define a finite open cover of Conf (Q,β + ǫ), the
unique, continuous and piecewise differentiable flow of the “move-to-constrained-centroid”
law is constructed by piecing together trajectories of these local policies.

Finally, a natural choice of a Lyapunov function candidate for the stability analysis is
the continuously differentiable location optimization function HS (5.10), and one can verify
from (5.11), (5.22) and (5.24) that for any p ∈ Conf (Q,β+ǫ) 14

ḢS (p,σ) = −k
m∑

i=1

µSi
2(pi − cSi

)T (pi − cSi
)︸ ︷︷ ︸

≥‖pi−cSi‖
2
,

since pi ∈Fi and ‖pi−cSi‖2≥‖cSi
−cSi‖2

≤ −k
m∑

i=1

µSi
‖pi − cSi

‖2 ≤ 0 , (5.30)

which is equal to 0 only if pi = cSi
for all i, i.e., p ∈ GS (Q,β + ǫ,σ). Thus, it follows from

LaSalle’s Invariance Principle [127] that all multirobot configurations in Conf (Q,β + ǫ)
asymptotically reach GS (Q,β + ǫ,σ). If an equilibrium p∗ in GS (Q,β + ǫ,σ) is isolated,
then it is guaranteed that ḢS (p,σ) < 0 in a neighborhood of p∗, and so it is locally

13Here P (m) denotes the set of all subsets of {1, 2, . . . , m}.
14AT is the transpose of matrix A.
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asymptotically stable [108]. �

As a final remark, we would like to emphasize that, since its construction is only based
on power partitions, our “move-to-constrained-centroid” law is distributed in the sense of
planar triangulations [20, 137].

5.3.3 Congestion Control of Unassigned Robots

In this subsection, we shall present a heuristic congestion management strategy for unas-
signed robots that improves assigned robots’ progress.

For a choice of vectors of body radii β ∈ (R≥0)
m, safety margins ǫ ∈ (R>0)

m and
sensory footprint radii σ ∈ (R≥0)

m, let p ∈ Conf (Q,β + ǫ) be a multirobot configuration
in Q with the associated body diagram B (p,β + ǫ) = {B1, B2, . . . , Bm}, free subdiagram
F (p,β + ǫ) = {F1, F2, . . . , Fm} and sensory diagram S (p,σ) = {S1, S2, . . . , Sm}.

Consider the following heuristic management of robots: if ith robot has a sensory cell
Pi with a nonempty interior, then it is assigned to the coverage task with sensory cell
Si; otherwise, since the robot becomes redundant for the coverage task, it is assigned
to move towards a safe location in Bi. We therefore define the set of “active” domains
A (p,β + ǫ,σ) = {A1, A2, . . . , An} of robots as

Ai :=

{
Si , if S̊i 6= ∅ ,
Bi , otherwise .

(5.31)

Note that A (p,β + ǫ,σ) defines a cover of Q and its elements have nonempty interior for
all p ∈ Conf (Q,β + ǫ) (Proposition 5.2).

For the first-order robot dynamics (5.7), we propose the following “move-to-constrained-
active-centroid” law

ui = −k (pi − cAi
) , (5.32)

that steers each robot towards the constrained centroid, cAi
as defined in (5.23), of its active

domain, Ai, which is the closest point in F i to the centroid cAi
and so uniquely solves [37]

minimize ‖qi − cAi
‖2

subject to qi ∈ F i

(5.33)

where F i is convex and k ∈ R>0 is a fixed control gain. Once again, we assume that
A (p,β + ǫ,σ) and F (p,β + ǫ) are continuously updated. It is also useful to have
GA (Q,β + ǫ,σ) denote the set of equilibria of the “move-to-constrained-active-centroid”
law where robots are located at the constrained centroid of their active domains,

GA (Q,β + ǫ,σ) :=
{
p ∈ Conf (Q,β + ǫ)

∣∣∣pi = cAi
∀i
}
. (5.34)

We summarize some important properties of our “move-to-constrained-active-centroid”
law as follows:

Proposition 5.3 For any choice of vectors of body radii r ∈ (R≥0)
m, safety margins

α ∈ (R>0)
m and sensory radii σ ∈ (R≥0)

m, the “move-to-constrained-active-centroid” law
in (5.32) leaves the configuration space of nonintersecting disks Conf (Q,β + ǫ) positively
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invariant; and its unique, continuous and piecewise differentiable flow, starting at any con-
figuration in Conf (Q,β + ǫ), asymptotically reaches GA (Q,β + ǫ,σ) without increasing the
utility function HS (·,σ) (5.10) along the way.

Proof The positive invariance of Conf (Q,β + ǫ) under the “move-to-constrained-active-
centroid” law and the existence, uniqueness and continuity properties of its flow follow the
same pattern as established in Theorem 5.1.

For the stability analysis, using (5.11), (5.32) and (5.33), one can show that the contin-
uously differentiable utility function HS (.,σ) (5.10) is nonincreasing along the trajectory
of the “move-to-constrained-active-centroid” law as follows:

ḢS (p,σ) = −k
∑

i∈{1,...,m}
S̊i 6=∅

µSi
2(pi−cSi

)T(pi−cSi
)︸ ︷︷ ︸

≥‖pi−cSi‖2,
since pi∈Fi and ‖pi−cSi‖

2≥‖cSi
−cSi‖

2

− k
∑

i∈{1,...,m}
S̊i=∅

µSi︸ ︷︷ ︸
=0

since S̊i=∅

2(pi−cSi
)T(pi−cBi

) ,

≤ −k
∑

i∈{1,...,m}
S̊i 6=∅

µSi
‖pi − cSi

‖2 ≤ 0 . (5.35)

Hence, we have from Lasalle’s Invariance Principle [127] that, at an equilibrium point of the
“move-to-constrained-active-centroid” law, a robot is located at the constrained centroid,
cSi

, of its sensory cell, Si, if it has a nonempty interior, i.e., S̊i 6= ∅. Given that pi = cSi
for

all i ∈ {1, . . . ,m} with S̊i 6= ∅, using (5.11), (5.32) and (5.33), one can further show that

ḢB (p,β+ǫ) = −k
∑

i∈{1,...,n}
S̊i 6=∅

µBi
2(pi−cBi

)T(pi−cSi
)︸ ︷︷ ︸

=0,
since pi=cSi

− k
∑

i∈{1,...,n}
S̊i=∅

µBi
2(pi−cBi

)T(pi−cBi
)︸ ︷︷ ︸

≥‖pi−cBi‖
2
,

since pi∈Fi and ‖pi−cBi‖2≥‖cBi
−cBi‖2

,

≤ −k
∑

i∈{1,...,n}
S̊i=∅

µBi
‖pi − cBi

‖2 ≤ 0 . (5.36)

Therefore, at a stationary point of (5.32) ith robot is located at the constrained centroid,
cBi

, of its body cell Bi if S̊i = ∅. Overall, by Lasalle’s Invariance Principle, we have that any
multirobot configuration starting in Conf (Q,β + ǫ) asymptotically converges to a locally
optimal sensing configuration in GA (Q,β + ǫ,σ), which completes the proof. �

5.3.4 Coverage Control of Differential Drive Robots

We now present another extension of our “move-to-constrained-centroid” law of Section
5.3.2 for the widely used kinematic differential drive model.

Consider a noncolliding placement of a heterogeneous group of disk-shaped differential
drive robots (p,θ) ∈ Conf (Q,β+ǫ) × (−π, π]n in a convex planar environment Q ⊂ R2

with associated vectors of body radii β ∈ (R≥0)
n, safety margins ǫ ∈ (R>0)

n and sensory
footprint radii σ ∈ (R≥0)

n, where θ = (θ1, θ2, . . . , θn) is the vector of robot orientations.
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The kinematic equations describing the motion of each differential drive robot are

ṗi = vi

[
cos θi
sin θi

]
, and θ̇i = ωi , (5.37)

where vi ∈ R and ωi ∈ R are, respectively, the linear (tangential) and angular velocity
inputs of ith robot. Note that the differential drive model is underactuated due to the

nonholonomic constraint
[
− sin θi
cos θi

]T
ṗi = 0.

Let S (p,σ) = {S1, S2, . . . , Sm} (5.9) be the sensory diagram of Q based on robot loca-
tions p and sensory footprint radii σ, and F (p,β + ǫ) = {F1, F2, . . . , Fm} (5.20) be the free
subdiagram associated with configuration p and enlarged body radii β+ ǫ. For a choice of
ε ∈ (R>0)

n with εi > ǫi for all i, we further define T (p,β + ε) = {T1, T2, . . . , Tm} to be

Ti := conv
(
{pi} ∪ F ′

i

)
, (5.38)

where F (p,β+ε) = {F ′
1, F

′
2, . . . , F

′
m} and conv (A) denotes the convex hull of set A. Note

that, since F ′
i ⊂ Fi, pi ∈ Fi and Fi is convex, every element of T (p,β + ε) is contained

in the associated element of F (p,β + ǫ), i.e., Ti ⊆ Fi. It is useful to remark that we
particularly require pi ∈ Ti to guarantee an optimal choice of a local target position in
(5.42) relative to pi, and we construct subset Ti of Fi to increase the convergence rate of
our proposed coverage control law in (5.44), by guaranteeing that the robot can nearly align
its orientation with its target location in finite time.

As in the case of “move-to-constrained-centroid” law of fully actuated robots in (5.24),
for optimal coverage, each differential drive robot will intent to move towards the con-
strained centroid, cSi

(5.23), of its sensory cell, Si, but with a slight difference due to the
nonholonomic constraint. To determine a linear velocity input that guarantees collision
avoidance and conforms to the nonholonomic constraint, we select a safe target location
that solves the following convex programming,

minimize ‖qi − cSi
‖2

subject to qi ∈ F i ∩Hi

(5.39)

where

Hi :=

{
x ∈ Q

∣∣∣
[
− sin θi
cos θi

]T
(x− pi) = 0

}
, (5.40)

is the straight line motion range due to the nonholonomic constraint. Note that F i ∩Hi is
a closed line segment in Q. Hence, once again, the unique solution of (5.39) is given by

c vSi
:=

{
cSi

, if cSi
∈ F i ∩Hi ,

ΠF i∩Hi
(cSi

) , otherwise ,
(5.41)

where ΠC is the metric projection map onto a convex set C. Similarly, to determine robot’s
angular motion, we select another safe target location that solves

minimize ‖qi − cSi
‖2

subject to qi ∈ T i

(5.42)
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where T i ⊂ F i is convex, and the unique solution of (5.42) is

cωSi
:=

{
cSi

, if cSi
∈ T i ,

ΠT i
(cSi

) , otherwise .
(5.43)

Accordingly, based on a standard differential drive controller [19], we propose the fol-
lowing “move-to-constrained-centroid” law for differential drive robots,15

vi = −k
[
cos θi
sin θi

]T (
pi − c vSi

)
, (5.44a)

ωi = k atan




[
− sin θi
cos θi

]T (
pi − cω

Si

)

[
cos θi
sin θi

]T (
pi − cωSi

)


 , (5.44b)

where k > 0 is fixed. Note that the linear velocity control vi is a function of the constrained
centroid c vSi

(5.41) of the associated sensory cell handling both collision avoidance and
the nonholonomic constraint whereas the angular velocity control ωi is a function of the
constrained centroid cωSi

(5.43) of the associated power cell only handling collision avoidance.
Having GD(Q,β, ǫ, ε,σ) denote its set of stationary points, where the constrained cen-

troids c vSi
and cωSi

coincide, and ith robot is located at c vSi
= cωSi

,

GD(Q,β, ǫ, ε,σ) :=
{
p∈Conf(Q,β+ǫ)

∣∣∣pi=c vSi
=cωSi

∀i
}
,

we summarize important qualitative properties of the “move-to-constrained-centroid” law
of differential drive robots as:

Proposition 5.4 For any β,σ ∈ (R≥0)
m and ǫ, ε ∈ (R>0)

m with ǫi < εi for all i,
the “move-to-constrained-centroid” law of differential drive robots in (5.44) asymptotically
steers all configurations in its positively invariant domain Conf (Q,β + ǫ)×(−π, π]m towards
the set of optimal sensing configurations GD (Q,β, ǫ, ε,σ)×(−π, π]m without increasing the
utility function HS (·,σ) (5.10) along the way.

Proof The configuration space Conf (Q,β + ǫ)×(−π, π]m is positively invariant under the
“move-to-constrained-centroid” law in (5.44), because, by construction (5.39), each robot’s
motion is constrained to the associated safe partition subcell in Q. The existence and
uniqueness of its flow can be established using the pattern of the proof of Theorem 5.1 and
the flow properties of the differential drive controller in [19].

Now, usingHS (·,σ) (5.10) as a continuously differentiable Lyapunov function candidate,
we obtain the stability properties as follows: for any (p,θ) ∈ Conf (Q,β + ǫ)× (−π, π]m

ḢS (p,σ) = −k
m∑

i=1

µSi
2(pi − cSi

)T
(
pi − c vSi

)
︸ ︷︷ ︸

≥
∥

∥

∥
pi−c v

Si

∥

∥

∥

2
,

since pi ∈Fi∩Hi and ‖pi−cSi‖2≥
∥

∥

∥
c v
Si

−cSi

∥

∥

∥

2

≤ −k
m∑

i=1

µSi

∥∥pi − c v
Si

∥∥2 ≤ 0 , (5.45)

15To resolve indeterminacy we set ωi = 0 whenever pi = cω
Si
.
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where ṗi = −k
(
pi − c vSi

)
. Hence, by LaSalle’s Invariance Principle [127], at a stationary

point of (5.44) ith robot is located at c v
Si
. Since, for fixed c vSi

and cω
Si
, the standard differen-

tial drive controller asymptotically aligns each robot with the constrained centroid cωSi
, i.e.,

[
− sin θi
cos θi

]T(
pi − cω

Si

)
= 0 [19], it is guaranteed by (5.39) and (5.42) that c vSi

= cωSi
whenever

∥∥pi − c vSi

∥∥ = 0 and
[
− sin θi
cos θi

]T(
pi − cωSi

)
= 0. Therefore, we have from LaSalle’s Invari-

ance Principle that all configurations in Conf (Q,β + ǫ) × (−π, π]m asymptotically reach
GD (Q,β, ǫ, ε,σ)× (−π, π]m. �

Finally, note that the “move-to-constrained-active-centroid” law of Section 5.3.3 can be
utilized for congestion control of differential drive robots by using active domains in (5.31)
instead of the sensory diagram S (p,σ), and the resulting coverage law maintains qualitative
properties.

5.4 Numerical Simulations

A common source of collisions between robots performing a distributed sensing task is a
concentrated event distribution, which generally causes robots to move towards the same
small region of the environment.16 We therefore consider the following event distribution,
φ : [0, 10]2 → R>0, for a homogeneous group of disk-shaped robots operating in a 10 × 10
square environment,

φ (q) = e
−
∥

∥

∥

∥

q−
[
7
7

]∥
∥

∥

∥

2

. (5.46)

In Figure 5.3, we present the resulting trajectories of our proposed coverage control al-
gorithms for a group of robots starting at around the bottom left corner of the environ-
ment. Since the event distribution is concentrated around a small region, as expected, the
standard “move-to-centroid” law steers robots to a centroidal Voronoi configuration where
robots collide. On the other hand, since a Voronoi partition has no occupancy defect,
our “move-to-constrained-centroid” and “move-to-constrained-active-centroid” laws yield
the same trajectory that asymptotically converges a collision-free constrained centroidal
Voronoi configuration. It is also well known that minimizing the location optimization func-
tion HS (5.10) generally results in a locally optimal sensing configuration, and we observe
in Figures 5.3.(c) and 5.3.(e) that, although they are initiated at the same location, fully
actuated and differential drive robots asymptotically reach different constrained centroidal
Voronoi configurations.

To demonstrate how unassigned robots may limit the mobility of others, we consider
a heterogeneous group of disk-shaped robots operating in a 10 × 10 environment with the
following event distribution function, φ : [0, 10]2 → R>0,

φ (q) = 1 + 10e
− 1

9

∥

∥

∥

∥

q−
[
8
8

]∥
∥

∥

∥

2

+ e
− 1

2

∥

∥

∥

∥

q−
[
8
2

]∥
∥

∥

∥

2

+ e
− 1

2

∥

∥

∥

∥

q−
[
8
4

]∥
∥

∥

∥

2

+ e
−
∥

∥

∥

∥

q−
[
3
7

]∥
∥

∥

∥

2

, (5.47)

16For all simulations, we set k = 1, ǫi = 0.05 and εi = 0.1 for all i ∈ {1, 2, . . . ,m}, and all simulations are
obtained through numerical integration of the associated coverage control law using the ode45 function of
MATLAB, and the computation of the centroid of a power cell in (5.6) is approximated by discretizing the
power cell by a 20× 20 grid.
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Figure 5.3: Avoiding collisions around a concentrated event distribution. (top, left) Spatial
event distribution, (bottom, left) Initial configuration of a homogeneous robot network,
where the weight of sensory cell are shown in the parenthesis, and the resulting trajectories
of (top, middle) the standard “move-centroid” law (5.12), (bottom, middle) the “move-to-
constrained-centroid” law (5.24), (top, right) the “move-to-constrained-active-centroid” law
(5.32), (bottom, right) the “move-to-constrained-centroid” law of differential drive robots
(5.44) which are initially aligned with the horizontal axis.

which is also used in [137]. In Figure 5.4, we illustrate the resulting trajectories of our
safe coverage control algorithms for a heterogeneous groups of robots starting at around
the left bottom corner of the environment. As seen in Figure 5.4.(a), the 2nd robot is
initially not assigned to any region. It stays stationary for a certain finite time under the
the standard “move-to-centroid” law during which the 1st robot moves through it. Also
notice that the 3rd robot violates the workspace boundary before converging a safe location.
In summary, the “move-to-centroid” law steers disk-shaped robots to a locally optimal
sensing configuration without avoiding collisions along the way. Our “move-to-constrained-
centroid” law prevents any possible self-collisions and collisions with the boundary of the
environment. However, since the 2nd robot stays unassigned for all future time, the 1st robot
is blocked and it can not move to a better coverage location. Fortunately, while guaranteeing
collision avoidance, our “move-to-constrained-active-centroid” law steers unassigned robots
to improve assigned robots’ progress for both fully actuated and differential drive robots,
as illustrated in Figures 5.4.(d) and 5.4.(e), respectively.
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Figure 5.4: Safe coverage control of heterogeneous disk-shaped robots with a heuristic
management of unassigned robots. (top, left) Spatial event distribution, (top, bottom)
Initial configuration of a heterogeneous robot network, where the weight of sensory cell are
shown in the parenthesis, and the resulting trajectories of (top, middle) the standard “move-
centroid” law (5.12), (bottom, middle) the “move-to-constrained-centroid” law (5.24), (top,
right) the “move-to-constrained-active-centroid” law (5.32), (bottom, right) the “move-to-
constrained-active-centroid” law of differential drive robots which are initially aligned with
the horizontal axis.

