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ABSTRACT

MODEL BASED METHODS FOR THE CONTROL

AND PLANNING OF RUNNING ROBOTS

Ömür Arslan

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ömer Morgül

July 2009

The Spring-Loaded Inverted Pendulum (SLIP) model has long been established

as an effective and accurate descriptive model for running animals of widely

differing sizes and morphologies. Not surprisingly, the ability of such a simple

spring-mass model to capture the essence of running motivated several hopping

robot designs as well as the use of the SLIP model as a control target for more

complex legged robot morphologies. Further research on the SLIP model led to

the discovery of several analytic approximations to its normally nonintegrable

dynamics. However, these approximations mostly focus on steady-state running

with symmetric trajectories due to their linearization of gravitational effects,

an assumption that is quickly violated for locomotion on more complex terrain

wherein transient, non-symmetric trajectories dominate. In the first part of the

thesis , we introduce a novel gravity correction scheme that extends on one of the

more recent analytic approximations to the SLIP dynamics and achieves good

accuracy even for highly non-symmetric trajectories. Our approach is based on

incorporating the total effect of gravity on the angular momentum throughout

a single stance phase and allows us to preserve the analytic simplicity of the

approximation to support research on reactive footstep planning for dynamic
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legged locomotion. We compare the performance of our method with two other

existing analytic approximations by simulation and show that it outperforms

them for most physically realistic non-symmetric SLIP trajectories while main-

taining the same accuracy for symmetric trajectories. Additionally, this part of

the thesis continues with analytical approximations for tunable stiffness control

of the SLIP model and their motion prediction performance analysis. Similarly,

we show performance improvement for the variable stiffness approximation with

gravity correction method. Besides this, we illustrate a possible usage of approx-

imate stance maps for the controlling of the SLIP model.

Furthermore, the main driving force behind research on legged robots has always

been their potential for high performance locomotion on rough terrain and the

outdoors. Nevertheless, most existing control algorithms for such robots either

make rigid assumptions about their environments (e.g flat ground), or rely on

kinematic planning with very low speeds. Moreover, the traditional separation of

planning from control often has negative impact on the robustness of the system

against model uncertainty and environment noise. In the second part of the

thesis, we introduce a new method for dynamic, fully reactive footstep planning

for a simplified planar spring-mass hopper, a frequently used dynamic model for

running behaviors. Our approach is based on a careful characterization of the

model dynamics and an associated deadbeat controller, used within a sequential

composition framework. This yields a purely reactive controller with a very

large, nearly global domain of attraction that requires no explicit replanning

during execution. Finally, we use a simplified hopper in simulation to illustrate

the performance of the planner under different rough terrain scenarios and show

that it is robust to both model uncertainty and measurement noise.

Keywords: Footstep Planning, Legged Locomotion, Hybrid System, Reactive

Control, Approximate Stance Map, Spring-Mass Hopper, Rough Terrain, Non-

symmetric Steps
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ÖZET

KOŞAN ROBOTLARIN KONTROL VE PLANLAMASI İÇİN

MODEL TABANLI YÖNTEMLER

Ömür Arslan

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ömer Morgül

Temmuz 2009

Yüklü Yay Ters Sarkaç (YYTS) modeli çok değişik boyut ve morfolo-

jideki koşan hayvanların etkili ve güvenilir tanımlayıcı modellenmesinde uzun

süredir kullanıldığı gibi değişik zıplayan robotların tasarımı için de bir ta-

ban oluşturmaktadır. Bu model üzerindeki ilerleyen araştırmalar integrali

alınamayan dinamiği için değişik analitik yaklaşıklamalar ile sonuçlanmıştır.