5.5 Summary

In distributed mobile sensing applications, networks of agents that are heterogeneous, re-
specting both actuation as well as body and sensory footprint, are often modelled by re-
course to power diagrams — generalized Voronoi diagrams with additive weights [20]. In
this chapter, we introduce a novel use of power diagrams for identifying collision-free multi-
robot configurations, and propose a constrained optimization framework combining coverage
control and collision avoidance for fully actuated disk-shaped robots, comprising the main
contributions of the chapter. We also present its extensions for the widely used differential
drive model and for heuristic congestion management of unassigned robots, while main-
taining the convergence and collision guarantees. Numerical simulations demonstrate the
effectiveness of the proposed coverage control algorithms.
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Chapter 6

Conclusions and Future Work

While it is essential to model and understand the topologies of configuration spaces in
order to design provably correct motion planners, configuration spaces arising in robotics
generally have complex shapes and high dimensions making it very difficult, if not impos-
sible, to explicitly model and study the underlying space, which is the technical challenge
that inspired this dissertation. We herein argued that automatically discovered intrinsic
structures in configuration spaces via clustering has the potential to afford computationally
efficient tools for modelling configuration spaces and for the design of provably correct mo-
tion planners. This new philosophy for modelling configuration spaces, still in its infancy,
yields promising results for closing the gap between configuration space and sampling-based
motion planning approaches — while the former is based on an explicit construction of a
configuration space, the latter is based on a dense collection of sample configurations con-
nected by simple paths.

Chapter 2 introduced the use of hierarchical clustering for relaxed, deterministic coordi-
nation and control of multiple robots. Hierarchical clustering [115] offers a natural abstrac-
tion for ensemble task encoding and control in terms of precise yet flexible organizational
specifications at different resolutions, by relating the continuous space of configurations
to the combinatorial space of trees. This hierarchical abstraction intrinsically suggests a
two-level navigation strategy for coordinated motion design: (i) at the low-level, perform
finer adjustments on configurations by using hierarchy-preserving vector fields; and (ii) at
the high-level, resolve structural conflicts between configurations by using a discrete transi-
tion policy in tree space. Accordingly, we proposed a provably correct generic hierarchical
navigation framework for collision-free coordinated motion design towards any given des-
tination via a sequence of hierarchy-preserving controllers recursively deployed on-the-fly
according to a discrete navigation rule in the space of cluster hierarchies. For a choice of a
hierarchical clustering algorithm, we demonstrated a computationally efficient instantiation
of our hierarchical navigation framework for coordinated control of an arbitrary number of
disk-shaped robots operating in an ambient Euclidean space. The contributions of Chap-
ter 2 that enable an efficient solution to the coordinated motion planning problem are:
(i) a topologically nontrivial abstraction that relates complex-shaped and high-dimensional
continuous space of multirobot configurations to the combinatorial space of trees with the
nearest neighbor interchange (NNI) connectivity, (ii) an explicit characterization of the
topology of configurations sharing the same cluster hierarchy, (iii) a recursively defined vec-
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tor field for hierarchy-preserving navigation, and (iv) a recursive algorithm that iteratively
constructs a navigation path in tree space.

Chapter 3 presented a comprehensive study of navigation in tree space, because, besides
our interest motivated by independent applications in coordinated robot navigation, navi-
gation in tree space is a fundamental classification problem common to both computational
biology and engineering, for construction of descriptive hierarchical organizational models
and for efficient informative comparison of hierarchical structures. Using the fact that a
binary cluster hierarchy is a maximal collection of compatible clusters [195] and two distinct
binary hierarchies always have some incompatible clusters, we proposed an NNI navigation
algorithm that recursively identifies and fixes incompatibilities between clusters of trees.
We showed that for trees with n leaves, our NNI navigation algorithms require O(n) time
for each iteration and the length of a navigation path, defined as the NNI navigation dis-
similarity dnav , between any pair of binary trees is at most 1

2 (n− 1) (n− 2). Hence, dnav
turns out to be an efficient approximation to the (NP-hard) NNI distance dNNI in terms
of “edit length”. At the same time, a closed form formula we derived for dnav presents it
as a weighted count of pairwise incompatibilities between clusters of trees, lending it the
character of an edge dissimilarity measure as well. A relaxation of this formula to a simple
count of pairwise incompatibilities of clusters of trees yields another measure, the crossing
dissimilarity dCM . Both dissimilarities are symmetric and positive definite (vanish only
between identical trees) on binary hierarchies but they fail to satisfy the triangle inequal-
ity. Nevertheless, both are bounded below by the widely used Robinson-Foulds metric dRF

and bounded above by a newly proposed true metric, the cluster-cardinality metric dCC .
We showed that each of the proposed new dissimilarities is computable in time O(n2) in
the number of leaves n, and we revealed the following order relation between these tree
measures,

2

3
dRF ≤

2

3
dNNI ≤

2

3
dnav ≤ dCM ≤ dCC . (6.1)

Chapter 4 introduced a novel application of separating hyperplanes of convex bodies to
the problem of sensor-based reactive robot navigation in unknown convex sphere worlds,
i.e., to construct a vector field over a compact convex Euclidean subset, populated with
unknown but sufficiently separated and strongly convex obstacles, whose flow brings a disk-
shaped robot from all but a zero measure set of initial conditions to a designated point
destination, with the guarantee of no collisions along the way. We utilized separating hy-
perplanes of convex bodies to identify a collision-free convex neighborhood of the robot, and
proved that the continuous feedback motion towards the metric projection of the goal loca-
tion onto this convex neigborhood solves the specified robot navigation problem. We also
proposed its practical extensions to two limited range sensing models and the nonholonom-
ically constrained kinematics of the standard differential drive vehicle, while maintaining
the provable properties.

Chapter 5 presented a constrained coverage control law for heterogeneous disk-shaped
robots that solves the combined sensory coverage and collision avoidance problem. In addi-
tion to their standard usages in distributed mobile sensing applications for solving sensory
task assignment and for modelling group heterogeneity in actuation, sensing, computation
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and energy sources [60, 137, 178], in this chapter we tailored Voronoi diagrams to precisely
encode multirobot collisions. We further presented practical extensions (a heuristic con-
gestion manager that speeds convergence and a lift of the point particle controller to the
more practical differential drive kinematics) that maintain the convergence and collision
avoidance guarantees.

We believe that the potential applications of clustering to feedback motion design pre-
sented in this dissertation only scratch the surface of its potential in the long run. Some
future extensions to these results are summarized below.

An interesting direction for future research is to extend our hierarchical navigation
framework presented in Chapter 2 to more practical settings in the field of robotics in-
cluding navigating around obstacles in compact spaces and a distributed implementation
of our navigation framework. Especially, when the scalability and efficiency of hierarchi-
cal protocols in sensor networks for information routing and aggregation is of concern [3],
these hierarchical methods suggest a promising unifying framework to simultaneously han-
dle control [18], communication[11] and information aggregation (fusion)[10] in multi-agent
systems. What is more, as opposed to rigidly imposed goal specifications, future work should
investigate clustering-based task specifications of multirobot systems, affording precise yet
flexible formation specifications while ignoring fine details of individual positioning.

Promising future research based on the results presented in Chapter 3 includes applica-
tions in perception, learning and anomaly detection where navigation in tree space might
play a key role for construction of acyclic graphical models and their informative compar-
ison. We believe that discriminative comparison of cluster hierarchies are likely of some
significance for learning graphical models and contextual scene understanding.

A potential extension to the current results presented in Chapter 4 is a fully smoothed
version of our sensor-based feedback motion planner, permitting its lift to more complicated
dynamical models such as force-controlled (second-order) and more severely underactuated
systems. This will enable its empirical demonstration for safe, high-speed navigation in a
forest-like environments and in human crowds. Future work can also focus on the extension
of these ideas for coordinated, decentralized feedback control of multirobot swarms. More
generally, we seek to identify fundamental limits on navigable environments for a memory-
less greedy robotic agent with a limited range sensing capability. Another exciting future
direction is combining a discrete-time version of our feedback motion planner (see Appendix
C.5) with another (e.g., sampling-based) motion planning algorithm to solve online robot
navigation problem in nonconvex environments.

Future extensions of safe Voronoi-based coverage control presented in Chapter 5 can
target hierarchical settings, based on nested partitions of convex environments [16], and
nonconvex environments. Combining coverage control and other collective behaviours (for
example, circular formations [198]) for active sensing is an interesting direction for future
research.

In the longer term, clustering-based robot motion planning and control is a rich re-
search environment with a large number of open problems, because while clustering offers
various algorithms to identify different structural patterns in configuration spaces, robotics
presents diverse types of robots and workspaces with varied topological properties. More-
over, abstract relations between continuous space of configurations and the combinatorial
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space of clustering models via clustering might have a significant value for the systematic
enumeration of intrinsic structural patterns in configuration spaces. For example, although
the continuous configuration space of a centipede-like multiple legged robot with rotating
legs (e.g., RHex [192]) is a torus [26], its locomotion pattern is usually described in terms of
combinatorial gait specifications based on the contact state of each leg [105, 118]. Hence,
an interesting research problem is how clustering can be exploited for descriptive high-level
modelling of gait transition and coordination in such robots.

Moreover, increasing interest in data-driven methods in robotics makes clustering a key
factor in robot motion design. In particular, automatic learning of motor skills and control
from large unlabelled data sets inevitably requires clustering for discovering hidden struc-
tural motion patterns within data. Spatio-temporal consistency of many sensory phenomena
in robotics also motivates the use of clustering in robot perception for anomaly detection,
video segmentation and contextual scene understanding, which we want to explore in future.
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Appendix A

Coordinated Robot Navigation:

Proof Details

A.1 Properties of the Hierarchy-Invariant Vector Field

Although the recursive definition of the hierarchy-preserving navigation policy fτ,y in Table
2.5 expresses an efficient encoding of intracluster and intercluster interactions and depen-
dences of individuals, which we suspect will prove to have value for distributed settings, it
yields a discontinuous vector field complicating the qualitative (existence, uniqueness, in-
variance, and stability) analysis, as anticipated from the proof structure of Theorem 2.4 in
Table A.1. We find it convenient to proceed instead by developing an alternative equivalent
representation of this vector field. Namely, we introduce a family of continuous and piece-
wise smooth covering vector fields whose application over a partition (derived from their
covering domains) of the stratum yields a continuous piecewise smooth flow (identical to
that generated by the original construction), which is considerably easier to analyze because
it admits an interpretation as a sequential composition [45] over the covering family.

We find it useful to first observe that the original construction yields a well defined and
effectively computable function.

Proposition A.1 The recursion in Table 2.5 results in a well defined function, fτ,y :

S(τ)→ (Rn)S, that can be computed for each configuration x ∈ S(τ) in O(|S|2) time.

Proof See Appendix A.2.2. �

A.1.1 An Equivalent System Model

Key for understanding the hierarchy-preserving navigation policy fτ,y in Table 2.5 is the
observation that for any configuration x ∈ S(τ), the list of visited clusters of τ satisfying
base conditions during the recursive computation of fτ,y defines a partition S of S compatible
with τ , i.e., S ⊂ C (τ). 1

1Note that the recursions in Table 2.5 and Table A.3 have the same base and recursion conditions, and
the recursion in Table A.3 returns the list of clusters satisfying base conditions, which defines a partition
of S (see Proposition A.2). Hence, using the relation between these recursions in Proposition A.4, one can
conclude this observation.
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Table A.1: Proof Structure of Theorem 2.4 : Logical Dependences

• Proposition A.1 (Quadratic Time Function) [A.1, p.123 ⇐ A.2.2, p.134]
• Proposition A.2 (Continuous&Piecewise Smooth) [A.1.1, p.125 ⇐ A.2.3,p.136]
– Lemma A.4 (Child Partition Block) [A.1.6, p.133]
• Proposition A.3 (Domain Covering Induced Partition) [A.1.1, p.125⇐A.2.4, p.137]
• Proposition A.4 (Equivalent Vector Field) [A.1.1, p.126 ⇐ A.2.5, p.138]
• Proposition A.11 (Stratum Positive Invariance) [A.1.4, p.130]
– Recalls Proposition A.3, Proposition A.4
– Proposition A.7 (Substratum Positive Invariance) [A.1.3, p.129 ⇐ A.2.9, p.140]
∗ Lemma A.6 (Invariance - Base Case 1) [A.2.9, p.140 ⇐ A.2.13, p.145]
∗ Lemma A.7 (Invariance - Base Case 2) [A.2.9, p.141 ⇐ A.2.14, p.147]
∗ Lemma A.8 (Invariance - Recursion) [A.2.9, p.141 ⇐ A.2.15, p.148]

• Proposition A.12 (Stratum Existence & Uniqueness) [A.1.4, p.130]
– Recalls Proposition A.3, Proposition A.4
– Proposition A.8 (SubstratumExistenceUniqueness) [A.1.3, p.129⇐A.2.8, p.140]
∗ Recalls Proposition A.2, Proposition A.7.
∗ Lemma A.2 (Relative Centroidal Dynamics) [A.1.6, p.132 ⇐ A.2.11,p.142]
∗ Lemma A.3 (Configuration Bound Radius) [A.1.6, p.A.3 ⇐ A.2.12, p.143]
· Recalls Lemma A.2.

– Proposition A.13 (Stratum Stability) [A.1.4, p.131]
∗ Recalls Proposition A.4, Proposition A.7.
∗ Proposition A.6 (Substratum Policy Selection) [A.1.3, p.129 ⇐ A.2.7, p.139]
· Recalls Proposition A.3.
· Lemma A.5 (Partition Refinement) [A.1.6, p.133]
∗ Proposition A.9 (Finite Time Prepares Relation) [A.1.3, p.130 ⇐ A.2.10, p.141]
· Lemma A.9 (Case (i) in Definition A.2) [A.2.10, p.141 ⇐ A.2.16, p.A.2.16]
· Lemma A.10 (Case (ii) in Definition A.2) [A.2.10, p.142 ⇐ A.2.17, p.A.2.17]
· Lemma A.11 (Case (iii) in Definition A.2) [A.2.10, p.142 ⇐ A.2.18, p.A.2.18]

• Proposition A.5 (Substratum Prepares Graph) [A.1.2, p.130 ⇐ A.2.6, p.138]
– Recalls Lemma A.4.
• Proposition A.10 (Nondegenerate Execution) [A.1.3, p.130]
– Recalls Proposition A.6, Proposition A.7.
– Lemma A.1 (Closed Substratum Domain) [A.1.3, p.132]

Now observe, depending on which base condition holds (see cases 2 and 4 in Table
2.5), every block I of partition S, associated with any given configuration x ∈ DA(I) ∪
(S(τ)\DH (I)), can be related to a binary scalar b̂I (x)∈{−1,+1} such that 2

b̂I (x) =

{
+1, if x ∈ DA (I) ,
−1, if x 6∈ DA (I) ∪DH (I) ,

(A.1)

where DA (I) and DH (I) are defined as in (2.15) and (2.18), respectively. We will use this
configuration space labeling scheme to recast the hierarchy-preserving control policy fτ,y
as an online sequential composition of a family of continuous and piecewise smooth local

2Observe from Table 2.5 that any configuration x ∈ S(τ ) satisfies a base condition (see cases 2 or 4 in
Table 2.5) at cluster I ∈ C (τ ) if x ∈ DA (I) ∪ (S(τ )\DH (I)). Also note that DA (I) ∪

(

S(τ )\DH (I)
)

=
DA (I) ∪

(

S(τ )\(DA (I) ∪DH (I))
)

, and DA (I) and S(τ ) \ (DA (I) ∪DH (I)) are disjoint.
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controllers indexed by partitions of S compatible with τ and associated binary vectors as
follows.

A partition S of S is said to be compatible with τ ∈ BTS if and only if S ⊂ C (τ), and
denote by PS (τ) the set of partitions of S compatible with τ . Accordingly, define SPS (τ)
to be the set of substratum policy indices

SPS (τ) :=
{
(S,b)

∣∣∣ S ∈ PS (τ) ,b ∈ {−1,+1}S
}
. (A.2)

For any partition S ∈ PS (τ) of S and b := (bI)I∈S ∈ {−1,+1}S, the domain D (S,b) of a
local control policy hS,b, presented in Table A.2, is defined to be

D (S,b) :=
⋂

I∈S

(
DB (I,bI) ∩

⋂

K∈Anc (I,τ)

DH (K)
)
, (A.3)

where the set of configurations satisfying the base condition associated with cluster I of S
and binary scalar bI is given by

DB (I,bI) :=

{
DA (I) , if bI = +1,
S(τ) , if bI = −1,

(A.4)

and all ancestors K ∈ Anc (I, τ) of I in τ satisfy the recursion condition of having properly
separated children clusters described by DH (K) (2.18). Accordingly, let Vτ (S) denote the
set of clusters of τ visited during the recursive computation of hS,b in Table A.2,

Vτ (S) :=
{
K ∈ C (τ)

∣∣K ⊇ I, I ∈ S
}
. (A.5)

Note that S ∈ Vτ (S), because S is a partition of the root cluster S and any block I ∈ S

satisfies I ⊆ S.
Observe that each local control policy hS,b is a recursive composition of continuous

functions of x; therefore, it is continuous.

Proposition A.2 The recursion in Table A.2 defines a continuous and piecewise smooth
function,3 hS,b :S(τ)→(Rn)S.

Proof See Appendix A.2.3. �

To conclude our introduction of the family of covering fields in Table A.2, we now
observe that the vector field fτ,y in Table 2.5 is an online concatenation of continuous
local controllers, hS,b, of Table A.2 using a policy selection method described in Table A.3,
summarized as:

Proposition A.3 For any given configuration x ∈ S(τ), the policy selection algorithm p in
Table A.3 always returns a valid policy index (S,b) = p (x) in SPS (τ) (A.2) such that the
domain D (S,b) (A.3) of the associated local control policy hS,b (Table A.2) contains x, i.e.,

x ∈ (D ◦ p) (x) . (A.6)

Proof See Appendix A.2.4. �

3Note that if f : U → Rn is continuous and piecewise smooth on an open set U ⊂ Rn, then it is locally
Lipschitz on U [135].
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Table A.2: Local Control Policies in a Hierarchical Stratum

Let S be a partition of S with S ⊂ C (τ), and b = (bI)I∈S ∈ {−1,+1}S. For
any desired y ∈ S(τ), supporting τ ∈ BTS, and initial x ∈ D (S,b) (A.3),
the local control policy, hS,b : D (S,b)→ (Rn)S ,

hS,b (x) := ĥS,b (x,0, S) ,

is recursively computed starting at the root cluster S with the zero control
input 0 ∈ (Rn)S as follows: for any u ∈ (Rn)S and I ∈ Vτ (S) (A.5),

B
as
e
C
as
es





R
ec
u
rs
io
n





1. function û = ĥS,b (x,u, I)

2. if I ∈ S,

3. if bI = +1

4. û← fA (x,u, I) (2.14),

5. else

6. û← fS (x,u, I) (2.24),

7. end

8. else

9. {IL, IR} ← Ch (I, τ),

10. ûL ← ĥS,b (x,u, IL),

11. ûR ← ĥS,b (x, ûL, IR),

12. û← fH (x, ûR, I) (2.19),

13. end

14. return û

% Attracting Field

% Split Separation Field

% Recursion for Left Child

% Recursion for Right Child

% Split Preserving Field

Proposition A.4 For any given x ∈ S(τ), the vector field fτ,x (see Table 2.5) and the local
control policy hS,b (x) (see Table A.2) selected as (S,b) = p (x) (see Table A.3) generate the
same control (velocity) inputs, i.e.,

fτ,y (x) = hp(x) (x) . (A.7)

Proof See Appendix A.2.5. �

Since the vector field fτ,y is defined for entire S(τ), it is useful to remark that the domains
D (S,b) (A.3) of substratum policies hS,b define a cover of S(τ) indexed by partitions of S
compatible with τ and associated binary vectors.

A.1.2 Online Sequential Composition of Substratum Policies

We now briefly describe the logic behind online sequential composition [45] of substratum
policies.
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Table A.3: Substratum Policy Selection Algorithm

For any initial x ∈ S(τ) and desired y ∈ S(τ), supporting τ ∈ BTS ,
the policy selection algorithm, p : S(τ)→ SPS (τ),

p (x) := p̂ (x, S) ,

recursively generates a local policy index in SPS (τ) (A.2) starting
at the root cluster S as follows: for any I ∈ C (τ),

B
as
e
C
as
es





R
ec
u
rs
io
n





1. function (Î, b̂) = p̂ (x, I)

2. if x ∈ DA (I) (2.15),

3. Î← {I},
4. b̂← +1,

5. else if x 6∈ DH (I) (2.18),

6. Î← {I},
7. b̂← −1,
8. else

9. {IL, IR} ← Ch (I, τ),

10. (ÎL, b̂L)← p̂ (x, IL),

11. (ÎR, b̂R)← p̂ (x, IR),

12. Î← ÎL ∪ ÎR,

13. b̂← b̂L‖b̂R,
4

14. end

15. return (Î, b̂)

To characterize our policy selection strategy, we first define a priority measure 5 for
each local controller hS,b associated with a partition S ∈ PS (τ) of S and a binary vector

b ∈ {−1,+1}S to be

priority (S,b) :=
∑

I∈S
bI |I|2 . (A.8)

Note that the maximum and minimum of the priority measure is attained at the coarsest
partition {S} of S, and bS = +1 and bS = −1, respectively,

priority ({S} ,+1) = |S|2 , (A.9a)

priority ({S} ,−1) = − |S|2 . (A.9b)

4Here, p‖q denotes the concatenation of vectors p and q. That is to say, let X,Y be two sets and A,B

be two finite sets of coordinate indices; then, for any p ∈ XA and q ∈ Y B , we say r ∈ XA × Y B is the
concatenation of p and q, denoted by r = p‖q, if and only if ra = pa and rb = qb for all a ∈ A and b ∈ B.

5In past literature, such a priority assignment of local controllers is done by using backchaining of the
prepares graph in an offline manner [45].
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Accordingly, we shall refer to the local control policy with index ({S} ,+1) as the goal
policy, because it has the highest priority and asymptotically steers all configurations in its
domain D ({S} ,+1) (A.3) to y following the negated gradient of V (x) = 1

2 ‖x− y‖, i.e.,
for any x ∈ D ({S} ,+1)

h{S},+1 (x) = −∇V (x) = −(x− y) . (A.10)

Note that since the root cluster S has no ancestor, i.e., Anc (S, τ) = ∅, by definition (A.3),
D ({S} ,+1) = DA (S), and DA (S) (2.15) contains the goal configuration y.

We now introduce an abstract connection between local policies for high-level planning:

Definition A.1 Let (S,b) , (S′,b′) ∈ SPS (τ) be two distinct substratum policy indices.
Then, hS,b is said to prepare hS′,b′ if and only if all trajectories of hS,b starting in its
domain D (S,b), possibly excluding a set of measure zero, reach D(S′,b′) in finite time. 6

Accordingly, define the prepares graph PG=(SPS (τ),EPG) to have vertex set SPS (τ)(A.2)
with a policy index (S,b)∈ SPS (τ) connected to another policy index (S′,b′) by a directed
edge in EPG if and only if hS,b prepares hS′,b′.

Although the prepares graph PG is the most critical component of the sequential compo-
sition framework [45] that defines a discrete abstraction of continuous control policies, the
exponentially growing cardinality of substratum policies, discussed in Appendix A.1.5, and
the lack of an explicit characterization of globally asymptotically stable configurations of
substratum policies make it usually difficult to compute the complete prepares graph.

Alternatively, we introduce a computationally efficient and recursively constructed graph
of substratum policies that is nicely compatible with our needs, yielding a subgraph of the
prepares graph, where every policy index is connected to the goal policy index ({S} ,+1)
through a directed path, as follows.

Definition A.2 Let P̂G = (SPS (τ) , ÊPG) be a graph with vertex list SPS (τ), and a policy
index (S,b) ∈ SPS (τ) that is connected to another policy index (S′,b′) ∈ SPS (τ) by a

directed edge in ÊPG if and only if at least one of the following properties holds: 7

(i) Complement: There exists a singleton cluster I ∈ S such that bI = −1, and S′ = S

and b′ ∈ {−1,+1}S′ with b′I = +1 and b′D = bD for all D ∈ S \ {I}.
(ii) Split: There exists a nonsingleton cluster I ∈S such that bI =−1, and S′ = S \ {I} ∪

Ch (I, τ) and b′ ∈ {−1,+1}S′ with b′K = −1 for all K ∈ Ch (I, τ) and b′D = bD for
all D ∈ S \Ch (I, τ).

(iii) Merge: There exists a nonsingleton cluster I ∈ C (τ) such that Ch (I, τ) ⊂ S and

bK =+1 for all K ∈Ch (I, τ), and S′ = S \ Ch (I, τ) ∪ {I} and b′ ∈ {−1,+1}S′ with
b′I = +1 and b′D = bD for all D ∈ S \Ch (I, τ).

Note that, since S is compatible with τ , i.e., S ⊂ C (τ), if |S| > 1, then there exists a
cluster I ∈ C (τ) such that Ch (I, τ) ⊂ S (Lemma A.4). Hence, for any policy index

6 Here, we slightly relax the original definition of the prepares relation in [45] by not requiring the
knowledge of goal sets, globally asymptotically stable states of local control policies in advance.

7One may think of these conditions as restructuring operations of policy indices by merging/splitting of
partition blocks and/or alternating binary index values, like NNI moves of trees in Section 2.1.4.
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(S,b) 6= ({S} ,+1), there always exists a policy index (S′,b′) 6= (S,b) that satisfies one of
these conditions, (i)-(iii) above. Thus, the out-degree of a policy index (S,b) 6= ({S} ,+1)

in P̂G is at least one, whereas the goal policy index ({S} ,+1) in P̂G has an out-degree of

zero. We summarize some important properties of P̂G as follows:

Proposition A.5 The graph P̂G = (SPS (τ) , ÊPG), as defined in Definition A.2, is an
acyclic subgraph of the prepares graph PG = (SPS (τ) ,EPG) (see Definition A.1) such that
all policy indices in SPS (τ) are connected to the goal policy index ({S} ,+1) through di-

rected paths in ÊPG, of length at most O(|S|2) hops, along which priority (A.8) is strictly

increasing, i.e., for any
(
(S,b), (S′,b′)

)
∈ ÊPG

priority(S′,b′) > priority (S,b) . (A.11)

Proof See Appendix A.2.6. �

Although a given local policy can prepare more than one potential successor (i.e., higher
priority), our policy selection method chooses the one with the strictly highest priority:

Proposition A.6 For any given x ∈ S(τ), the policy selection method, p, in Table A.3
always returns the index of a local controller with the maximum priority among all local
controllers whose domain contains x, i.e.,

p (x) = arg max
(S′,b′)∈SPS(τ)
x∈D(S′,b′)

priority(S′,b′) (A.12)

and all the other available local controllers have strictly lower priorities.

Proof See Appendix A.2.7. �

A.1.3 Qualitative Properties of Substratum Policies

We now list important qualitative (existence, uniqueness, invariance, and stability) proper-
ties of the substratum control policies of Table A.2. Let S be a partition of S compatible
with τ , i.e., S ⊂ C (τ), and b is a binary vector in {−1, 1}S.

Proposition A.7 The domain D (S,b) (A.3) of a substratum policy hS,b (see Table A.2)
is positive invariant.

Proof See Appendix A.2.9. �

Proposition A.8 (Substratum Existence and Uniqueness) The vector field hS,b (see Table
A.2) is locally Lipschitz in S(τ), and for any initial x ∈ D (S,b) ⊂ S(τ), there always
exists a compact (bounded and closed) subset W of D (S,b) (A.3) such that all trajectories
of hS,b starting at x remain in W for all future time.

Therefore, there is a unique continuous and piecewise smooth flow of hS,b in D (S,b)
that is defined for all future time.

Proof See Appendix A.2.8. �
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Proposition A.9 (Finite Time Prepares Relation) Each local control policy hS,b, with the
exception of the goal controller h{S},+1, steers (almost) all configurations in its domain
D (S,b) to the domain D (S′,b′) of another local controller hS′,b′ at a higher priority

(A.8) in finite time.

Proof See Appendix A.2.10. �

Proposition A.10 (Nonzero Execution Time) Let xt be a trajectory of the local control
policy hS,b starting at x0 ∈ D (S,b) such that p

(
x0
)
= (S,b).

Then, the local controller is guaranteed to steers the group for a nonzero time until
reaching the domain of a local controller at a higher priority (A.8), i.e.,

inf
t

{
t ≥ 0

∣∣p
(
xt
)
6= (S,b)

}
> 0. (A.13)

Proof Recall that for any configuration x ∈ S(τ), the policy selection method in Table
A.3 always yields the index of the local controller with the highest priority among all local
controllers whose domains contain x (Proposition A.6). Hence, since the initial configuration
x0 is not included in the domain of any other local controller with a higher priority than
priority(S,b) and domains of local controllers are closed relative to S(τ) (Lemma A.1),
there always exists an open set around x0 which does not intersect with the domain of
any local controller at a higher priority than priority(S,b). Thus, since its domain is
positively invariant (Proposition A.7), hS,b is guaranteed to steer the configuration in the
intersection of this open set and D (S,b) for a nonzero time. �

A.1.4 Qualitative Properties of Stratum Policies

We now proceed with a list of important qualitative properties of the hierarchy-preserving
navigation policy of Table 2.5.

Proposition A.11 The stratum S(τ) is positive invariant under the hierarchy-invariant
control policy fτ,y (see Table 2.5).

Proof Recall that the domains D (A.3) of local control policies in Table A.2 define a cover
of S(τ) (see Proposition A.3), each of whose elements is positively invariant under the
flow of the associated local policy (see Proposition A.7). Thus, the result follows because
the hierarchy preserving vector field fτ,y is equivalent to online sequential composition of
local control policies of Table A.2 based on the policy selection algorithm in Table A.3 (see
Proposition A.4). �

Proposition A.12 (Stratum Existence and Uniqueness) The hierarchy invariance control
policy fτ,y (Table 2.5) has a unique, continuous, and piecewise smooth flow, ϕt, in S(τ),
defined for all t ≥ 0.

Proof Recall from Proposition A.4 that fτ,y is equivalent to online sequential composition
of a family of substratum policies which have unique, continuous, and piecewise smooth
flows, defined for all t ≥ 0, in their positive invariant domains (see Proposition A.8). Since
their domains define a finite closed cover of S(τ) (see Proposition A.3), the unique, con-
tinuous, and piecewise flow of fτ,y is constructed by piecing together trajectories of these
substratum policies. �
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Proposition A.13 Any y ∈ S(τ) is an asymptotically stable equilibrium point of the
hierarchy-invariant control policy, fτ,y (see Table 2.5), whose basin of attraction includes
S(τ), except a set of measure zero.

Proof Using the equivalence (Proposition A.4) of the hierarchy preserving field fτ,y and
the sequential composition of substratum control policies of Table A.2 based on the policy
selection method in Table A.3, the result can be obtained as follows.

Since priority (A.8) is an integer-valued function with bounded range [− |S|2, |S|2],
using Proposition A.6 and Proposition A.9, one can conclude that the disks starting at
almost any configuration in S(τ) reach the domain D ({S} ,+1) of the goal policy h{S,+1}
in finite time after visiting at most O(|S|2) of other local control policies. Note that y ∈
D ({S} ,+1). Then, the goal policy h{S},+1,

h{S},+1 (x) = −∇1
2 ‖x− y‖22 = − (x− y) , (A.14)

asymptotically steers all configuration in D ({S} ,+1) to y while keeping its domain of
attraction DA (S) positively invariant (see Proposition A.7), which completes the proof �

A.1.5 On the Cardinality of Substratum Policies

To gain an appreciation for the computational efficiency of hierarchy preserving vector field
in Table 2.5, we find it useful to have a brief discussion without proofs on the cardinality
of the family of local control policies of Table A.2. The number of partitions PS (τ) of S 8

compatible with a cluster hierarchy τ ∈ BTS is recursively given by 9

|PS (τ)| = 1 + |PS (τL)| |PS (τR)| , (A.16)

where τL, τR denote the left and right subtrees of τ , respectively. For any caterpillar tree 10

σ ∈ BTS, we have |PS (σ)| = |S|, because one of two subtrees of σ is always one-leaf tree. On
the other hand, for a balanced tree γ ∈ BTS , the cardinality of partitions of S compatible

8The number of partitions of a set with n elements is given by the Bell number, Bn, recursively defined
as: for any n ∈ N [189]

Bn+1 =
n
∑

k=0

(

n

k

)

Bk, (A.15)

where B0 = 1. The Bell number, Bn, grows super exponentially with the set size, n; however, in our case we
require partitions of S to be compatible with τ and this restricts the growth of number of such partitions of
S to at most exponential with |S|, depending on the structure of τ .

9Let {SL, SR} = Ch (S, τ ) be the root split of τ , and τL and τR are the associated subtrees of τ rooted
at SL and SR, respectively. Then, any partition of S compatible with τ , except the trivial partition {S},
can be written as the union of a partition of SL compatible with τL and a partition of SR compatible with
τR. Hence, one can conclude the recursion in (A.16).

10A caterpillar tree is a rooted tree in which at most one of the children of every interior cluster is
nonsingleton.
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with γ grows exponentially, 11

√
2
|S| ≤ |PS (γ)| ≤ 4

5

√
5

2

|S|
, (A.21)

for |J | = 2k, k ∈ N+ = {1, 2, 3, . . .}; for example,
∣∣P[2] (γ)

∣∣ = 2,
∣∣P[4] (γ)

∣∣ = 5,
∣∣P[8] (γ)

∣∣ = 26
and

∣∣P[16] (γ)
∣∣ = 677. In addition to a partition S of S compatible with τ , every local control

policy hS,b is indexed by a binary variable of size |S| with a possible choice of 2|S| values.
Thus, the number of local control policies hS,b grows exponentially with the group size, |S|.

A.1.6 A Set of Useful Observations on Substratum Policies

Here we introduce a set of useful lemmas that constitute building blocks for proving some
qualitative properties of substratum policies presented in Appendix A.1.3. Let S be a
partition of S compatible with τ , i.e. S ⊂ C (τ), and b is a binary vector in {−1,+1}S.

Lemma A.1 The domain, D (S,b) (A.3), of each substratum policy, hS,b, is closed relative
to S(τ).

Proof Using the continuity of functions 12 in the predicates used to define them, one can
conclude that for any I ∈ C (τ), sets DA (I) (2.15) and DH (I) (2.18) are closed relative
to S(τ). Hence, since the intersection of arbitrary many closed sets are closed [161], the
domain D (S,b) (A.3) of each local controller hS,b is closed relative to S(τ). �

A critical observation used for bounding the centroidal configuration radius (Lemma
A.3) and the range of a trajectory of a substratum policy (Proposition A.8) is:

11Let Fn denote the number of partitions of [n] = {1, 2, . . . , n} compatible with a balanced rooted binary
tree with n leaves, where n = 2k for some k ∈ N+, and by (A.16) it satisfies

F2n = 1 + F
2
n , (A.17)

subject to the base condition F2 = 2. Define Gn and Hn, for n = 2k and k ∈ N+, to be, respectively,

G2n = G
2
n and H2n =

5

4
H

2
n (A.18)

where G2 = H2 = 2. Note that Gn =
√
2
n
and Hn = 4

5

√

5
2

n

for n = 2k and k ∈ N+. Now observe that for

any n = 2k and k ∈ N+

Gn ≤ Fn ≤ Hn, (A.19)

and so

√
2
n ≤ Fn ≤ 4

5

√

5

2

n

. (A.20)

12A function f : X → Y between two topological spaces, X and Y , is continuous if the inverse image of
every open subset of Y of f is an open subset of X [161].
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Lemma A.2 (Relative Centroidal Dynamics) Let x ∈ S(τ) and u = hS,b (x). Then, the
centroidal dynamics of any cluster I ∈ Vτ (S) (A.5) visited during recursive computation of
hS,b (Table A.2), except the root S, satisfies 13

c (u|I) = −c (x− y|I) + 2αP (x,vP )
|I−τ |
|P |

sI (x)

‖sI (x)‖
+ c (u|P ) + c (x− y|P ) , (A.22)

for some vP ∈
(
Rd
)S

associated with parent cluster P = Pr (I, τ); whereas we have for the
root cluster S

c (u|S) = −c (x− y|S) . (A.23)

Proof See Appendix A.2.11. �

Lemma A.3 (Upper Bound on Configuration Radius) Let xt denote a trajectory of hS,b
(Table A.2) starting at any initial x0 ∈ D (S,b) (A.3) for t ≥ 0.

Then, the centroidal configuration radius, r
(
xt|S

)
(2.12), is bounded above for all t ≥ 0

by a certain finite value, R
(
x0,y

)
, depending on x0 and y, i.e.,

r
(
xt|S

)
≤ R

(
x0,y

)
<∞, ∀t ≥ 0. (A.24)

Proof See Appendix A.2.12. �

Lemma A.4 If S is not the trivial partition, i.e., |S| > 1, then there always exists a cluster
I ∈ C (τ) such that Ch (I, τ) ⊂ S.

Proof Define the depth of cluster I ∈ C (τ) in τ to be the number of its ancestors,
|Anc (I, τ)|. Let K ∈ S be a cluster in S with the maximal depth, i.e.,

|Anc (K, τ)| = arg max
D∈S

|Anc (D, τ)| . (A.25)

Then, we will now show that K−τ is also in S, and so I = Pr (K, τ) satisfies the lemma.
Proof by a contradiction. Suppose that K−τ is not in S. Since S is a partition of S

compatible with τ , then some descendant D ∈ Des (K−τ , τ) is in S. Note that |Anc (K, τ)| =
|Anc (K−τ )| < |Anc (D, τ)|, which contradicts (A.25). �

Lemma A.5 Let S and S′ be two distinct partitions of S compatible with τ , i.e., S 6= S′ ⊂
C (τ). Then, at least one of the following cases always holds
(i) (S Partially Refines S′) There exists a cluster K ′ ∈ S′ with a nontrivial partition K′

such that K′ ⊂ S.
(ii) (S′ Partially Refines S) There exists a cluster K ∈ S with a nontrivial partition K

such that K ⊂ S′.