Yerçekimi etkisinin doğrusallaştırılmasından dolayı bu yaklaşıklamalar çoğunlukla

kararlı durumdaki simetrik koşmalara yoğunlaşmıştır, ancak bu varsayım

geçici rejim ve simetrik olmayan gezingelerin sıklıkla kullanıldığı karmaşık

yüzeylerde bozulmaktadır. Bu tezin ilk kısmında, yeni bir yerçekimi

etkisini düzeltme yöntemi tanıtılmış ve varolan analitik YYTS dinamiği

yaklaşıklamasının güvenilirliği oldukça fazla simetrik olmayan gezingeler için

arttırılmıştır. Yaklaşımımız bir adım sırasında yerçekiminin açısal moment

üzerine olan toplam etkisinin yaklaşıklamaya dahil edilmesine dayanıyor ve

böylelikle de bu kolay analitik yaklaşıklama reaktif adım planlanmasında

da kullanılabilir. Yöntemimizin performansı litaratürde varolan iki analitik

yaklaşıklama ile karşılaştırılmış, çok sık kullanılan simetrik olmayan gezingeler

için diğerlerinden daha iyi olduğu ve simetrik gezingelerde ise aynı performansa
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sahip olduğu gözlenmiştir. Buna ek olarak, ayarlanabilir bükülmezlik için anal-

itik yaklaşıklamalar ve bu yaklaşıklamaların hareket kestirme performansı anal-

izi incelenmiştir. Benzer bir şekilde, değişken bükülmezlik yaklaşıklamasının

yerçekimi etkisini düzeltme yöntemi ile birlikte kullanıldığında belirgin bir per-

formans gelişimi gözlenmiştir. Bunun yanısıra, YYTS modelinin kontrollünde bu

yaklaşmaların olası kullanımını gösterdik.

Bacaklı robotlardaki araştırmaların arkasındaki asıl itici güç bu robotların

karmaşık yüzeylerde ve dış ortamlarda yüksek devinim potensiyellerinin ol-

masıdır. Buna rağmen, bu robotlar için varolan kontrol algoritmalarının çoğu

ya ortam ile ilgili katı varsayımlara (düz zemin gibi) yada çok düşük hızlarda

kinematik planlamaya dayanmaktadır. Planlamanın geleneksel olarak kon-

troldan ayrılması genellikle model belirsizliğine ve ortam gürültüsüne karşı sis-

temin dayanıklılığının azalmasına neden olmaktadır. Bu tezin ikinci kısmında,

koşma davranışları için sıklıkla kullanılan dinamik bir model olan basitleştirilmiş

düzlemsel yay-kütle sıçrayanı için dinamik ve tamamen reaktif adım planlaması

için yeni bir method önerilmektedir. Yaklaşımımız model dinamiğinin dikkatli

bir şekilde karakterize edilmesine ve sıralı ardışık bileşim taslağı içerisinde kul-

lanılacak ilgili deadbeat kontrolüne dayanmaktadır. Böylelikle çok geniş, hemen

hemen evrensel çekim yöresi olan ve uygulama sırasında tekrar planlama ihtiyacı

duymayan tamamen reaktif denetleyici sağlanmış olmaktadır. Son olarak,

planlayıcının performansı simülasyon ortamında başitleştirilmiş bir sıçrayıcının

üzerinde değişik yüzey koşullarında gösterilmiş ve yöntemin model belirsizlikler-

ine ve ölçme gürültülerine karşı dayanıklı olduğunu gözlemlenmiştir.

Anahtar Kelimeler: Adım Planlaması, Bacaklı Lokomosyon, Karma Sistem,

Reaktif Kontrol,Yüklü Yay Ters Sarkaç (YYTS), Analitik YYTS Dinamiği

Yaklaşıklaması, Karmaşık Arazi, Simetrik Olmayan Adımlar
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Chapter 1

INTRODUCTION

1.1 Components of a Robotic System

There are many different technical and literal descriptions for the term robotics

in the literature. From our perspective, robotics is an interdisciplinary field of

science and technology related to biology and material science, in addition to

electrical, mechanical, and software engineering. There are several categoriza-

tions of components in a robotics system, but for us, the main components of a

robot are sensors, a controller and actuators as in Fig. 1.1.

ControllerSensors Actuators

Figure 1.1: Three main components of a robotic platform: Sensors, Controller,
Actuators.