Proof For any j ∈ S, let S (j) denote the unique element of S containing j.
Since S 6= S′, let K ′ ∈ S′ \S be an unshared cluster. Since both S and S′ are partitions of

S compatible with τ , we have either S(k′) ( K ′ or S(k′) ) K ′ for all k′ ∈ K ′. If S(k′) ( K ′

for all k′ ∈ K ′, then K′ =
{
S(k′)

∣∣k′ ∈ K ′} defines a partition of K ′ and we obtain Lemma
A.5.(i). Otherwise, by symmetry, we have Lemma A.5.(ii). Thus, the lemma follows. �

13Here, for any I ∈ C (τ ) we use c :
(

Rd
)I → Rd (2.8).
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A.2 Proofs

A.2.1 Proof of Theorem 2.6

Proof To prove the first part of the result, we shall consider Portσ,τ as a mapping from

S(σ) to (Rn)S and verify that Portσ,τ (S(σ)) ⊆ Portal (σ, τ).
By definition, the restriction of Portσ,τ to Portal (σ, τ) is the identity map on Portal (σ, τ).

Hence, we only need to show that Portσ,τ (S(σ) \ Portal (σ, τ)) ⊆ Portal (σ, τ).
Let y = Ctr (x) and z = Scl (y) be intermediate configurations for the portal transfor-

mation of a configuration x ∈ S(σ) \ Portal (σ, τ) into w = Mrg (z) = Port (x).
First, recall that rigid transformations and scaling of partial configurations preserve

their clustering structure [15]. Hence, the common subtrees of σ and τ rooted at A, B and
C are preserved after each transformation by Ctr (2.34), Scl (2.35) and Mrg (2.37).

Second, each partial configuration of the symmetric configuration y ∈ Sym (σ, τ) as-
sociated with (σ, τ) is properly translated by Scl (2.35) so that each of them lies in the
corresponding consensus ball, i.e., r (z|Q) < rQ (z) for all Q ∈ (A,B,C). Hence, the partial
configuration z|P supports both of the subtrees of σ and τ rooted at P .

Finally, if P = S, then the result simply follows, because z = w ∈ Portal (σ, τ).
Otherwise, for every I ∈ {P} ∪ Anc (P, σ), Mrg (2.37) iteratively separates the common
complementary clusters I and I−σ of σ and τ , in a bottom up fashion starting at cluster
P , to support the subtrees of σ and τ rooted at Pr (I, σ). Note that in the base case, z
supports both of the subtrees of σ and τ rooted at P and P−σ; and at the termination at
root cluster S, w supports both trees σ and τ , i.e., w ∈ Portal (σ, τ).

We now proceed with the computational properties of Portσ,τ . As stated in the proof
of Proposition A.1, the inclusion test of a configuration for being in a hierarchical stratum
can be computed in O(|S|2) time, from which one conclude that the inclusion test for being
in Portal (σ, τ) can also be computed in O(|S|2) time. If the given configuration is not
a portal configuration, then the computation of Portσ,τ (2.33) requires cluster centroids of
σ, which can be computed in linear, O(|S|), time as described in the proof of Proposition
A.1. Given cluster centroids, one can compute Ctr (2.34) and Scl (2.35) in linear, O(|S|),
time, because the Napoleon transformation NT of an arbitrary triangle can be computed
in constant, O(1), time (refer to Appendix B). Finally, given the cluster centroids, each
iteration of Mrg (2.37) can be computed in linear O(|S|) time; and so all iterations of Mrg
can be performed in O(|S|2) time since it may require at most |S| iterations. Thus, the
result follows. �

A.2.2 Proof of Proposition A.1

Proof Recall from (2.15) that for any singleton cluster I ∈ C (τ), we have DA (I) = S(τ).
Hence, for any given x ∈ S(τ), the base condition x ∈ DA (I) (case 2 in Table 2.5) always
holds at any singleton cluster I ∈ C (τ). Moreover, the cardinality of any cluster passed
as an argument in a recursive step of the evaluation must decrease relative to the calling
cluster size (case 7 in Table 2.5). Therefore, the recursion in Table 2.5 terminates, in the
worst case, after visiting all clusters of τ only once.
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Since all vector fields (fA (2.14), fH (2.19) and fS (2.24)) used in Table 2.5 are well
defined over the entirety of their domain S(τ) with codomain (Rn)S, the recursion in Table
2.5 results in a true function, fτ,y : S(τ) → (Rn)S , with well defined evaluation for each
configuration x ∈ S(τ).

We now assess the computational complexity of the recursion in Table 2.5. Centroids of
clusters of τ can be computed all at once in O(|S|) time using the post-order traversal of τ
and the following recursive relation of cluster centroids: for any disjoint A,B ⊂ S,

c (x|A ∪B) = |A|
|A|+|B|c (x|A) +

|B|
|A|+|B|c (x|B) . (A.26)

Given cluster centroids, ηi,I,τ (x) (2.7) can be computed in constant, O(1), time for
any i ∈ I and I ∈ C (τ). Hence, since |C (τ)| = 2 |S| − 1 for any τ ∈ BTS and I ={
k
∣∣ k ∈ K,K ∈ Ch (I, τ)

}
for any nonsingleton cluster I ∈ C (τ), we conclude:

• The inclusion test for being in S(τ) (2.6) can be computed in O(|S|2).
• Given x ∈ S(τ), the inclusion test for being in DH (I) (2.18) for any cluster I ∈ C (τ)
can be computed in O(|S|) time; and the recursion in Table 2.5 requires such inclusion
tests at most only once for all clusters of τ , all of which can be computed in O(|S|2)
time.
• The vector fields fA (2.14), fH (2.19) and fS (2.24) at any cluster I ∈ C (τ) can be
computed in O(|S|) time; and, once again, the recursion in Table 2.5 requires such
computation at most at every cluster of τ , all of which can be performed in O(|S|2)
time.

Finally, to conclude that fτ,y is computable in O(|S|2) time, we show that the inclusion
test for being inDA (I) (2.15) for all clusters I ∈ C (τ) can be efficiently computed in O(|S|2)
time as follows. Given cluster centroids, L−→

y (xk −mK (x))TsK (x) (2.17) can be computed

in constant, O(1), time for any k ∈ K, K ∈ C (τ); and, likewise, L−→
y

1
2 ‖xi − xj‖2 (2.16) can

be computed in constant O(1) time for any given pair i 6= j ∈ S. Further, using (2.15) and
hierarchical relations of clusters, observe the following recursive relation of DA (I): for any
nonsingleton I ∈ C (τ) and {IL, IR} = Ch (I, τ),

DA (I) = DA (IL) ∩DA (IR) ∩ D̂A (IL, IR) , (A.27)

subject to the base condition DA (I) = S(τ) for any singleton cluster I ∈ C (τ), where

D̂A (IL, IR) :=
{
x∈S(τ)

∣∣∣L−→y
1
2 ‖xi−xj‖

2≥(ri+rj)
2, ∀i∈IL, j∈IR,

L−→y (xk−mK (x))TsK (x)≥0, ∀k∈K,K∈{IL, IR}
}
. (A.28)

Note that, given x ∈ S(τ), the inclusion test for being in D̂A (IL, IR) for the children
{IL, IR} = Ch (I, τ) of any nonsingleton cluster I ∈ C (τ) can be computed in O(|IL| |IR|+
|IL|+ |IR|) time.

Hence, given x ∈ S(τ), the inclusion test for being in DA (2.15) for any cluster I ∈ C (τ)
and all its descendants in Des (I, τ) can be computed at once in O(|I|2) time using the
post-order traversal of the subtree of τ rooted at I and the recursive formulation (A.27) of
DA (I). This can be verified as follows. First, observe that the cluster set C (τ) of τ can be
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recursively defined as:

• (Base Step) {j} ∈ C (τ) for all j ∈ S. (A.29a)

• (Recursion) If I, I−τ ∈C (τ)\{S}, then Pr (I, τ)∈C (τ). (A.29b)

Accordingly, we provide a proof by structural induction [187]. For any I ∈ C (τ):
• (Base Case) If I is singleton, then the result simply holds since any singleton cluster
I ∈ C (τ) has no descendant in τ and satisfies DA (I) = S(τ).
• (Induction) Otherwise (|I| ≥ 2), let {IL, IR} = Ch (I, τ). (Induction hypothesis)
Suppose that the inclusion test for being in DA for any child K ∈ Ch (I, τ) and all its
descendant in Des (K, τ) is computable in O(|K|2). Then, by the recursion in (A.27),
the inclusion test for being in DA for cluster I and all its descendants in Des (I, τ) only

requires the extra test for being in D̂A (IL, IR) for the children {IL, IR} = Ch (I, τ)
in addition to the inclusion test for every child K ∈ Ch (I, τ) and its descendants in
Des (K, τ). Hence, the total computation cost for cluster I and its descendants in τ

is O(|IL|2) + O(|IR|2) + O( |IL| |IR|+ |IR|+ |IR|) = O(|I|2).
Therefore, since C (τ) = {S} ∪ Des (S, τ), given x ∈ S(τ), the inclusion test for being in
DA (I) for all clusters I ∈ C (τ) can be computed at once in O(|S|2) time, and this completes
the proof. �

A.2.3 Proof of Proposition A.2

Proof To demonstrate how the recursion in Table A.2 recursively composes continuous
vector fields, we shall recast fA (2.14), fH (2.19), fS (2.24) and the recursion ĥS,b (Table
A.2) as follows: for any cluster I∈Vτ (S) (A.5) visited during recursive computation of hS,b,

f IA : S(τ)×(Rn)S→ S(τ)×(Rn)S

(x,u) 7→ (x, fA (x,u, I))
(A.30)

f IH : S(τ)×(Rn)S→ S(τ)×(Rn)S

(x,u) 7→ (x, fH (x,u, I))
(A.31)

f IS : S(τ)×(Rn)S→ S(τ)×(Rn)S

(x,u) 7→ (x, fS (x,u, I))
(A.32)

ĥI
S,b : S(τ)×(Rn)S→ S(τ)×(Rn)S

(x,u) 7→
(
x, ĥS,b (x,u, I)

) (A.33)

Note that, by definition, f IA (x,u) is smooth in both x and u, and f IH (x,u) and f IS (x,u)
are continuous and piecewise smooth functions of x and u, because functions defined by the
maximum of a finite collection of smooth functions are continuous and piecewise smooth,
and the product of continuous and piecewise smooth functions are also continuous and
piecewise smooth [50].

We now show that, for any I ∈ Vτ (S), ĥ
I
S,b (x,u) is continuous and piecewise smooth

in x and u. First, observe from Lemma A.4 that the set Vτ (S) (A.5) can be recursively
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defined as

• (Base Step) I ∈ Vτ (S) for all I ∈ S. (A.34a)

• (Recursion) If I, I−τ ∈Vτ (S)\{S}, then Pr (I, τ)∈Vτ (S). (A.34b)

Accordingly, we provide a proof by structural induction [187]. For any cluster I ∈ Vτ (S):
• (Base Case) If I ∈ S, then we have

ĥIS,b (x,u) =

{
f IA (x,u) , if bI = +1 ,
f IS (x,u) , if bI = −1 ,

(A.35)

which is continuous and piecewise smooth in x and u.
• (Induction) Else, we have |I| ≥ 2 and so let {IL, IR} = Ch (I, τ). (Induction hypoth-
esis) Suppose ĥIL

S,b (x,y) and ĥ
IR
S,b (x,y) are continuous and piecewise smooth. Then,

one can verify from Table A.2 that

ĥIS,b (x,u) =
(
f IH ◦ ĥIRS,b ◦ ĥ

IL
S,b

)
(x,u) . (A.36)

Hence, ĥI
S,b is a composition of continuous and piecewise smooth functions, and it

must remain so as well [50].
Thus, the result follows since

(
x, hS,b (x)

)
= ĥS

S,b (x,0). �

A.2.4 Proof of Proposition A.3

Proof Since the recursion in Table A.3 uses only clusters of τ and guarantees, in cases 4,
7 and 13 in Table A.3, that the dimension of b is equal to the cardinality of S, the output
(S,b) = p (x) associated with any configuration x ∈ S(τ) always satisfies that S ⊂ C (τ)
and b ∈ {−1,+1}S.

To prove that S is a partition of S, we shall show that, for any x ∈ S(τ) and I ∈ C (τ),
(Î, b̂) = p̂ (x, I) yields a partition Î of I. Based on the recursive definition (A.29) of C (τ),
we now provide a proof by structural induction. For any x ∈ S(τ) and I ∈ C (τ), let
(Î, b̂) = p̂ (x, I), then:
• (Base Case) If I is singleton, then DA (I) = S(τ) and the base condition in case 2 in
Table A.3 holds. Hence, we have Î = {I}, the trivial partition of I, and so the result
follows.
• (Induction) Otherwise (|I| ≥ 2), we have two possibilities.

– If I satisfies any base condition in cases 2 and 5 in Table A.3, i.e., x ∈ DA (I) ∪
(S(τ) \DH (I)), then we have Î = {I}, and the result directly follows.

– Else(the recursion condition in cases 8-14 in Table A.3 holds), since |I| ≥ 2, let
{IL, IR} = Ch (I, τ) and (ÎL, b̂L) = p̂ (x, IL) and (ÎR, b̂R) = p̂ (x, IR). (Induction
Hypothesis) Suppose that ÎL and ÎR are partitions of IL and IR, respectively.
Then, since Î = ÎL ∪ ÎR (see case 12 in Table A.3) and Ch (I, τ) is a bipartition
of I, we observe that Î is a partition of I.

Hence, since (S,b) = p (x) = p̂ (x, S), the recursion in Table A.3 terminates with a partition
S of S. Thus, since the policy selection algorithm is deterministic, p is a well-defined function
from S(τ) to SPS (τ) (A.2).
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Finally, we shall show that (S,b) = p (x) is the index of a local control policy whose
domain D (S,b) contains x, i.e., x ∈ (D ◦ p) (x). Using the base conditions in cases 2-7
in Table A.3, one can verify that for any I ∈ S, if bI = +1, then x ∈ DA (I); and if
bI = −1, then x ∈ S(τ) \ (DA (I) ∪DH (I)) ⊂ S(τ). Hence, the base conditions guarantee
that x ∈ DB (I,bI) (A.4) for any I ∈ S. Observe that during the recursive computation
of p in Table A.3, to reach any cluster I ∈ S satisfying a base condition, every ancestor
K ∈ Anc (I, τ) of I must have been recursively visited. A recursion (see cases 8-14 in Table
A.3) at any ancestor K ∈ Anc (I, τ) of I in τ implies that x ∈ DH (K)\DA (K) ⊂ DH (K).
Thus, by definition (A.3), we have x ∈ D (S,b), and the result follows. �

A.2.5 Proof of Proposition A.4

Proof For any given x ∈ S(τ), the recursions in Table 2.5 and Table A.3 traverse the same
clusters of τ in the same order, because both recursions have identical base and recursion
conditions.

Now observe that the tree traversal pattern used by the recursion in Table A.2 is fixed for
a given policy index (S,b) ∈ SPS (τ): a base condition is satisfied at any cluster I ∈ S, and
to reach such cluster I all its ancestors Anc (I, τ) must have been recursively visited starting
from the root cluster S. Recall from the proof of Proposition A.3 that (S,b) = p (x) yields
a partition S of S such that a base condition in Table A.3 holds for every block I ∈ S and
all its ancestors in Anc (I, τ) are recursively visited. Hence, if the policy index is selected
as (S,b) = p (x), the recursion in Table A.2 computing hS,b (x) always follows the tree
traversal pattern used by the recursion in Table A.3 computing p (x).

Thus, for a given configuration, all recursions in Table 2.5, Table A.2 and Table A.3
share a common tree traversal pattern.

Let x ∈ S(τ) and (S,b) = p (x), and observe from Table A.3 that for any I ∈ S,
if bI = +1, then x ∈ DA (I); and if bI = −1, then x ∈ S(τ) \ (DA (I) ∪DH (I)); and
x ∈ DH (K) \ DA (K) for all K ∈ Anc (I, τ). Using this relation between policy indices
and domains, one can conclude that the recursions in Table 2.5 and Table A.2 use the same
vector fields for the identical base and recursive steps. Thus, the result follows. �

A.2.6 Proof of Proposition A.5

Proof According to Definition A.2, any pair
(
(S,b), (S′,b′)

)
of policy indices in ÊPG sat-

isfies at least one of Lemmas A.9 - A.11. Hence, hS,b prepares hS′,b′ in finite time, and
priority(S′,b′) > priority(S,b). Thus,

(
(S,b), (S′,b′)

)
is also an edge of the prepares

graph PG.
Moreover, for any (S,b) 6= ({S} ,+1), there always exists a policy index (S′,b′) 6= (S,b)

such that
(
(S,b), (S′,b′)

)
is an edge of P̂G. This can be observed as follows. Since S is

compatible with τ , i.e., S⊂C (τ), if |S|>1, then there exists a nonsingleton cluster I∈C (τ)
such that Ch (I, τ) ⊂ S (Lemma A.4). Hence, at least one of the following always holds:
(a) There exists a cluster I ∈ S with bI = −1.
(b) There exists a cluster I ∈ C (τ) such that Ch (I, τ) ⊂ S and bK = +1 for all K ∈

Ch (I, τ).

And (S′,b′) can be selected accordingly to satisfy one of the connectivity conditions of P̂G
(cases (i)-(iii) in Definition A.2).

138



Since every policy index (S,b) 6= ({S} ,+1) has an adjacent policy index (S′,b′) in P̂G

and priority(S′,b′) > priority(S,b), P̂G has no cycle and all of its nodes connected to the
goal policy index ({S} ,+1) through directed paths along which priority is strictly increas-
ing. Note that the goal policy index has the highest priority value, which is |S|2 (A.9).
Further, since priority (A.8) is integer valued function whose range (A.9) is [−|S|2 , |S|2],
the length of a directed path in P̂G is bounded above by O(|S|2) hops, and so the result
follows. �

A.2.7 Proof of Proposition A.6

Proof If there is only one local controller whose domain contains x, then the result follows
from Proposition A.3.

Otherwise, we shall provide a proof by contradiction. Let (S,b) = p (x), and (S′,b′) 6=
(S,b) be the index of a local controller whose domain D(S′,b′) (A.3) contains x. Suppose
that the local controller hS′,b′ has the maximum priority among all local controllers whose
domains contain x. We shall show below that there always exists another local controller
whose domain contains x and it has a higher priority than priority(S′,b′), which is a
contradiction.

It follows from Lemma A.5 that at least one of the followings always holds:

• Case 1 (S Partially Refines S′): There exists a cluster K ′ ∈ S′ with a nontrivial parti-
tion K′ (i.e., |K′| ≥ 2) such that K′ ⊂ S. Since x ∈ D (S,b) and all the elements of
K′ are descendants of K ′ in τ , the recursive tree traversal in Table A.3 requires that
x ∈ DH(K ′) \DA(K

′). Hence, b′K ′ = −1.
Since (a+ b)2 > a2 + b2 for any a, b ∈ R+, one can observe that replacing K ′ of S′

with the elements of K′ and updating b′ with the associated binary values from b

yields the index (S′′,b′′) of another local controller,

S′′ = K′ ∪ S′ \ {K ′} , (A.37)

b′′ = (b′′I )I∈S′′ s.t. b′′I =

{
bI , if I ∈ K′ ,
b′I , if I ∈ S′ \ {K ′} , (A.38)

at a strictly higher priority,

priority(S′′,b′′) = priority(S′,b′)+|K ′|2+
∑

I′∈K′

bI′ |I ′|2

︸ ︷︷ ︸
> 0

> priority(S′,b′) . (A.39)

Note that we still have x ∈ D(S′′,b′′), because x ∈ D(S,b) ∩D(S′,b′).