Nowadays, electronic and manufacturing technologies enable us to easily de-

sign different robotics platforms with the same sensor and controller capabilities.

On the other hand, most distinguishing features of a robot result from its actua-

tion mechanisms. Therefore, we can classify mobile robotic systems in two main

groups according to their actuators: wheeled and legged systems. Both of these
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actuation systems have advantages according to their purpose and environment,

still appealing to researchers with a large number of unanswered questions. We

will discuss in the next section, relative advantages and disadvantages of these

alternatives.

1.2 Legged or Wheeled Systems

One of the first questions to be answered before a new mobile robotic platform

can be designed is what its actuation mechanism should look like; Is it going to

be wheeled or legged?. The answer to this question significantly effects the capa-

bilities of the robot, limitations on its operation environment and the difficulty

of its control.

Before the usage of legs were considered, researchers were using structured

environments for their robots such that the desired robot motion could be easily

obtained by wheeled mobile robots. However, increasing demand for robots to

operate in our daily life began to show the mobility limitations of wheeled systems

due to the fact that they have restricted motion capabilities over unstructured

and rough surfaces [4]. In [5], the disadvantages of wheels are summarized in

three categories: efficiency of wheels is restricted to flat surfaces, they have

limited motion capabilities in the presence of vertical obstacles and they have

problems in turning within environments with disorganized obstacles.

In contrast to wheeled systems, legged systems started to receive attention

somewhat later in mid-1900s. Legged morphologies have since then been consid-

ered necessary to achieve dynamic, robust and autonomous traversal of complex,

outdoor terrain. Despite effective behaviors and performance demonstrated by

tracked vehicles [6] and flexible multi-wheeled platforms [7], the pallet of behav-

iors realizable with such morphologies inevitably remains limited due to restricted

directions in which forces can be applied to the robot body. On the other hand,
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while legged designs do not suffer from such limitations [8], their robust and

maneuverable control on complex terrain is still a largely unsolved problem. Ad-

ditionally, in [9], Raibert summarizes advantages of legged systems compared to

wheeled ones with two reasons. One reason is that the mobility of legged systems

is considerably better than wheeled vehicles. The legged robots can be used in

difficult terrains inaccessible to wheeled systems. The second one is that applica-

tion areas for wheeled vehicles are mostly limited to structured arenas (e.g roads

and rails) and some limited natural settings. On the other hand, legged robots

can hypothetically reach all regions that animals can travel on foot.

Another useful feature of legs is that they can also be used as manipulators.

By using legs, it may be possible to hold, lift, move things in the environment.

Similarly, legs can also be used as sensors to sense weight, position, moveability

and structure of objects in the environment. For example, [10] illustrates an

excellent use of legs as feelers, in which haptic information from a robot’s leg is

used to characterize several object properties ,such as weight and moveability,

by an operator. Such information can not be obtained by visual sensors.

There are a lot of outstanding and challenging examples of locomotion that

can be achieved by using legs, but troublesome or sometimes impossible for

wheels. For instance, many research results on robots which can climb tree like

structures or vertical wall appeared in the literature. An excellent example is the

RISE, which is a bioinspired hexapedal climbing robot capable of locomotion on

both level ground and different vertical structures such as building surfaces and

trees [11, 12]. Furthermore, one of the challenging environments for robots are

sandy terrains wherein wheeled robots usually get stuck. However, SandBot, a

bioinspired hexapedal robot, can impressively traverse over sand [13].
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Therefore, legs are intuitively better than wheels since they have a much wider

range of different applications. Despite these advantages of legs over wheels, ma-

jor difficulties with legged systems are the control problem, gait generation and

locomotion, which turn out to be more difficult compared to wheeled platforms.