• Case 2 (S′ Partially Refines S): There exists a cluster K ∈ S with a nontrivial parti-
tion K (i.e., |K| ≥ 2) such that K ⊂ S′. Since K ∈ S, one of the base conditions in
Table A.3 at clusterK holds, and we therefore have either x ∈ DA (K) or x 6∈ DH (K).
Further, since x ∈ D(S′,b′) and K is an ancestor of all the elements of K in τ , we
also have x ∈ DH (K). Thus, x ∈ DA (K) and bK = +1.
Once again, since (a+ b)2 > a2 + b2 for any a, b ∈ R+ and x ∈ D(S,b) ∩ D(S′,b′),
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one can verify that the following local policy index

S′′ = {K} ∪ S′ \K , (A.40)

b′′ = (b′′I )I∈S′′ s.t. b′′I =

{
+1, if I = K ,
b′I , if I ∈ S′ \K ,

(A.41)

has a strictly higher priority,

priority(S′′,b′′) = priority(S′,b′)+|K|2−
∑

I∈K
bI |I|2

︸ ︷︷ ︸
> 0

> priority(S′,b′) , (A.42)

and its domain contains x, i.e., x ∈ D(S′′,b′′).

• Case 3 (Identical Resolution): S′ = S and b′ 6= b. Since S′ = S, one can maximize
priority(S′,b′) (A.8) by maximizing the binary vector b′, which is achieved by set-
ting b′I = +1 for any I ∈ S′ whenever x ∈ DA(I). The base conditions in Table A.3
guarantee such an optimal selection of b′. However, since b′ 6= b, we have

priority(S,b) > priority(S′,b′) , (A.43)

which completes the proof. �

A.2.8 Proof of Proposition A.8

Proof The continuity and piecewise smoothness of hS,b (Proposition A.2) implies its locally
Lipschitz continuity inS(τ) [135]; and the existence of at least one trajectory of hS,b starting
at x follows from its continuity.

Let xt denote a trajectory of hS,b starting at any x0 ∈ D (S,b) for all t ≥ 0. We have
from Proposition A.7 that xt remains in D (S,b) for all t ≥ 0. Further, by Lemma A.2,
the centroidal trajectory c

(
xt|S

)
is guaranteed to lie on the line segment joining c

(
x0|S

)

and c (y|S); and, by Lemma A.3, the centroidal configuration radius r
(
xt|S

)
(2.12) is

bounded above by a certain finite value, R
(
x0,y

)
, depending only on the initial and desired

configurations, x0 and y, respectively. Thus, all trajectories of hS,b stay in a compact subset
W of D (S,b) and the compact set defined by the Minkowski sum of the line segment joining
c
(
x0|S

)
and c (y|S) and the closed ball centered at the origin with radius of R

(
x0,y

)
.

Given that all trajectories of hS,b starting at any x ∈ D (S,b) lie in a compact subset
W of D (S,b), the uniqueness of its flow follows from the Lipschitz continuity of hS,b in W ,
because a locally Lipschitz function on S(τ) is Lipschitz on every compact subset of S(τ),
also refer to Theorem 3.3 in [127]. Moreover, this unique flow is continuous and piecewise
smooth since it is the integral of the continuous and piecewise smooth vector field hS,b [200],
which completes the proof. �

A.2.9 Proof of Proposition A.7

Before proceeding with the proof of Proposition A.7, we find it useful to emphasize some
critical properties of a trajectory xt of hS,b (x) starting at any x0 ∈ D (S,b).
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Lemma A.6 A trajectory xt of hS,b (x) (see Table A.2) starting at any initial configuration
x0 ∈ D (S,b) (A.3) satisfies the following properties for any I ∈ S with bI = +1 and t ≥ 0,

(i) L−→y
1
2

∥∥xti − xj
t
∥∥2 ≥ (ri + rj)

2 , ∀i 6= j ∈ I,
(ii) L−→y

(
xtk −mK

(
xt
))T

sK
(
xt
)
≥ 0, ∀k ∈ K,K ∈ Des (I, τ) ,

(iii) ηk,K
(
xt
)
≥ 0, ∀k ∈ K,K ∈ Des (I, τ) ,

(iv)
∥∥∥xti − xtj

∥∥∥
2
> (ri + rj)

2 , ∀i 6= j ∈ I.

Proof See Appendix A.2.13. �

Lemma A.7 A trajectory xt of hS,b (x) (see Table A.2) starting at any initial configuration
x0 ∈ D (S,b) (A.3) satisfies the following properties for any I ∈ S with bI = −1 and t ≥ 0,
(i) ηk,K

(
xt
)
≥ 0, ∀k ∈ K,K ∈ Des (I, τ) ,

(ii)
∥∥∥xti − xtj

∥∥∥
2
> (ri + rj)

2 , ∀i 6= j ∈ I.

Proof See Appendix A.2.14. �

Lemma A.8 Let Vτ (S) (A.5) be the set of clusters visited during the recursive computation
of hS,b (x) in Table A.2.

Then a trajectory xt of hS,b (x) starting at any initial configuration x0 ∈ D (S,b) (A.3)
satisfies the following properties for any I ∈ Vτ (S) \ S and t ≥ 0,
(i) ηk,K

(
xt
)
≥ rk + α, ∀k ∈ K,K ∈ Ch (I, τ) ,

(ii)
∥∥∥xti − xtj

∥∥∥
2
> (ri + rj)

2 , ∀i ∈ K, j ∈ I \K,K ∈ Ch (I, τ) .

Proof See Appendix A.2.15. �

Accordingly, we conclude the positive invariance of the domainD (S,b) of hS,b as follows:

Proof of Proposition A.7 By cases (iii)-(iv) in Lemma A.6 and cases (i)-(ii) in Lemmas
A.7-A.8, a trajectory xt of hS,b starting at any x0 ∈ D (S,b) is guaranteed to remain in
S(τ) for all future time. Given xt ∈ S(τ) for all t ≥ 0, cases (i)-(ii) in Lemma A.6 imply
xt ∈ DA (I) for any I ∈ S with bI = +1; and case (iii) in Lemma A.8 implies xt ∈ DH (K) for
every ancestor K ∈ Anc (I, τ) of any I ∈ S. Thus, by definition (A.3), we have xt ∈ D (S,b)
for all t ≥ 0. �

A.2.10 Proof of Proposition A.9

Here we first establish finite-time prepares relations between pairs of local policies whose
indices are related to each other in a certain way as specified in Definition A.2; and then
we continue with the proof of Proposition A.9.

Lemma A.9 (Case (i) in Definition A.2) Let S ∈ PS (τ) be a partition of S and b,b′ ∈
{−1,+1}S. If bI = b′I for all I ∈ S but a singleton cluster D ∈ S where bD = −1 and
b′D = +1, then the domains (A.3) of local control policies hS,b and hS,b′ are identical, i.e.,

D(S,b′) = D (S,b) , (A.44)
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and their priorities (A.8) satisfy

priority
(
S,b′) = priority (S,b) + 2 . (A.45)

Proof See Appendix A.2.16. �

Lemma A.10 (Case (ii) in Definition A.2) Let S ∈ PS (τ) be a partition of S and b ∈
{−1,+1}S such that bI = −1 for a nonsingleton cluster I ∈ S; and let S′ = S\{I}∪Ch (I, τ)
and b′ ∈ {−1,+1}S′ with b′K = −1 for all K ∈ Ch (I, τ) and b′D = bD for all D ∈ S \ {I}.

Then all trajectories of the local control policy hS,b starting in its domain D (S,b) reach
in finite time the domain D(S′,b′) of the local controller hS′,b′ which has a higher priority
(A.8) than hS,b does, i.e.,

priority(S′,b′) > priority (S,b) . (A.46)

Proof See Appendix A.2.17. �

Lemma A.11 (Case (iii) in Definition A.2) Let S ∈ PS (τ) be a partition of S and b ∈
{−1,+1}S such that Ch (I, τ) ⊂ S for a nonsingleton cluster I ∈ C (τ) and bK = +1 for

all K ∈ Ch (I, τ); and let S′ = S \ Ch (I, τ) ∪ {I} and b′ ∈ {−1,+1}S′ with b′I = +1 and
b′D = bD for all D ∈ S \ Ch (I, τ).

Then the local control policy hS,b steers (almost) all configurations in its domain D (S,b)
in finite time to the domain D(S′,b′) of the local controller hS′,b′ which has a higher
priority (A.8) than hS,b does, i.e.,

priority(S′,b′) > priority (S,b) . (A.47)

Proof See Appendix A.2.18. �

Proof of Proposition A.9 Since S is a partition of S compatible with τ , i.e., S ⊂ C (τ),
observe that if |S| > 1, then there exists a cluster I ∈ C (τ) such that Ch (I, τ) ⊂ S (Lemma
A.4). Hence, since (S,b) 6= ({S} ,+1), at least one of the followings always holds:
(a) There exists I ∈ S such that bI = −1. If |I| = 1, then we have the result by Lemma

A.9; otherwise (|I| > 1), the results follows from Lemma A.10.
(b) There exist a cluster I ∈ C (τ) such that Ch (I, τ) ⊂ S and bK = +1 for all K ∈

Ch (I, τ). Accordingly, the results follows from Lemma A.11 and this completes the
proof. �

A.2.11 Proof of Lemma A.2

Proof For any cluster I ∈ S, the recursion in Table A.2 employs a vector field satisfying
the associated base condition, and then recursively constructs an additive repulsion field at
every ancestor Anc (I, τ) of I, which can be explicitly written as follows: for any i ∈ I and
I ∈ S,
• if bI = +1, then we have

ui = fA (x,0, I)i +
∑

K∈Anc(I,τ)∪{I}\{S}
R=Pr(K,τ)

2αR (x,vR)
|K−τ |
|R|

sK (x)

‖sK (x)‖ , (A.48)
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• else (bI = −1),

ui = fS (x,0, I)i +
∑

K∈Anc(I,τ)∪{I}\{S}
R=Pr(K,τ)

2αR (x,vR)
|K−τ |
|R|

sK (x)

‖sK (x)‖ , (A.49)

for some vR ∈
(
Rd
)S

associated with cluster R ∈ Anc (I, τ).

Now, using (2.14) and (2.24), one can verify that for any I ∈ S,

c (u|I) = −c (x− y|I) +
∑

K∈Anc(I,τ)∪{I}\{S}
R=Pr(K,τ)

2αR (x,vR)
|K−τ |
|R|

sK (x)

‖sK (x)‖ , (A.50)

which can be generalized to other clusters in Vτ (S) \ S. That is to say, we now show that
for any I ∈ Vτ (S), the centroidal dynamics c (u|I) satisfies (A.50). Based on the recursive
definition (A.34) of Vτ (S), we provide a proof by structural induction. For any I ∈ Vτ (S),
• (Base Case) If I ∈ S, then the result is shown above in (A.50).
• (Induction) Otherwise, |I| > 2 and let {IL, IR} = Ch (I, τ). (Induction hypothesis)
Suppose that c (u|IL) and c (u|IR) satisfy (A.50). Then using

c (u|I) = |IL||I| c (u|IL) +
|IR|
|I| c (u|IR) , (A.51)

one can obtain (A.50) for cluster I as well.

Observe that for the root cluster S the equation (A.50) simplifies and yields (A.23).
Further, using (A.50), we obtain (A.22) for any I ∈ Vτ (S) \ {S} with parent P = Pr (I, τ)
as follows:

c (u|I) = −c (x−y|I)+2αP (x,vP )
|I−τ |
|P |

sI (x)

‖sI (x)‖
+

∑

K∈Anc(I,τ)\{S}
R=Pr(K,τ)

2αR (x,vR)
|K−τ |
|R|

sK (x)

‖sK (x)‖

︸ ︷︷ ︸
=c(u|P )+c(x−y|P )

,

= −c (x− y|I) + 2αP (x,vP )
|I−τ |
|P |

sI (x)

‖sI (x)‖
+ c (u|P ) + c (x− y|P ) , (A.52)

which completes the proof. �

A.2.12 Proof of Lemma A.3

Proof Since the domain D (S,b) of hS,b is positive invariant (Proposition A.7), the exis-
tence of xt for t ≥ 0 simply follows from the continuity of hS,b (Proposition A.2). We now
show that for any cluster I ∈ Vτ (S) (A.5) that is visited during the recursive computation
of hS,b in Table A.2, the centroidal radius r

(
xt|I

)
is bounded above by a certain value,

RI

(
x0,y

)
, depending only on x0 and y.
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Based on the recursive definition of Vτ (S) in (A.34), we now provide a proof of the
result by structural induction. For any I ∈ Vτ (S),
• (Base Case 1) If I ∈ S and |I| = 1, then the result simply follows, because r

(
xt|I

)
= ri

for all t ≥ 0, where I = {i}.
• (Base Case 2) If I ∈ S, |I| ≥ 2 and bI = +1, then, using Table A.2, one can verify
that for any i ∈ I

ẋi = hS,b (x)i = fA (x,u, I)i + vI = − (xi − yi) + vI , (A.53)

for some u ∈
(
Rd
)S

and vI ∈ Rd, where vI represents the accumulated rigid translation
due to all ancestors of I in τ .

Accordingly, we obtain for any i ∈ I that

d

dt
‖xi − c (x|I)‖2 = −2 ‖xi − c (x|I)‖2 + (xi − c (x|I))T (yi − c (y|I)) , (A.54)

from which one can conclude that

∥∥xti − c
(
xt|I

)∥∥ ≤ max
(∥∥x0i − c

(
x0|I

)∥∥ , ‖yi − c (y|I)‖
)
. (A.55)

Thus, by definition, it follows that the centroidal radius r
(
xt|I

)
is bounded above as

r
(
xt|I

)
≤ RI

(
x0,y

)
= max

(
r
(
x0|I

)
, r (y|I)

)
. (A.56)

• (Base Case 3) If I ∈ S, |I| ≥ 2 and bI = −1, then, using Table A.2, one can verify
that for any k ∈ K and K ∈ Ch (I, τ),

ẋk = hS,b(x)k = fS(x,u, I)k+ vI = −c (x−y|I) + 2βI (x)
|K−τ |
|I|

sK (x)

‖sK (x)‖ + vI , (A.57)

for some u ∈
(
Rd
)S

and vI ∈ Rd.

Accordingly, we obtain for any K ∈ Ch (I, τ) that

d

dt
r (x|K) = 0 , and

d

dt
‖sK (x)‖2 = 2βI (x) . (A.58)

Observe from (2.25) that

‖sK (x)‖ ≥ 2

(
β+ max

D∈Ch(I,τ)
r (x|D)

)
=⇒ min

d∈D
D∈Ch(I,τ)

(ηd,D(x)−rd) ≥ β =⇒ βI (x)=0, (A.59)

Thus, since r
(
xt|K

)
= r

(
x0|K

)
for all t ≥ 0, it follows that

∥∥sK
(
xt
)∥∥ ≤ max

(∥∥sK
(
x0
)∥∥ , 2

(
β + max

D∈Ch(I,τ)
r
(
x0|D

)))
, (A.60)
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and, since r (x|I) ≤ maxK∈Ch(I,τ) ‖sK (x)‖+ r (x,K) for any x ∈ S(τ), we have

r
(
xt|K

)
≤ RI

(
x0,y

)
, (A.61)

where

RI

(
x0,y

)
= max

K∈Ch(I,τ)
max

(∥∥sK
(
x0
)∥∥ , 2

(
β + r

(
x0|K

)))
+ max

K∈Ch(I,τ)
r
(
x0|K

)
, (A.62)

• (Induction) Otherwise, |I| ≥ 2 and suppose that r
(
xt|K

)
≤ RK

(
x0,y

)
for all K ∈

Ch (I, τ). Then, using Lemma A.2, one can obtain for any K ∈ Ch (I, τ) that

d

dt
‖sK (x)‖2 = −2 ‖sK (x)‖2 + 2 sK (x)TsK (y) + 2αI (x,vI) , (A.63)

for some vI ∈ Rd. Now observe from (2.20) that

‖sK (x)‖ ≥ 2

(
β+ max

D∈Ch(I,τ)
r(x|D)

)
=⇒ min

d∈D
D∈Ch(I,τ)

(ηd,D(x)−rd) ≥ β =⇒ αI (x,vI)=0, (A.64)

Hence, using (A.63) and (A.64), one can conclude that

∥∥sK
(
xt
)∥∥ ≤ max

(∥∥sK
(
x0
)∥∥ ,

∥∥sK (y)
∥∥ , 2

(
β + max

D∈Ch(I,τ)
RD

(
x0,y

)))
(A.65)

and since r (x|I) ≤ maxK∈Ch(I,τ) ‖sK (x)‖2 + r (x,K) for any x ∈ S(τ), we have

r
(
xt|I

)
≤ RI

(
x0,y

)
, (A.66)

where

RI

(
x0,y

)
= max

K∈Ch(I,τ)
max

(∥∥sK
(
x0
)∥∥, ‖sK (y)‖, 2

(
β+RK

(
x0,y

)))
+ max
K∈Ch(I,τ)

RK

(
x0,y

)
. (A.67)

Thus, the result follows with R
(
x0,y

)
= RJ

(
x0,y

)
. �

A.2.13 Proof of Lemma A.6

Proof By definition of D (S,b) (A.3), x0 ∈ DA (I) for any I ∈ S with bI = +1, and one
can verify using Table A.2 that for any i ∈ I and I ∈ S with bI = +1,

ẋi = hS,b (x)i = fA (x,u, I)i + vI = − (xi − yi) + vI , (A.68)

for some u ∈ (Rn)S and vI ∈ Rn, where vI represents the accumulated rigid translation due
to ancestors of I in τ .

Accordingly, cases (i)-(iv) in Lemma A.6 can be shown as follows:
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(i) Using (2.16) and (A.68), one can verify that for any i 6= j ∈ I,

d

dt
L−→

y
1
2‖xi−xi‖

2 = −L−→
y

1
2‖xi−xi‖

2+ ‖yi−yi‖2︸ ︷︷ ︸
> (ri+rj)

2, since y∈S(τ)

> −L−→
y

1
2‖xi−xi‖

2+(ri+rj)
2 , (A.69)

and so for any t ≥ 0

L−→y
1
2

∥∥xti − xti
∥∥2 ≥ e−t L−→y

1
2

∥∥x0i − x0i
∥∥2

︸ ︷︷ ︸
≥ (ri+rj)

2, since x0∈DA(I)

+
(
1− e−t

)
(ri + rj)

2 ≥ (ri + rj)
2 . (A.70)

(ii) Similarly, using (2.17) and (A.68), we obtain for any k ∈ K,K ∈ Des (I, τ),

d

dt
L−→

y (xk − sK (x))TsK (x) = −L−→
y (xk − sK (x))TsK (x) + ηk,K (y) ‖sK (y)‖︸ ︷︷ ︸

≥0, since y∈S(τ)

, (A.71)

from which we conclude for any t ≥ 0 that

L−→y
(
xtk − sK

(
xt
))T

sK
(
xt
)
≥ e−t L−→y

(
x0k − sK

(
x0
))T

sK
(
x0
)

︸ ︷︷ ︸
≥ 0, since x0∈DA(I)

≥ 0 . (A.72)

(iii) Now observe from (2.17), (2.23) and (A.68) that for any k ∈ K and K ∈ Des (I, τ),

d

dt
ηk,K (x) = −ηk,K(x)

(
1+

sK (x)TsK (y)

‖sK (x)‖2

)
+

L−→
y (xk−mK (x))TsK (x)

‖sK (x)‖︸ ︷︷ ︸
≥ 0 by Lemma A.6.(ii)

. (A.73)

As a result, since d
dtηk,K (x) ≥ 0 whenever ηk,K (x) = 0, we have the invariance of local

cluster structure, i.e., ηk,K
(
xt
)
≥ 0 for all t ≥ 0.

(iv) The relative displacement of any pair of agents, i 6= j ∈ I, satisfies

ẋi − ẋj = − (xi − xj) + (yi − yj) . (A.74)

whose solution for t ≥ 0 is explicitly given by

xti − xtj = e−t
(
x0i − x0j

)
+
(
1− e−t

)
(yi − yj) . (A.75)

Hence, since x0 ∈ DA (I) and y ∈ S(τ), one can verify the intra-cluster collision
avoidance as follows:

∥∥xti − xtj
∥∥2 = e−2t

∥∥x0i−x0j
∥∥2

︸ ︷︷ ︸
> (ri+rj)

2

+
(
1−e−t

)2 ‖yi−yj‖2︸ ︷︷ ︸
> (ri+rj)

2

+e−t
(
1−e−t

)
L−→y
∥∥x0i−x0j

∥∥2
︸ ︷︷ ︸

≥ 2 (ri+rj)
2

, (A.76)

> (ri + rj)
2 , (A.77)

and this completes the proof. �
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A.2.14 Proof of Lemma A.7

Proof For any singleton I ∈ S, the results simply follow, because a singleton cluster con-
tains no pair of indices and has an empty set of descendants. Otherwise, for any nonsingleton
I ∈ S with bI = −1, one can obtain from Table A.2 that for any k ∈ K and K ∈ Ch (I, τ),

ẋk = hS,b (x)k = fS (x,u, I)k + vI = −c (x−y|I) + 2βI (x)
|K−τ |
|I|

sK (x)

‖sK (x)‖+vI , (A.78a)

for some u ∈ (Rn)S and vI ∈ Rn, where vI models the overall rigid translation due to
ancestors of I in τ .

Accordingly, using (A.78), we will show the results as follows:

(i) The preservation of local cluster structure can be observed in two steps. First, since
ẋi − ẋj = 0 for any i 6= j ∈ K and K ∈ Ch (I, τ), we have ηd,D

(
xt
)
= ηd,D

(
x0
)
≥ 0

for all t ≥ 0 and d ∈ D, D ∈ Des (K, τ) and K ∈ Ch (K, τ). Second, using (2.23) and
(2.25), we obtain that for any k ∈ K, K ∈ Ch (I, τ),

d

dt
ηk,K (x) = βI (x) ≥ − (ηk,K (x)− rk − β) , (A.79)

where β > 0. Hence, d
dtηk,K (x) > 0 whenever ηk,K (x) = 0, and so ηk,K

(
xt
)
≥ 0 for

any t ≥ 0.

(ii) Likewise, we conclude the intra-cluster collision avoidance between individuals in I in
two steps. First, we have for any i 6= j ∈ K, K ∈ Ch (I, τ),

ẋi − ẋj = 0 , (A.80)

guaranteeing that for all t ≥ 0,

∥∥xti − xtj
∥∥2 =

∥∥x0i − x0j
∥∥2 > (ri + rj)

2 . (A.81)

Second, for any i ∈ K, j ∈ I \K and K ∈ Ch (I, τ), we have

ẋi − ẋj = 2βI (x)
sK (x)

‖sK (x)‖ , (A.82)

yielding

d

dt
‖xi − xj‖2 = 2βI (x)︸ ︷︷ ︸

≥0

(xi − xj)
T sK (x)

‖sK (x)‖︸ ︷︷ ︸
=ηi,K(x)+ηj,I\K(x)≥0

≥ 0 , (A.83)

and so for t ≥ 0

∥∥xti − xtj
∥∥2 ≥

∥∥x0i − x0j
∥∥2 > (ri + rj)

2 . (A.84)

�

147



A.2.15 Proof of Lemma A.8

Proof By definition of D (S,b) (A.3), for any I ∈ Vτ (S) \ S, we have x0 ∈ DH (I) (2.18)
and one can verify from Table A.2 that for any k ∈ K and K ∈ Ch (I, τ),

ẋk = hS,b (x)k = fH (x,u, I)k + vI = uk + 2αI (x,u)
|K−τ |
|I|

sK (x)

‖sK (x)‖ + vI , (A.85)

for some u ∈ (Rn)S and vI ∈ Rn. Here, vI represents the total rigid translation due
ancestors of I in τ .

With these observations in place, we now achieve claimed results as follows:

(i) The maintenance of cluster separation (case (i) in Lemma A.8) can be observed, using
(2.23) and (A.85), as follows: for any k ∈ K and K ∈ Ch (I, τ),

d

dt
ηk,K (x) = L−→

u ηk,K (x) + αI (x,u) , (A.86)

and, since x0 ∈ DH (I) and αI (x,u)≥−L−→u ηk,K (x) whenever ηk,K (x) = rk + α, we
have ηk,K

(
xt
)
≥ rk + α for all t ≥ 0.

(ii) The inter-cluster collision avoidance (case (ii) in Lemma A.8) directly follows from
the maintenance of certain cluster separation (case (i)in Lemma A.8), because

ηk,K
(
xt
)
≥ rk,

∀ k ∈ K, K ∈ Ch (I, τ) ,
=⇒ ‖xti−xtj‖2 > (ri+rj)

2 ,

∀ i ∈ K, j ∈ I \K, K ∈ Ch (I, τ) .
(A.87)

�

A.2.16 Proof of Lemma A.9

Proof Since DA (I) = S(τ) for any singleton cluster I ∈ C (τ), we have from (A.4) that
DB (I,−1) = DB (I,+1) = S(τ) for any singleton cluster I ∈ C (τ). Hence, by definition
(A.3), the first part of the result holds.

Likewise, using (A.8), one can observe the second part of the result, because the binary
vectors b and b̂ only differ at a singleton cluster D ∈ S where bD = −1 and b′D = +1. �

A.2.17 Proof of Lemma A.10

Proof For any nonsingleton I ∈ S with bI = −1, one can verify from Table A.2 that for
any k ∈ K and K ∈ Ch (I, τ)

ẋk = hS,b (x)k = fS (x,u, I) = −c (x− y|I) + 2βI (x)
|K−τ |
|I|

sK (x)

‖sK (x)‖ + vI , (A.88)

for some u ∈ (Rn)S and vI ∈ Rn.

Accordingly, using (2.23) and (2.25), we obtain that

d

dt
ηk,K (x) = βI (x) ≥ −ηk,K (x) + rk + β . (A.89)
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Hence, a trajectory xt of hS,b, starting at any x0 ∈ D (S,b), satisfies

ηk,K
(
xt
)
≥ e−tηk,K

(
x0
)
+
(
1− e−t

)
(rk + β) , (A.90)

for all t ≥ 0. Thus, since β > α > 0 and d
dtηk,K (x) > 0 whenever ηk,K (x) < rk+β, using

LaSalle’s Invariance Principle [138], one can conclude that the local policy hS,b asymptot-

ically steers all the configurations in its domain D (S,b) to a subset Dβ
H (I) of the interior

D̊H (I) of DH (I) (2.18),

D
β
H (I) :=

{
x ∈ S(τ)

∣∣∣ηk,K (x) ≥ rk + β, ∀k ∈ K,K ∈ Ch (I, τ)
}
⊂ DH (I) . (A.91)

In particular, since β > α, the system in (A.88) starting at any configuration in D (S,y)
enters DH (I) in finite time.

Now observe from (A.3) and (A.8) that

priority
(
S′,b′) = priority (S,b) + |I|2 −

∑

D∈Ch(I,τ)

|D|2

︸ ︷︷ ︸
>0

> priority (S,b) , (A.92)

and

D
(
S′,b′) = D (S,b) ∩DH (I) ⊃ D (S,b) ∩D

β
H (I) . (A.93)

Thus, since D
β
H (I) ⊂ D̊H (I) and its domain D (S,b) is positively invariant (Proposition

A.7), hS,b prepares hS′,b′ in finite time, and the result follows. �

A.2.18 Proof of Lemma A.11

Proof Since Ch (I, τ) ⊂ S and bK = +1 for any K ∈ Ch (I, τ), every child K ∈ Ch (I, τ)
of I in τ satisfies the base condition in cases 2-4 in Table A.2 whereas cluster I satisfies the
recursion conditions in cases 9-12 in Table A.2. Hence, using Table A.2, one can verify that
for any k ∈ K and K ∈ Ch (I, τ),

ẋk = hS,b(x)k=(fH ◦fA)(x,u, I)k+vI = − (xk−yk)+2αI (x,u)
|K−τ |
|I|

sK (x)

‖sK (x)‖+vI , (A.94)

for some u ∈ (Rn)S and vI ∈ Rn.

We now show in three steps that hS,b asymptotically steers (almost) all configuration
in its domain D (S,b) to

G (I) :=
{
x ∈ S(τ)

∣∣∣ sK(x)
‖sK(x)‖ =

sK(y)
‖sK(y)‖ , ‖sK (x)‖ ≥ ‖sK (y)‖ , xk−c (x|K)=yk−c (y|K) ,

∀ k ∈ K,K ∈ Ch (I, τ)
}
, (A.95)

which is a subset of D̂A (IL, IR) (A.28) associated with children clusters {IL, IR} = Ch (I, τ),
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because for any x∈G (I) and i∈K, j∈I \K and K∈Ch (I, τ)

L−→y
1
2 ‖xi − xj‖2 = (xi−xj)T (yi−yj) , (A.96)

=
(
xi−xj−sK (x)+sK (y)

)
︸ ︷︷ ︸

=yi−yj

T
(yi−yj) + (sK (x)−sK (y))︸ ︷︷ ︸

=ǫ sK(y) for some ǫ≥0

T (yi−yj)

︸ ︷︷ ︸
≥0 since y∈S(τ)

, (A.97)

≥ ‖yi − yj‖2 > (ri + rj)
2 , (A.98)

and for any x∈G (I) and k ∈ K and K ∈ Ch (I, τ)

L−→
y (xk−mK (x))TsK (x) = (yk−mK (y))TsK (x)︸ ︷︷ ︸

≥0 since x∈G(I) and y∈S(τ)

+ (xk−mK (x))TsK (y)︸ ︷︷ ︸
≥0 since x∈G(I)

≥ 0 . (A.99)

Likewise, one can observe that G (I)∩DH (I) is a subset of the interior of D̂A (IL, IR), i.e.,

G (I)∩DH (I)⊂ ˚̂
DA (IL, IR).

First, using (A.94), we obtain that for any K ∈ Ch (I, τ)

d

dt

sK (x)TsK (y)

‖sK (x)‖ ‖sK (y)‖ =
‖sK (y)‖
‖sK (x)‖−

sK (x)TsK (y)

‖sK (x)‖3 ‖sK (y)‖
=
‖sK (y)‖
‖sK (x)‖

(
1− sK (x)TsK (y)

‖sK (x)‖ ‖sK (y)‖

)2

,

≥ 0 , (A.100)

where the equality only holds if sK(x)
‖sK(x)‖ = ± sK(y)

‖sK(y)‖ . Thus, hS,b asymptotically aligns the

separating hyperplane normals of complementary clusters Ch (I, τ) of (almost) any con-
figuration in D (S,b) with the desired ones. Note that the set of configurations x ∈ D (S,b)

with sK(x)
‖sK(x)‖ = − sK(y)

‖sK(y)‖ has measure zero and are saddle points.

Next, let x ∈ D (S,b) with sK(x)
‖sK(x)‖ = sK(y)

‖sK(y)‖ for all K ∈ Ch (I, τ). Then, using (A.94),
observe that

d

dt
‖sK (x)‖2 = −2 ‖sK (x)‖2 + 2sK (x)TsK (y) + 4αI (x,u)︸ ︷︷ ︸

≥ 0

‖sK (x)‖ , (A.101)

≥ −2 ‖sK (x)‖2 + 2sK (x)TsK (y) = −2 ‖sK (x)‖ (‖sK (x)‖−‖sK (y)‖) . (A.102)

Hence, d
dt ‖sK (x)‖2 > 0 whenever ‖sK (x)‖< ‖sK (y)‖2. Thus, the stable configurations of

hS,b also satisfies ‖sK (x)‖ ≥ ‖sK (y)‖.
Finally, we have from (A.94) that for any k∈K, K∈Ch (K, τ),

d

dt

(
xk − c (x|K)

)
= −

(
xk − c (x|K)

)
+
(
yk − c (y|K)

)
, (A.103)

and so a trajectory xt of hS,b, starting at any x0 ∈ D (S,b), satisfies

xtk − c
(
xt|K

)
= e−t

(
x0k − c

(
x0|K

))
+
(
1− e−t

)(
yk − c (y|K)

)
, (A.104)
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for all t ≥ 0. Hence, the centroidal displacements, xtk − c
(
xt|K

)
, of any configuration

x ∈ D (S,b) asymptotically matches the centroidal displacement, yk−c (y|K), of the desired
configuration y.

Thus, it follows from LaSalle’s Invariance Principle [138] that (almost) all configurations
in the domain D (S,b) of hS,b asymptotically reach G (I).

Now observe from (A.3) and (A.8) that

priority
(
S′,b′) = priority (S,b) + |I|2 −

∑

D∈Ch(I,τ)

|D|2

︸ ︷︷ ︸
> 0

> priority (S,b) , (A.105)

and

D(S′,b′) ⊃ D (S,b) ∩ D̂A (IL, IR) ⊃ D (S,b) ∩ G (I) , (A.106)

which follows from that G (I) ⊂ D̂A (IL, IR) and DA (I) = DA (IL) ∩DA (IR) ∩ D̂A (IL, IR)
(A.27).

Thus, one can conclude from (A.106) and G (I) ∩ DH (I) ⊂ ˚̂
DA (IL, IR) that the disks

starting at almost any configuration in the positively invariant D (S,b) reach D(S′,b′) in
finite time, and this completes the proof. �
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Appendix B

On the Optimality of Napoleon

Triangles

In elementary geometry, one way of constructing an equilateral triangle from any given
triangle is as follows: in a plane the centres of equilateral triangles erected, either all
externally or all internally, on the sides of the given triangle form an equilateral triangle,
illustrated in Figure B.1 (also see [62, Chapter 3.3] and the survey [155]). This result is
generally referred to as Napoleon’s theorem, notwithstanding its dubious origins — see [155]
and [95] for a detailed history of the theorem. We will refer to these constructions as the
outer and inner Napoleon transformations, and the associated equilateral triangles as the
outer and inner Napoleon triangles of the original triangle, respectively. Conversely, given
its outer and inner Napoleon triangles in position (i.e., they are oppositely oriented and
have the same centroid), the original triangle is uniquely determined; for this and related
results we refer to [220] and [98]. In other words, the converse of Napoleon’s theorem offers
a parametrization of a triangle in terms of equilateral triangles. A fascinating application
of Napoleon triangles is the planar tessellation used by Escher: a plane can be tiled using
congruent copies of the hexagon, defined by the vertices of any triangle and its uniquely
paired outer Napoleon triangle, known as Escher’s theorem [182].

Equilaterals built on the sides of a triangle make a variety of appearances in the classical
literature. Torricelli uses this construction to solve Fermat’s problem: locate a point mini-
mizing the sum of distances to the vertices of a given triangle — one of the first problems
of location science [136]. The unique solution of this problem is known as the Torricelli
point of the given triangle, located as follows [96]. If an internal angle of the triangle is
greater than 120◦, then the Torricelli point is at that obtuse vertex. Otherwise, the three
lines joining opposite vertices of the original triangle and externally erected triangles are
concurrent, and they intersect at the Torricelli point, see Figure B.1. The figure, defined
by the original triangle and the erected equilateral triangles, is referred to as the Torricelli
configuration (see [156, 99]), and the new vertices of this figure form the so-called vertex set
of the Torricelli configuration. It also bears mentioning that explicit solutions in nonlinear
optimization are very rare. The Fermat problem for three points is such a special case, and
its generalization to more points has no explicit solution [136].

In this appendix, we demonstrate some remarkable, but not immediately obvious, opti-
mality properties of twice iterated Napoleon triangles. First, two composed inner Napoleon
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Figure B.1: An illustration of (left) the Torricelli point T , the outer Torricelli con-
figuration with △ATBTCT and the outer Napoleon triangle △ANBNCN , and (right)
the inner Torricelli configuration with △ATBTCT

and the inner Napoleon triangle
△ANBNCN

of a triangle △ABC . Note that centroids of the vertices of Torri-
celli configurations, Napoleon triangles and the original triangle all coincide, i.e.,
c (△ABC)=c (△ATBTCT )=c (△ANBNCN )=c (△ATBTCT

)=c (△ANBNCN
).

transformations of a triangle collapse the original one to a point located at its centroid
which, by definition, minimizes the sum of squared distances to the vertices of the given
triangle. Surprisingly, two composed outer Napoleon transformations yield an equilateral
triangle, optimally aligned with the original triangle by virtue of minimizing the sum of
squared distances between the paired vertices (Theorem B.1). More precisely, for any tri-
angle △ABC in the n-dimensional Euclidean space Rn with the vertices A,B,C ∈ Rn, we
will say that the triangle △A′B′C′ is an optimally aligned equilateral triangle of △ABC if
it solves the following constrained optimization problem:

minimize
∥∥A−A′∥∥2 +

∥∥B −B′∥∥2 +
∥∥C − C ′∥∥2

subject to
∥∥A′ −B′∥∥2 =

∥∥A′ − C ′∥∥2 =
∥∥B′ − C ′∥∥2 (B.1)

where A′, B′, C ′ ∈ Rn and ‖.‖ denotes the standard Euclidean norm on Rn. As we show be-
low, this optimization problem has a unique solution so long as A, B, C are not collinear. It
is also important to emphasize that this is another rare instance of a nonlinear optimization
problem that admits an explicit solution.

B.1 Torricelli and Napoleon Transformations

For any ordered triple x = [x1, x2, x3]
T ∈ R3n of vectors of the n-dimensional Euclidean

space Rn, let Rx, denote the rotation matrix corresponding to a counter-clockwise rotation
by π/2 in the plane, defined by orthonormal vectors n and t, in which the triangle △x
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formed by x is positively oriented (i.e., its vertices in counter-clockwise order follow the
sequence . . .→ 1→ 2→ 3→ 1→ . . .),

Rx := [ n, t ]

[
0 −1
1 0

]
[ n, t ]T, (B.2)

where

n :=

{
x2−x1

‖x2−x1‖ , if x1 6= x2,
x3−x2

‖x3−x2‖ , otherwise,
t :=

{ ∈
{
z ∈ Sn−1

∣∣nTz=0
}
, if x is collinear,

P (n) x3−x1
‖x3−x1‖ , otherwise.