1.3 Motivation and Existing Work

As mentioned above, control of legged systems is among the most important

challenges in their effective, real-life adoption. There are numerous legged mor-

phologies with different sizes and it is impossible to find a general mathematical

model describing all such systems. Consequently, the main focus of this thesis is

limited to the control and planning of monopod and biped robots. We will use

the spring-mass hopper (also known as the Spring Loaded Inverted Pendulum,

SLIP), which is frequently used as a fundamental model to analyze and estimate

human, animal and robotics locomotion.

Several biological observations and experimental verifications show how well

the spring-mass hopper describes fundamental characteristics of natural runners

with widely varying sizes and morphologies in nature [14–18]. In parallel, a

succession of one-legged hopping robots with SLIP-like morphologies such as

Raibert’s hoppers [9], ARL Monopods [19], the Bow-Leg design [1], the SLIP

hopper [20] and the BiMASC leg [21] demonstrated that dynamic locomotion is

not only feasible but also has significant energetic and behavioral advantages.

These developments led to an increasing belief that the SLIP model may be

more than just a descriptive model that fits biological data, but also a control

target whose dynamics are an effective and appropriate abstraction for running

behaviors [16]. Evidence to this end was provided by Raibert’s robots as well as

work on active embedding of SLIP dynamics within more complex morphologies

[14, 22].
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Figure 1.2: (a) The SLIP model, (b) Raibert’s hopper, (c) A human runner.

This point of view led to the development of control strategies that explicitly

operate on the SLIP model itself. Some of these are based on intuitive observa-

tions [9], while others seek accurate and preferably analytic approximations to

the nonlinear model dynamics [2, 23]. Such approximations turn out to provide

critical tools in the stability analysis of locomotion as well as the design of high

performance control and planning algorithms for robot runners. Moreover, these

approximations are generally more applicable than numerical alternatives such

as the interpolation based alternatives presented in [24].

Since the stance dynamics of SLIP under the effect of gravity are noninte-

grable [25], several approximate alternatives have been proposed in the literature.

Most notably, Schwind and Koditschek used a generalization of the mean-value

theorem to obtain an iterative yet analytic approximation to the stance dynam-

ics [3]. Under certain assumptions, the performance of their approximations is

shown to increase with each iteration, eventually converging to true SLIP trajec-

tories. Another alternative is presented by Geyer et al. in [2], wherein a much

simpler analytic approximation to the spring mass hopper dynamics is derived

based on various assumptions specific to the SLIP model. Both methods focus

on steps that are symmetric around the vertical axis, where the effect of gravi-

tational acceleration can be either neglected or linearized and has only a minor

impact on accuracy.
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In reality, however, humans, animals and robots inevitably need to locomote

on a variety of irregular terrain (e.g. grass, gravel, rock field, etc.), for which

steady-state is never reached and transient, non-symmetric motions dominate.

Under these conditions, assumptions based on either linearization of gravity or

conservation of angular momentum are no longer applicable, making most of

the currently available approximations inaccurate. Fig. 1.3 illustrates the effect

of gravity on the angular momentum of SLIP under different, non-symmetric

trajectory conditions. Therefore, this shows the necessity of a more accurate

descriptive approximation for nonsymmetric steps and also motivates the first

part of this thesis, focusing on analitical models for and control of nonsymmetric

locomotion.

Figure 1.3: The total gravity effect on the angular momentum at the end of the
stance phase compared to touchdown instant: (a) decreasing effect on magnitude,
(b) the angular momentum is the same since it is a symmetric gait, (c) increasing
effect on magnitude.

Ortogonally, motion planning for locomotion on rough terrain has been a

topic of interest since the first days of legged robots. With controllers that regu-

late step-lengths, Raibert’s bipeds [9] have been able to traverse both flat terrain

with “holes” as well as terrain with significant height variations. Their method

relies on preprocessing of the terrain structure to identify specific footholds in the

planning step and uses the execution controller to achieve the constructed plan,

resulting in an overall controller which is sensitive to modelling uncertainties

[26]. A similar planning framework was also investigated in [1], particularly as

it applies to the Bow-Leg platform but the proposed solutions still remains non-

reactive with explicit replanning performed upon detection of plan failure. More
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recently, footstep planning for bipeds in complex environments received consid-

erable attention with the availability of quasi-static but well actuated humanoid

robots. As a result of their quasi-static nature, footstep planning for such plat-

forms can rely on a kinematic characterization of their stepping patterns [27].