(B.3)

Here, P (n) :=In−nnT is the projection onto TnS
n−1 (the tangent space of the (n−1)-sphere

Sn−1 at point n ∈ Sn−1), and In is the n×n identity matrix, and AT denotes the transpose
of a matrix A. For any trivial triangle △x, all of whose vertices are located at the same
point, we fix Rx = 0 by setting x

‖x‖ = 0 whenever x = 0. Note that △x is both positively
and negatively oriented if x is collinear. Consequently, to define a plane containing such x,
we select an arbitrary vector t perpendicular to vector n in (B.3). It is also convenient to
denote by c (x) the centroid of △x, i.e., c (x) := 1

3

∑3
i=1 xi.

In general, the Torricelli and Napoleon transformations of three points in Euclidean n-
space can be defined based on their original planar definitions in a 2-dimensional subspace
of Rn containing x. That is to say, for any x ∈ R3n, select a 2-dimensional subspace of Rn

containing x, and then construct the erected triangles on the side of △x in this subspace
to obtain the Torricelli and Napoleon transformations of x, as illustrated in Figure B.1.
Accordingly, let T± : R3n → R3n and N± : R3n → R3n denote the Torricelli and Napoleon
transformations where the sign, + and −, determines the type of the transformation, inner
and outer, respectively. Denoting by ⊗ the Kronecker product [94], one can write closed
form expressions of the Torricelli and Napoleon transformations as follows.

Lemma B.1 The Torricelli and Napoleon transformations of any triple x ∈ R3n on a plane
containing x are, respectively, given by

T± (x) =

(
1

2
K±

√
3

2
(I3 ⊗Rx)L

)
x , (B.4)

N± (x) =
1

3

(
Kx+T± (x)

)
, (B.5)

where

K =



0 1 1
1 0 1
1 1 0


⊗ In , and L =




0 −1 1
1 0 −1
−1 1 0


⊗ In . (B.6)

Proof One can locate the new vertex of an equilateral triangle, inwardly or outwardly,
constructed on one side of △x in the plane containing x using different geometric properties
of equilateral triangles. We find it convenient to use the perpendicular bisector of the
corresponding side of △x, the line passing through its midpoint and being perpendicular to
it, such that the new vertex is on this bisector and at a proper distance away from the side
of △x.
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For instance, let y = [y1, y2, y3]
T = T+ (x). Consider the side of △x joining x1 and

x2, using the midpoint m12 :=
1
2 (x1 + x2), to locate the new vertex y3 of inwardly erected

triangle on this side as

y3 = m12 +

√
3

2
Rx (x2 − x1) , (B.7)

where Rx (see (B.2)) is a counter-clockwise rotation by π
2 in the plane where x is positively

oriented. Note that the height of an equilateral triangle from any side is
√
3
2 times its side

length. Hence, by symmetry, one can conclude (B.4).
Given a Torricelli configuration y = [y1, y2, y3]

T = T± (x), by definition, the vertices of

the associated Napoleon triangle z = [z1, z2, z3]
T = N± (x) are given by

z1 =
1

3
(y1 + x2 + x3) , z2 =

1

3
(x1 + y2 + x3) and z3 =

1

3
(x1 + x2 + y3) , (B.8)

which is equal to (B.5), and so the result follows. �

Note that the Torricelli and Napoleon transformations of x are unique if and only if x ∈ R3n

is non-collinear. If, contrarily, x is collinear, then △x is both positively and negatively
oriented, and for n ≥ 3 there is more than one 2-dimensional subspace of Rn containing x.

Remark B.1. ([220]) For any x = [x1, x2, x3]
T ∈ R3n, the centroid of the Torricelli

configuration y = [y1, y2, y3]
T = T± (x), the Napoleon configuration z = N± (x) and the

original triple x all coincide, i.e.,

c (x) = c (y) = c (z) , (B.9)

and the distances between the associated elements of x and y are all the same, i.e., for any
i 6= j ∈ {1, 2, 3}

‖yi − xi‖2 = ‖yj − xj‖2 . (B.10)

An observation key to all further results is that Napoleon transformations of equilateral
triangles are very simple.

Lemma B.2 The inner Napoleon transformation N+ of any triple x= [x1, x2, x3]
T ∈R3n

comprising the vertices of an equilateral triangle △x collapses it to the trivial triangle all of
whose vertices are located at its centroid c (x),

N+ (x) = 13 ⊗ c (x) , (B.11)

whereas the outer Napoleon transformation N− reflects the vertices of △x with respect to its
centroid c (x),

N− (x) = 2 · 13 ⊗ c (x)− x . (B.12)

Here, 13 is the R3 column vector of all ones, and · denotes the standard entrywise (or
Hadamard [112, Section 5.7]) product.

Proof Observe that the inwardly erected triangle on any side of an equilateral triangle is
equal to the equilateral triangle itself, i.e., T+ (x) = x, and so, by definition, one has (B.11).
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Alternatively, using (B.5), one can obtain

N+ (x) =
1

3

(
Kx+T+ (x)

)
=

1

3
(Kx+ x) = 13 ⊗ c (x) , (B.13)

where K is defined as in (B.6).
Now consider outwardly erected equilateral triangles on the sides of an equilateral trian-

gle, and let y = [y1, y2, y3]
T = T− (x). Note that each erected triangle has a common side

with the original triangle. Since△x is equilateral, observe that the midpoint of the unshared
vertices of an erected triangle and the original triangle is equal to the midpoint of their com-
mon sides, i.e., 1

2 (y1 + x1) =
1
2 (x2 + x3) and so on. Hence, we have T− (x) = Kx−x. Thus,

one can verify the result using (B.5) as

N− (x) =
1

3

(
Kx+T− (x)

)
=

1

3
(Kx+Kx− x) = 2 · 13 ⊗ c (x)− x . (B.14)

�

Since the Napoleon transformation of any triangle results in an equilateral triangle,
motivated from Lemma B.2, we now consider the iterations of the Napoleon transformation.
For any k ≥ 0, let Nk

± : R3n → R3n denote the k-th Napoleon transformation defined to be

Nk+1
± := N± ◦ Nk

± , (B.15)

where we set N0
± := id, and id : R3n → R3n is the identity map on R3n.

It is evident from Lemma B.2 that the following lemma holds.

Lemma B.3 For any x ∈ R3n and k ≥ 1,

Nk+1
+ (x) = 13 ⊗ c (x) , and Nk+2

− (x) = Nk
− (x) . (B.16)

As a result, the basis of iterations of the Napoleon transformations consists of N± and N2
±,

whose explicit forms, except N2
−, are given above. Using (B.5) and (B.12), the closed form

expression of the double outer Napolean transformation N2
− can be obtained as

Lemma B.4 An arbitrary triple x = [x1, x2, x3]
T ∈ R3n gives rise to the double outer

Napoleon triangle, N2
− : R3n → R3n, according to the formula

N2
− (x) =

2

3
x+

1

3
T+ (x) . (B.17)

Proof By Napoleon’s theorem, N− (x) is an equilateral triangle. Using (B.5) and Lemma
B.2, one can obtain the result as follows:

N2
− (x) = N−

(
N− (x)

)
= 2 · 13 ⊗ c (x)−N− (x) = 2 · 13 ⊗ c (x)− 1

3

(
Kx+T− (x)

)
, (B.18)

=
2

3
(Kx+ x)− 1

3

(
Kx+T− (x)

)
=

2

3
x+

1

3

(
Kx− T− (x)

)
=

2

3
x+

1

3
T+ (x) , (B.19)

where K is defined as in (B.6). �

Note that N2
− (x) is a convex combination of x and T+ (x), see Figure B.2.
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Figure B.2: (left) Outer, △ANBNCN , and double outer, △ADBDCD , Napoleon transfor-
mations of a triangle △ABC . (right) The double outer Napoleon triangle △ADBDCD is a
convex combination of the original triangle △ABC and the vertex set of its inner Torricelli
configuration △ATBTCT

.

B.2 Optimality of Napoleon Transformations

To best of our knowledge, the Napoleon transformation N± is mostly recognized as being a
function into the space of equilateral triangles. In addition to this inherited property, N2

±
has an optimality property that is not immediately obvious. Although the double inner
Napoleon transformation N2

+ is not really that interesting to work with, it gives a hint
about the optimality of N2

−: for any given triangle N2
+ yields a trivial triangle, all of whose

vertices are located at the centroid of the given triangle which, by definition, minimizes the
sum of squared distances to the vertices of the original triangle. Surprisingly, one has a
similar optimality property for N2

−:

Theorem B.1 The double outer Napoleon transformation N2
− (x) given in (B.17) yields

the equilateral triangle most closely aligned with △x in the sense that it minimizes the
total sum of squared distances between corresponding vertices. That is to say, for any
x = [x1, x2, x3]

T ∈ R3n, N2
− (x) is an optimal solution of the following problem:

minimize
3∑

i=1

‖xi − yi‖2

subject to ‖y1 − y2‖2 = ‖y1 − y3‖2 = ‖y2 − y3‖2 ,
(B.20)

where y = [y1, y2, y3]
T ∈ R3n. Furthermore, if x is non-collinear, then (B.20) has a unique

solution.

Proof Using the method of Lagrange multipliers [32], we first show that an optimal solution
of (B.20) lies in the plane containing the triangle △x. Then, to show the result, we solve
(B.20) using a proper parametrization of equilateral triangles in R2.
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The Lagrangian formulation of (B.20) minimizes

L (y, λ1, λ2)=
3∑

i=1

‖xi−yi‖22+λ1
(
‖y1−y2‖22−‖y1−y3‖

2
2

)
+λ2

(
‖y1−y2‖22−‖y2−y3‖

2
2

)
, (B.21)

where λ1, λ2 ∈ R are Lagrange multipliers. A necessary condition for optimality in (B.20) is
that the gradient ∇yL (y, λ1, λ2) of the Lagrangian with respect to y at any locally optimal
solution is zero,

∇yL (y, λ1, λ2) = 2




(y1 − x1) + λ1 (y3 − y2) + λ2 (y1 − y2)
(y2 − x2) + λ1 (y2 − y1) + λ2 (y3 − y1)
(y3 − x3)− λ1 (y3 − y1)− λ2 (y3 − y2)


 = 0 , (B.22)

from which one can conclude that an optimal solution of (B.20) lies in the plane containing
△x. Accordingly, without any loss of generality, suppose that △x is a positively oriented
triangle in R2, i.e., its vertices are in counter-clockwise order in R2.

In general, an equilateral triangle △y in R2 with vertices y = [y1, y2, y3]
T ∈ R6 can

be uniquely parametrized using two of its vertices, say y1 and y2, and a binary variable
k ∈ {−1,+1} specifying the orientation of △y; for instance, k = +1 if △y is positively
oriented, and so on. Consequently, the remaining vertex, y3, can be located as

y3 =
1

2
(y1 + y2) + k

√
3

2
Rπ/2(y2 − y1) , (B.23)

where Rπ/2 =

[
0 −1
1 0

]
is the rotation matrix defining a rotation by π/2.

Hence, one can rewrite the optimization problem (B.20) in terms of new parameters as
an unconstrained optimization problem: for y1, y2 ∈ R2 and k ∈ {−1, 1},

minimize ‖x1 − y1‖22 + ‖x2 − y2‖22 +
∥∥x3 −My1 −MTy2

∥∥2
2
, (B.24)

where M := 1
2I − k

√
3
2 Rπ/2, and I is the 2 × 2 identity matrix. Note that M + MT = I,

MTM = MMT = I and M2 = −MT.
For a fixed k ∈ {−1, 1}, (B.24) is a convex optimization problem of y1 and y2, because

every norm on Rn is convex, and compositions of convex functions with affine transforma-
tions preserve convexity [37]. Hence, a global optimal solution of (B.24) occurs where the
gradient of the objective function is zero at

[ (
I+MTM

) (
M2
)T

M2
(
I+MMT

)
] [

y1
y2

]
=

[
x1 +MTx3
x2 +Mx3

]
, (B.25)

which simplifies to

[
2I −M
−MT 2I

] [
y1
y2

]
=

[
x1 +MTx3
x2 +Mx3

]
. (B.26)
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Note that the objective function, f (y), is strongly convex, because its Hessian, ∇2f (y),
satisfies

∇2f (y) =

[
2I −M
−MT 2I

]
� I , (B.27)

which means that for a fixed k ∈ {−1,+1} the optimal solution of (B.24) is unique.
Now observe that

1

3

[
2I M

MT 2I

] [
2I −M
−MT 2I

]
=

[
I 0

0 I

]
, (B.28)

hence the solution of the linear equation (B.26) is

[
y1
y2

]
=

1

3

[
2I M

MT 2I

][
x1 +MTx3
x2 +Mx3

]
=

1

3

[
2x1 + 2MTx3 +Mx2 +M2x3

MTx1 +
(
M2
)T

x3 + 2x2 + 2Mx3

]
, (B.29)

=
1

3

[
2x1 +MTx3 +Mx2
2x2 +MTx1 +Mx3

]
=

[
1
2

(
x1 +

x1+x2+x3
3

)
+ k 1

2
√
3
Rπ/2 (x3 − x2)

1
2

(
x2 +

x1+x2+x3
3

)
+ k 1

2
√
3
Rπ/2 (x1 − x3)

]
. (B.30)

Here, substituting y1 and y2 back into (B.23) yields

y3 =
1

2

(
x3 +

x1 + x2 + x3
3

)
+ k

1

2
√
3
Rπ/2 (x2 − x1) . (B.31)

Thus, overall, we have

y =
2

3
x+

1

3

(
1

2
Kx+ k

√
3

2

(
I3 ⊗Rπ/2

)
Lx

)
=

{
2
3x+ 1

3T+ (x) , if k = +1,
2
3x+ 1

3T− (x) , if k = −1,
(B.32)

where K and L are defined as in (B.6). Recall that △x is assumed to be positively ori-
ented, i.e., Rx = Rπ/2, and so it is convenient to have the results in terms of Torricelli
transformations T±, see (B.4). As a result, the difference of y and x is simply given by

y − x =

{
1
3

(
T+ (x)− x

)
, if k = +1 ,

1
3

(
T− (x)− x

)
, if k = −1 . (B.33)

Finally, one can easily verify that the optimum value of k is equal to +1, since the
distance of x to the vertices of its inner Torricelli configuration T+ (x) is always less than
or equal to its distance to the vertices of its outer Torricelli configuration T− (x). Here,
the equality only holds if x is collinear. Thus, an optimal solution of (B.20) coincides with
the double outer Napoleon transformation, N2

− (x) (B.17), and it is the unique solution of
(B.20) if x is non-collinear. �

As a final remark, we would like to note that our particular interest in the optimality of
Napoleon triangles comes from our results on coordinated robot navigation, where a group
of robots require to interchange their (structural) adjacencies through a minimum cost
configuration determined by the double outer Napoleon transformation, refer to Chapter 2
for more details.
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Appendix C

Sensor-Based Reactive Navigation:

Supplementary Material

C.1 Geometric Interpretation of the Curvature Condition

A convenient way of characterizing metric limitations, such as the obstacle curvature con-
dition in Assumption 4.2, of the “move-to-projected-goal” law is in terms of the enclosing
balls of the goal x∗, defined as:

Definition C.1 The enclosing ball, Bx := B (x∗, ‖x− x∗‖ − r), of the goal x∗ associated
with a robot location x ∈ Rn \B (x∗, r) is the largest open ball, centered at x∗, that does not
intersect with the robot body B (x, r).

In other words, the enclosing ball Bx is the largest ball, centered at the goal x∗, which
can be circumnavigated by a disk-shaped robot of radius r, starting at location x, without
increasing the Euclidean distance to the goal.

Observe that, for any stationary point si ∈ Si (4.18) associated with obstacle Oi, one

has Bsi = B
(
x∗,
∥∥∥x∗ −ΠOi

(si)
∥∥∥
)
and ΠBsi

(si) = ΠOi
(si), because si, ΠOi

(si) and x∗ are

all collinear (Proposition 4.5). That is to say, Bsi is tangent to (i.e, the osculating ball of)
Oi at ΠOi

(si). Hence, we have

ΠBsi
(x) =

∥∥∥x∗ −ΠOi
(si)
∥∥∥ x− x∗

‖x− x∗‖ , ∀x ∈ Rn \Bsi , (C.1)

and so the Jacobian matrix JΠ
Bsi

(si) of the metric projection of si onto the associated

enclosing ball Bsi is given by

JΠBsi
(si) =

∥∥∥x∗ −ΠOi
(si)
∥∥∥

r +
∥∥∥x∗ −ΠOi

(si)
∥∥∥
Qi (si) , (C.2)
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where

Qi (x) := I−

(
x−ΠOi

(x)
)(

x−ΠOi
(x)
)T

∥∥∥x−ΠOi
(x)
∥∥∥
2 , ∀x ∈ Rn \Oi . (C.3)

Therefore, since Qi (si) 4 I, one can conclude that the upper bound in (4.24) of Assumption
4.2 is due to the enclosing ball Bsi of the goal x∗ associated with si. Because any path,
starting at x ∈ Rn, along which the distance to the goal x∗ is strictly decreasing should
stay in Bx for all future time; and the “move-to-projected-goal” law yields such navigation
paths (Theorem 4.3).

More precisely, the geometric connection between enclosing balls of the goal and the
curvature condition in Assumption 4.2 can be established as follows:

Proposition C.1 Let si ∈ Si (4.18) be a critical point associated with obstacle Oi. If
Oi \ ΠOi

(si) ⊂ Bsi, then

JΠOi
(si) ≺

∥∥∥x∗ −ΠOi
(si)
∥∥∥

∥∥∥x∗ −ΠOi
(si)
∥∥∥+ r

I . (C.4)

Thus, if Oi \ΠOi
(si) ⊂ Bsi for all i ∈ {1, 2, . . . ,m} and si ∈ Si, then Assumption 4.2 holds.

Proof Since ΠBsi
(si) = ΠOi

(si), the result can be verified using a similar pattern of the

proof of Lemma C.6; here the only difference is that the entire Oi, except ΠOi
(si), is strictly

contained in Bsi . �

Alternatively, using functional representations of obstacles, one can verify Assumption
4.2 as follows:

Proposition C.2 Let each obstacle Oi be associated with a convex function fi : R
n → R

such that Oi = f−1
i (−∞, ci) for some ci ∈ R. Then, Assumption 4.2 holds if

∇2fi

(
ΠOi

(si)
)

∥∥∥∇fi
(
ΠOi

(si)
)∥∥∥
≻ 1∥∥∥x∗ −ΠOi

(si)
∥∥∥
, (C.5)

for all i ∈ {1, 2, . . . ,m} and si ∈ Si (4.18).

Proof Consider the enclosing ball Bsi of the goal x
∗ associated with si ∈ Si. We have from

Definition C.1 that Bsi = β−1
(
−∞,

∥∥∥x∗ −ΠOi
(si)
∥∥∥
)
, where β (x) := ‖x− x∗‖2. Hence, it

follows that

∇2β
(
ΠBsi

(si)
)

∥∥∥∇β
(
ΠBsi

(si)
)∥∥∥

=
1∥∥∥x∗ −ΠOi

(si)
∥∥∥
. (C.6)

Therefore, since ΠBsi
(si) = ΠOi

(si), one can conclude the result from Lemma C.4 and

Lemma C.5. �
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Two immediate corollaries of Proposition C.1 and Proposition C.2 for the case of spher-
ical and ellipsoidal obstacles are:

Corollary C.1 If all obstacles are open balls, then Assumption 4.2 holds for any goal
x∗ ∈ F.

Corollary C.2 Let each obstacle Oi be an open ellipsoid defined as Oi = f−1
i (−∞, ci) for

some ci ∈ R, where fi :=(x− pi)
T
Ai (x− pi) and Ai ∈ Rn×n is symmetric positive definite.

Then, Assumption 4.2 holds if

λmin (Ai)

λmax (Ai)
>

∥∥∥pi −ΠOi
(si)
∥∥∥

∥∥∥x∗ −ΠOi
(si)
∥∥∥
, (C.7)

for all i ∈ {1, 2, . . . m} and si ∈ Si, where λmin (Ai) and λmax (Ai) are, respectively, the
minimum and maximum eigenvalues of Ai.

Proof The results follows from Proposition C.2 and

∇2fi

(
ΠOi

(si)
)

∥∥∥∇fi
(
ΠOi

(si)
)∥∥∥

=
A∥∥∥A

(
pi −ΠOi

(si)
)∥∥∥

<
λmin (Ai)

λmax (Ai)

1∥∥∥pi −ΠOi
(si)
∥∥∥
I . (C.8)

�

In consequence, one can briefly conclude that it is easier for a robot to navigate around
obstacles more spherical (i.e., not too flat) and towards goal locations away from obstacles,
while strictly decreasing the Euclidean distance to the goal.

C.2 Uniqueness of Maximum Margin Separating Hyperplanes

For any two disjoint convex sets A,B ∈ Rn, there can be more than one pair of points a ∈ A
and b ∈ B achieving ‖a− b‖ = d (A,B); however, they all have the same maximum margin
separating hyperplane:

Lemma C.1 Let A,B ⊂ Rn be two disjoint convex sets, and a1, a2 ∈ A and b1,b2 ∈ B be
points with ‖a1−b1‖ = ‖a2−b2‖ = d (A,B). Then, for any x ∈ Rn, the following equality
always holds

(a1 − b1)
T

(
x− a1 + b1

2

)
= (a2 − b2)

T

(
x− a2 + b2

2

)
. (C.9)

Proof First, to see that a1 − b1 = a2 − a2, consider

(a1 − b1)
T (a2 − b2) = (a1 − b1)

T

(
a2 −

a1 + b1
2

)
+ (b1 − a1)

T

(
b2 −

a1 + b1
2

)
, (C.10)

= d (A,B)2 +
1

2
(a1 − b1)

T (a2 − a1)︸ ︷︷ ︸
≥0, by Theorem 4.2

+
1

2
(b1 − a1)

T (b2 − b1)︸ ︷︷ ︸
≥0, by Theorem 4.2

, (C.11)

≥ d (A,B)2 . (C.12)
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where the inequality follows from Theorem 4.2, because ‖a1 − b1‖ = d (A,B) = d (a1, B) =
d (A,b1). Moreover, it follows from the Cauchy-Schwartz inequality that

(a1 − b1)
T (a2 − b2) ≤ ‖a1 − b1‖ ‖a2 − b2‖ = d (A,B)2 . (C.13)

Hence, since (a1−b1)T (a2−b2) = ‖a1−b1‖2 = ‖a2−b2‖2, one always has

a1 − b1 = a2 − b2 . (C.14)

Also observe from (C.11) that

(a1 − b1)
T (a1 − a2) = 0 , and (a1 − b1)

T (b1 − b2) = 0 . (C.15)

Therefore, the result can be verified as follows:

(a2−b2)T
(
x− a2+b2

2

)
= (a1−b1)T

(
x− a2+b2

2

)
, (C.16)

= (a1−b1)T
(
x− a1+b1

2

)
+ (a1−b1)T

(
a1+b1

2
− a2+b2

2

)

︸ ︷︷ ︸
=0, by (C.15)

, (C.17)

= (a1−b1)T
(
x− a1+b1

2

)
. (C.18)

�

C.3 On the Jacobian of Metric Projection

A well known property of metric projections is being nonexpansive:

Lemma C.2 ([219]) The metric projection onto a closed convex set A ⊆ Rn is Lipschitz
continuous with Lipschitz constant 1, i.e., ‖ΠA (x)−ΠA (y)‖ ≤ ‖x− y‖ for all x, y ∈ Rn.

Note that a Lipschitz function in Rn is differentiable almost everywhere, and ΠA is
piecewise continuously differentiable [135].

Lemma C.3 ([109, 85]) The Jacobian JΠK
(x) of the metric projection onto a closed convex

set K ⊆ Rn with twice continuously differentiable (C2) boundary is a positive semi-definite
and symmetric operator of norm at most unity, i.e.,

0 4 JΠK
(x) 4 I, ∀x ∈ Rn \K, (C.19)

and one has JΠK
(x) (x−ΠK (x)) = 0.

The Jacobian matrix of the metric projection onto a convex set can be analytically
obtained using its functional representation in terms of a level set of a convex function:
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Lemma C.4 Let K ∈ Rn be a closed convex set associated with a twice continuously
differentiable (C2) convex function f : Rn → R such that K = f−1(−∞, c] for some c ∈ R.

Then, the Jacobian JΠK
(x) of the metric projection of x ∈ Rn \K onto K is given by 1

JΠK
(x) = Q (I+QPQ)−1

Q = Q− I+ (I+QPQ)−1 , (C.20)

where

Q := I−
(
x−ΠK (x)

) (
x−ΠK (x)

)T

‖x−ΠK (x)‖2
, (C.21)

P :=
‖x−ΠK (x)‖
‖∇f (ΠK (x))‖∇

2f (ΠK (x)) . (C.22)

Proof Using the relation between K and f , one can rewrite the metric project onto K as

ΠK (x) = arg min
y∈K

‖y− x‖ = arg min
f(y)≤ c

‖y− x‖ . (C.23)

Further, due to the optimality of ΠK (x), the outward surface normal of K at ΠK (x) is

given by x−ΠK(x)
‖x−ΠK(x)‖ = ∇f(ΠK(x))

‖∇f(ΠK(x))‖ , and we have

x = ΠK (x) + ‖x−ΠK (x)‖ ∇f (ΠK (x))

‖∇f (ΠK (x))‖ . (C.24)

Hence, using JΠK
(x) (x−ΠK (x)) = 0 (Lemma C.3), the derivative of (C.24) yields

JΠK
(x) = (I−QP)−1

Q . (C.25)

Note that it is not straightforward to observe that the closed form of JΠK
(x) in (C.25)

is positive definite and symmetric (Lemma C.3). Alternatively, using the matrix identity
(I+AB)−1

A = A (I+BA)−1 [176] and QQ = Q, a more informative closed form of
JΠK

(x) can be obtained as follows:

JΠK
(x) = (I−QP)−1

Q = (I−QQP)−1
Q︸ ︷︷ ︸

=Q(I−QPQ)−1

Q = Q (I−QPQ)−1
Q . (C.26)

Alternatively, using a special case of Woodbury matrix identity (a.k.a. the matrix
inversion lemma) [176],

(I+QP)−1 = I−Q (I+PQ)−1
P , (C.27)

we also have

JΠK
(x) = (I−QP)−1

Q =
(
I−Q (I+PQ)−1

P
)
Q , (C.28)

1Here, ∇f : Rn → Rn and ∇2f : Rn → Rn×n denote the gradient and Hessian of a twice continuously
differentiable function f : Rn → R, respectively.
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= Q− I+ I−Q (I+PQQ)−1
PQ︸ ︷︷ ︸

=(I+QPQ)−1

, (C.29)

= Q− I+ (I+QPQ)−1 . (C.30)

Recall that QQ = Q. Thus, the lemma follows. �

Lemma C.5 Let K1,K2 ∈ Rn be two closed convex sets associated with twice differentiable
convex functions f1 : Rn → R and f2 : Rn → R, respectively, such that K1 = f−1

1 (−∞, c1]
and K2 = f−1

2 (−∞, c2] for some c1, c2 ∈ R. And let x ∈ Rn \ (K1 ∪K2) with ΠK1 (x) =
ΠK2 (x).

Then the following equivalence holds

∇2f1 (ΠK1 (x))

‖∇f1 (ΠK1 (x))‖
4
∇2f2 (ΠK2 (x))

‖∇f2 (ΠK2 (x))‖
⇐⇒ JΠK1

(x) < JΠK2
(x) . (C.31)

Proof The result directly follows from Lemma C.4 and the following matrix relation of
positive definite matrices, A and B, [34]

A 4 B ⇐⇒ A−1 < B−1 . (C.32)

�

Lemma C.6 Let K1,K2 ⊆ Rn be two convex sets with twice continuously differentiable
(C2) boundary. If K1 ⊇ K2, then the Jacobians JΠK1

(x) and JΠK2
(x) of metric projections

onto K1 and K2, respectively, satisfy

JΠK1
(x) < JΠK2

(x) , (C.33)

for all x ∈ Rn \K1 with ΠK1 (x) = ΠK2 (x).

Proof For any x ∈ Rn \K1 with ΠK1 (x) = ΠK2 (x) and y ∈ Rn, one can write the metric
projection of x + y onto K1 and K2, respectively, as

ΠK1 (x + y) = ΠK1 (x) + JΠK1
(x) y + o (y) , (C.34a)

ΠK2 (x + y) = ΠK2 (x) + JΠK2
(x) y + o (y) , (C.34b)

where lim
‖y‖→0

o(y)
‖y‖ = 0. Further, since K1 ⊇ K2, by the monotonicity of metric projections,

we have
‖x + y−ΠK1 (x + y)‖2 ≤ ‖x + y −ΠK2 (x + y)‖2 . (C.35)

Now it follows from (C.34), (C.35) and Lemma C.3 that

∥∥∥
(
I−JΠK2

(x)
)
y
∥∥∥
2

‖y‖2
−

∥∥∥
(
I−JΠK1

(x)
)
y
∥∥∥
2

‖y‖2
≥

‖x−ΠK1(x)−o (y)‖2

‖y‖2
−‖x−ΠK2(x)−o (y)‖2

‖y‖2
+

2yT
(
JΠK1

(x)−JΠK1
(x)
)
o (y)

‖y‖2
,

(C.36)

165



where the right hand side converges to zero as ‖y‖ → 0. Therefore, for any y ∈ Rn, one
always has ∥∥∥

(
I − JΠK2

(x)
)
y
∥∥∥
2
≥
∥∥∥
(
I − JΠK1

(x)
)
y
∥∥∥
2
. (C.37)

Thus, the result follows since 0 4 JΠK1
(x) ,JΠK2

(x) 4 I (Lemma C.3). �

C.4 Convexity in Polar Coordinates

Similar to the notion of convexity in Cartesian coordinates, a polar curve ρ : (θl, θu)→ R≥0

is said to be convex with respect to the pole if and only if its epigraph,2

epiρ :=
{
(θ, ̺)

∣∣θ∈(θl, θu) , ̺ ≥ ρ (θ)
}
, is a convex set; and, likewise, ρ is said to be con-

cave if and only if its hypograph, hypρ :=
{
(θ, ̺)

∣∣θ∈(θl, θu) , 0 ≤ ̺ ≤ ρ (θ)
}
is a convex set

[157, 75], see Figure C.1.

Figure C.1: Convexity in polar coordinates. A polar curve is convex (concave) with respect
to the pole iff its epigraph (hypograph) is a convex set, as illustrated on the right (left,
respectively).

Alternatively, like the first- and second-order conditions for convexity of Cartesian func-
tions, one can verify the convexity of a polar curve as follows:

Theorem C.1 (Second-Order Convexity Condition [157]) A twice differentiable polar curve

2Here the epigraph and the hypograph of a polar curve are given in polar coordinates, and one can
equivalently write them in Cartesian coordinates as

epiρ =
{

(̺ cos θ, ̺ sin θ)
∣

∣θ ∈ (θl, θu) , ̺ ≥ ρ (θ)
}

, (C.38)

hypρ =
{

(̺ cos θ, ̺ sin θ)
∣

∣θ ∈ (θl, θu) , 0 ≤ ̺ ≤ ρ (θ)
}

. (C.39)
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ρ : (θl, θu)→ R>0 is said to be convex with respect to the pole if 3

Γ := ρ2 + 2

(
dρ

dθ

)2

− ρd
2ρ

dθ2
≤ 0 . (C.42)

Theorem C.2 (Three-Point Convexity Condition [75]) A polar curve ρ : (θl, θu)→ R>0 is
convex to the pole if 4

det







1
ρ(θ1)

cos θ1 sin θ1
1

ρ(θ2)
cos θ2 sin θ2

1
ρ(θ3)

cos θ3 sin θ3





 · det





1 cos θ1 sin θ1
1 cos θ2 sin θ2
1 cos θ3 sin θ3




 ≤ 0 , (C.44)

for all θ1, θ2, θ3 ∈ (θl, θu).

Note that the second determinant term in (C.44) quantifies the circular order of θ1, θ2 and
θ3, i.e., it is positive (negative) if these angles are given in counter-clockwise (clockwise,
respectively) order.

In accordance with Theorem C.2, since a LIDAR scanner has a fixed angular resolution
in practice, say ∆θ ∈ (0, π), to check the convexity of a LIDAR scan in counter-clockwise
angular order, we find it convenient to define

Υ (θ) := det







1
ρ(θ−∆θ) cos (θ −∆θ) sin (θ +∆θ)

1
ρ(θ) cos (θ) sin (θ)
1

ρ(θ+∆θ) cos (θ +∆θ) sin (θ +∆θ)





 . (C.45)

Therefore, one can identify the convex polar curve segments of a LIDAR scan using the
convexity measures Γ (C.42) and Υ (C.45) as illustrated in Figure C.2.

3In [157], the convexity of a polar curve with respect to the pole is characterized based on its tangent
lines: a polar curve at a point is convex if and only if the curve in a small neighborhood of that point lies on
the opposite side of the tangent at that point to the pole. Accordingly, the second-order convexity condition
in (C.42) is derived using the perpendicular distance p of the pole to the tangent line of a polar curve ρ at
point (θ, ρ (θ)), given by

1

p2
= u

2 +

(

du

dθ

)2

, (C.40)

where u := 1
ρ
; and the polar curve ρ is said to be convex to the pole if and only if dp

dρ
is negative, where

dp

dρ
= p

3
u
2

(

u+
d2u

dθ2

)

=
p3

ρ2

(

ρ
2 + 2

(

dρ

dθ

)2

− ρ
d2ρ

dθ2

)

. (C.41)

4Let vt = (cos θt, sin θt) and pt = (ρ (θt) cos θt, ρ (θt) sin θt) for t = 1, 2, 3. Then, to have a geometric
understanding of the three-point convexity condition one can equivalently rewrite (C.44) as

(

(p2 − p1)× (p3 − p2)
)

·
(

(v2 − v1)× (v3 − v2)
)

≤ 0 , (C.43)

where × and · denote the cross and dot products, respectively.
5 Here, we set the LIDAR’s angular resolution to ∆θ = π

100
, and approximately compute the first- and

second-order derivatives of a simulated LIDAR range data, respectively, using its three-point first- and
second-order central differences [87] after smoothing with a five-point Gaussian moving average filter with
unit variance, σ2 = 1 [208].

6 A practical heuristic for identifying convex segments of a LIDAR scan is its segmentation based on
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Figure C.2: Segmentation of a LIDAR scan into convex polar curves using convexity mea-
sures Γ (C.42) and Υ (C.44). 5 6

C.5 An Extension for a Discrete-Time Robot Model

Keeping in mind its potential application to online robot navigation in a nonconvex envi-
ronment when combined with a standard (e.g., sampling based) motion planning algorithm
[140, 55] — a very promising future research direction that we will explore, we now in-
troduce a discrete-time version of the “move-to-projected-goal” law in (4.17) to iteratively
navigate towards a designated goal location x∗ ∈ F as follows: for any xk ∈ F,

xk+1 = xk −
(
xk −Π

LF(xk) (x
∗)
)
∆t, (C.46)

where k ∈ N is a discrete time index, ∆t ∈ (0, 1] is a fixed sample time (step size), and
Π

LF(xk) (x
∗) (4.6) is the metric projection of the goal x∗ onto the robot’s local free space

LF
(
xk
)
(4.15). Note that we here avoid collisions along the line segment joining consecutive

robot states, xk and xk+1, by limiting the range of values of ∆t to (0, 1], because xk+1

becomes a convex combination of the robot state xk and the projected goal Π
LF(xk) (x

∗),

i.e., xk+1 = (1−∆t) x + ∆tΠ
LF(xk) (x

∗), and the line segment joining them is always free

of collisions (Corollary 4.1).
Therefore, using the continuity of the move-to-projected-goal law in (4.17) (Proposition

4.2) and the type of its stationary points (Proposition 4.6), one can conclude that:

Corollary C.3 If Assumption 4.2 holds for the goal and for all obstacles, then the discrete-
time “move-to-projected-goal” law in (C.46) starting from almost any robot location in F

(4.1) iteratively reaches a small neighborhood, B (x∗, ǫ) for some ǫ > 0, of the goal x∗ in
finite steps with the guarantee of no collisions along the line segments joining two consecutive

local maxima; however, such a heuristic approach might detect some concave curve segments in addition to
all convex segments in a LIDAR scan.
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robot states, while strictly decreasing the Euclidean distance to the goal.

Note that the discrete-time “move-to-projected-goal” law in (C.46) can be simply adapted
to limited range sensing models, by using the robot’s sensed local free space LFS (4.36) or
the line-of-sight local free space LFL (4.41), as well as to the differential drive model while
retaining the convergence and collision avoidance guarantees.

To demonstrate its motion pattern, we present in Figure C.3 the resulting navigation
paths of the discrete-time “move-to-projected-goal” law in (C.46) for different sampling
times and sensing models.

Figure C.3: Example navigation paths of the discrete-time “move-to-projected-goal” law
for different sampling times and sensing models: (left) ∆t = 1, (middle) ∆t = 0.5, and
(right) ∆t = 0.25; and (top) Voronoi-adjacent 12 obstacle sensing, and (center) a fixed
radius sensory footprint, and (bottom) a limited range line-of-sight sensor.
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C.6 Motion Pattern Far Away from the Goal

In Figure C.4, we present the motion pattern generated by the “move-to-projected-goal”
law starting at a set of initial robot configurations far away from the goal, located at the
upper right conner of a 50× 10 environment populated with convex obstacles, for different
sensing and actuation models.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure C.4: Example navigation trajectories of the “move-to-projected-goal” law starting
at a set of initial conditions (green) far away from the goal (red) for different sensing and
actuation models: (a,b,c) a fully actuated robot, (d,e,f) a differential drive robot, (a,d)
Voronoi-adjacent12 obstacle sensing, (b,e) a fixed radius sensory footprint, (c,f) a limited
range line-of-sight sensor.
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