Since movements of such robots are usually rather slow, discrete abstractions

of action sequences combined with search algorithms, possibly with replanning

for dynamic or unpredictable environments, suffice to achieve reasonable perfor-

mance [28, 29]. Unfortunately, for systems that must rely on their second order

dynamics, either due to underactuation or to achieve high speed operation, such

kinematic methods quickly become inapplicable.

The presence of non-negligible second-order dynamics inevitably brings the

need for reactivity since models for such systems are usually much less accurate.

This necessity motivates the second part of this thesis in which we concentrate

on reactive footstep planning over rough surfaces such as the one illustrated in

Fig. 1.4.

Figure 1.4: An illustrative figure of the spring mass hopper locomotion over an
uneven terrain (inspired from [1]).
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1.4 Methodology

As discussed in the previous section, the assumed conservation of angular mo-

mentum is quickly violated for locomotion on more complex terrain wherein

transient, non-symmetric trajectories dominate. In the first part of this the-

sis, we introduce a novel gravity correction scheme that extends on one of the

more recent analytic approximations to the SLIP dynamics and achieves good

accuracy even for highly non-symmetric trajectories. Our approach is based on

incorporating the total effect of gravity on the angular momentum throughout a

single stance phase and allows us to preserve the analytic simplicity of the ap-

proximation to support our research on reactive footstep planning for dynamic

legged locomotion.

Additionally, we mentioned above, the main difficulty of legged systems: the

control problem. In the thesis, we will also introduce a reactive footstep planing

algorithm for model based control of monopedal systems over uneven surfaces.

Traditional approaches which perform planning and control separately do not

perform well in the presence of model uncertainty and measurement noise. On

the other hand, existing reactive control methods often make rigid assumptions

about their environment (e.g. flat ground or single obstacle of known size) and do

not offer the scalability which is necessary for deployment on real-life problems.

In the second part of the thesis, we propose a novel algorithm to address these

issues for the specific problem of purely reactive control and footstep planning

for a simplified planar spring-mass hopper running on rough terrain as illustrated

in Fig. 1.5.

One of the most successful methods in integrating deliberate planning with

reactivity for dynamically dexterous robots is the Sequential Composition, first

introduced in the context of juggling [30] and later applied to other robots such as
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Figure 1.5: A spring-mass hopper running over rough terrain.

planar mobile robots with different actuation modalities [31–33] and the Mini-

factory [34]. As such, sequential composition characterizes available dynamic

behavioral controllers for a given robotic system through their invariant domains

and goal sets in the state space, ensuring proper activation order through a prior-

itization combined with reactive decision-making. Our approach is largely based

on these ideas but deviates in our formulation of behavioral primitives and asso-

ciated domain and goal sets. Among primary contributions of this thesis are the

formulation of a general framework for discrete, per-step application of sequential

composition to a loosely constrained family of hoppers, as well as the applica-

tion of resulting ideas to a specific, simplified hopper model and the spring mass

hopper supported by an analytical characterization of its apex states reachable

from specific regions of allowable footholds.

1.5 Organization of Thesis

In the first part of the thesis, we start in Chapter 2 with the SLIP model and an

overview of existing approximations for its stance map. In Section 3.2, we propose

a novel gravity correction scheme to increase the accuracy of method in [2] for

non-symmetric SLIP trajectories and compare our results with approximations

presented in both [2] and [3]. Subsequently, in Section 3.3, we then derive three

analytical models for two-phase variable stiffness control by using results of [2],

[3], and [35] and compare the prediction performance of these approximations.
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The second part of this thesis begins in Chapter 4 with a summary of previous

studies on the control and planning of legged locomotion over uneven terrains.

We then continue with the design of a position aware deadbeat controller using

approximate stance maps in Chapter 3 . In Chapter 6, we introduce a general

planning framework for different types of hoppers and continue with our proposed

method for reactive footstep planning on a simplified hopper. Finally, in Chapter

7, we conclude the thesis with a review of our work and a summary of open

research topics.

In this thesis, we claim that the usage of accurate analytical models of running

robots is an efficient way to design robust and reliable gait planning and control

algorithms. In summary, the main contribution of this thesis can be listed as

follows

• We introduce a novel gravity correction method that extends one of the

more recent analytic approximations to the SLIP dynamics and achieves

good accuracy even for highly non-symmetric trajectories [35].

• We also derive approximate stance maps for two-phase variable stiffness

control based on analytical models in [2], [3] and [35], and show significant

prediction accuracy for a good range of SLIP steps.

• We design position aware deadbeat controllers based on approximate mod-

els of the SLIP stance trajectory to enable collision free planning and con-

trol of the spring-mass hopper.

• We propose a new method for dynamic, fully reactive footstep planning for

a general hopper model. We use a simplified hopper in simulation to illus-

trate the performance of the planner under different rough terrain scenar-

ios and show that it is robust to both model uncertainty and measurement

noise. [36].
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Chapter 2

BACKGROUND: THE

SPRING-MASS HOPPER

This chapter introduces necessary background for the spring-mass hopper as well

as a summary of existing methods for the derivation of approximate analytical

maps for its stance trajectory.

2.1 The SLIP Model

From the perspective of both biomechanics and robotics, the Spring-Loaded In-

verted Pendulum (SLIP) model is the simplest, most effective and accurate de-

scriptive model to analyze dynamic locomotion in humans, animals and robots.

This section continues with the SLIP template, its dynamics, and possible modes

for its control.
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2.1.1 The SLIP Template

The SLIP model consists of a point mass representing the total mass for the

system of interest and a massless springy leg, characterizing one or more com-

pliant leg(s) as illustrated in Fig. 2.1(a). SLIP is a hybrid system such that

its continuous dynamics change depending on the state of ground contact. Dur-

ing locomotion, the system alternates between stance and flight phases. During

stance, the toe remains stationary on the ground with no torque applied whereas

in flight, the body follows a ballistic trajectory. Moreover, each of these two

phases is also divided into two subphases based on the sign of the rate of change

of the leg length for stance phase and sign of the vertical velocity for the flight

phase. Fig. 2.1 shows a single stride starting from an apex position and la-

bels relevant phases, subphases and transition events. Furthermore, Table 2.1

details the notation associated with the formal SLIP model we use throughout

the thesis. Let us give definitions and general properties of locomotion phases,

subphases and transition events.
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Figure 2.1: The SLIP Model. (a) Coordinates and model parameters. (b) Loco-
motion phases (shaded regions) and transition events (boundaries).
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Table 2.1: Notation associated with the SLIP model used throughout the thesis

SLIP States

qr, qθ Leg length and leg angle
qṙ, qθ̇ Leg compression and swing rates

q Body state vector in polar coordinates, q = [qθ qθ̇ qr qṙ]
T

pr, pθ Radial and angular momenta
qrtd

, qθtd
, ttd Touchdown leg length, angle and time

qrb
, qθb

, tb Bottom leg length, angle and time
qrlo

, qθlo
, tlo Liftoff leg length, angle and time

bx, by Horizontal and vertical body positions
btx Horizontal toe position

bẋ, bẏ Horizontal and vertical body velocities
b Body state vector in cartesian coordinates,

b = [bx bẋ by bẏ btx]T

bya , bẋa Apex height and velocity

SLIP Parameters

m, g Body mass and gravitational acceleration
l0, k Leg rest length and leg stiffness
kc, kd Leg stiffness during compression and decompression

E Total mechanical energy
Fg(x) Ground function. For a given position x, it returns

the ground height.
Fs(qr, qṙ) Spring force function. For a given leg length it returns

spring force based on the stance phase of SLIP.
Us(qr, qṙ) Spring potential energy function. For a given leg length

it returns stored energy on compliant leg based on the
stance phase of SLIP.

Mapping Functions

fa 7→td(ba) Apex to touchdown map
ftd 7→lo(btd) Stance map
flo 7→a(blo) Liftoff to apex map
tc 7→p(b) Cartesian to polar coordinate transformation
tp 7→c(q) Polar to cartesian coordinate transformation

πi ◦ [x1x2 · · ·xi · · · ] = xi Projection operator

Flight : This is the period in which the leg does not touch the ground and

the body performs ballistic flight, which has a well known dynamics. De-

pending on the vertical velocity, this phase is divided into two subphases:

Ascent and Descent.

Ascent : This is the subperiod of the flight phase where the vertical ve-

locity is positive (upward) and decreasing in magnitude. In this sub-

phase, the gravitational potential energy increases.
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Descent : This is the subperiod of the flight phase where the vertical

velocity is negative (downward) and increases in magnitude. In this

subphase, the gravitational potential energy decreases.

Stance : This is the period in which the model touches the ground. Due to the

gravitational pull, stance phase dynamics consist of non-integrable terms.

Also, depending on the rate of change of leg length, this phase is divided

into two subphases: Compression and Decompression.

Compression : This is the subperiod of the stance phase where the rate

of change of leg length is negative. In this subphase, the stored energy

on the compliant leg increases.

Decompression : This is the subperiod of the stance phase where the

rate of change of leg length is positive. In this subphase, the stored

energy on the compliant leg decreases.

Transition Events : Since our model is a hybrid system, it includes both con-

tinuous and discrete dynamics. Transition events are defined as the bound-

aries between ascent, descent, compression and decompression subphases.

To perform a simulation study, these transition events should be checked.

Moreover, these transition events have special properties and are important

to determine the locomotion characteristics. Now, let us give the general

properties of these events.

Apex : This event occurs during the flight phase between the ascent and

descent subphases. Coincident with this event, the SLIP body reaches

its maximum height (or maximum gravitational potential energy).

The zero crossing of the following apex event function identifies this

event1:

fa(b) := bẏ, (2.1)

1Apex occurs if fa(b) = 0 and SLIP is in flight phase.
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Touchdown : This is the flight to stance transition event. In other words,

it marks the transition from descent to compression. It occurs when

the leg length is equal to the touchdown leg length and the SLIP

is going down. This event is identified by the zero crossing of the

following touchdown event function2:

ftd(b) := by − (qrtd
cos(qθtd

) + Fg(btx)), (2.2)

Bottom : This event occurs during the stance phase between the com-

pression and decompression subphases. Coincident with this event,

the spring potential energy reaches its maximum value (or the mini-

mum leg length is reached). The zero crossing of the following bottom

event function identifies this event3:

fb(q) = qṙ, (2.3)

Liftoff : This is the stance to flight transition event. In other words,it

marks the transition from decompression to ascent. It occurs when

the leg length is equal to the liftoff length and the SLIP is going up.

This event is identified by the zero crossing of the following liftoff

event function4:

flo(b) := by − (qrlo
cos(qθlo

) + Fg(btx)), (2.4)

For every step, the apex return map is defined as a mapping from the current

apex state, ba[n], to the next apex state, ba[n + 1], by using the control input

u[n], as illustrated in Fig. 2.2.

2Touchdown occurs if ftd(b) = 0 and fa(b) < 0.
3Bottom occurs if fb(q) = 0 and SLIP is in stance phase.
4Liftoff occurs if flo(b) = 0 and fa(b) > 0.
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Figure 2.2: The Apex Return Map

2.1.2 SLIP Dynamics

As previously stated, the SLIP model is a hybrid system. Therefore stance and

flight phase dynamics must be considered separately. In this section, equations

of motion for all SLIP’s phases will be provided in both cartesian and polar

coordinates to be used for our simulation studies.

Flight Dynamics

During flight, the spring-mass hopper follows a ballistic flight trajectory which

has a well known analytical solution. For simplicity, the most suitable coordinates

to analyze the flight dynamics are cartesian coordinates. The state vector, b,

can be hence defined in cartesian coordinates as

b :=
[

bx bẋ by bẏ btx

]T

,

and the flight dynamics are

ḃ =
[

bẋ 0 bẏ −g bẋ

]T

.

The fifth state variable, btx, is only defined as a bookkeeping tool for multi-

step locomotion. For single stride, locomotion it is not necessary and can be

assumed zero. It stays constant during stance and has identical dynamics with
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the body position state, bx, during flight. Since the controller action is assumed

to be executed at apex, the toe position btx, is instantaneously updated at apex

with the new touchdown angle independently from its dynamics.

Under these dynamics, the apex to touchdown map, fa 7→td(ba), can easily be

derived for a flat surface at zero height as follows,

btd = fa 7→td(ba) :=

























bxa
+ bẋa

√

2(bya
− by)/g

bẋa

qrtd
cos(qθtd

)

−
√

2g(bya
− by)

bx + qrtd
sin(qθtd

)

























. (2.5)

In addition, a simple and convenient way to derive the stance dynamics is

using polar coordinates. Our state vector hence is defined as

q :=
[

qθ qθ̇ qr qṙ

]T

.

And so, the touchdown body states may be mapped with a transformation,

tc 7→p(btd), from cartesian to polar coordinates, this map is given by

qtd = tc 7→p(btd) :=



















qθtd

(−bybẋ + (bx − btx)bẏ)/q
2
r

qrtd

((bx − btx)bẋ + bybẏ)/qr



















. (2.6)

Also, for a given liftoff state in polar coordinates, a transformation, tp 7→c(qlo),

to cartesian coordinates is given by

blo = tp 7→c(qlo) :=

























−qrlo
sin(qθlo

)

−qṙlo
sin(qθ) − qrlo

cos(qθlo
)qθ̇lo

qrlo
cos(qθlo

)

qṙlo
cos(qθlo

) − qrlo
sin(qθlo

)qθ̇lo

0

























, (2.7)

17



where, once again, we assume a flat surface with zero height and toe is located

at the origin of the global cartesian coordinate frame. Finally, the liftoff to apex

map, flo 7→a(blo), can also be easily derived as

ba = flo 7→a(blo) :=

























bxlo
+ bẋlo

bẏlo
/g

bẋlo

0.5b2
ẏlo

/g

0

bẋlo
bẏlo

/g

























. (2.8)

Stance Dynamics

During stance, i.e. when toe of the leg touches the ground, we assume the

presence of a frictionless revolute joint at the contact point until the liftoff event

occurs. As previously mentioned, polar coordinates are best suited for the deriva-

tion of the stance dynamics. As such, the Lagrangian equation during stance in

polar coordinates is given by (see Fig. 2.1)

L =
m

2
(q̇r

2 + qr
2q̇θ

2) − k

2
(l0 − qr)

2 − mgqr cos(qθ). (2.9)

Equations of motion for the SLIP model can thus be derived as

mq̈r = mqrq̇θ
2 + k(l0 − qr) − mg cos(qθ), (2.10)

0 =
d

dt
(mqr

2q̇θ) + mgqr sin qθ. (2.11)

Using (2.10) and (2.11), the stance dynamics in polar coordinates, q, are

given by

q̇ =



















qθ̇

−g sin(qθ)
qr

− 2qṙq
θ̇

qr

qṙ

Fs(qr,qṙ)
m

+ qrq
2
θ̇
− g cos(qθ)



















,
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where Fs(qr, qṙ) is the spring force function defined as

Fs(qr, qṙ) =







kc(l0 − qr) if qṙ ≤ 0

kd(l0 − qr) if qṙ > 0
. (2.12)

Note that, (2.10) and (2.11) are coupled nonlinear differential equations and

a closed form solution with known basic functions can not easily be found. In

fact, stance dynamics have several nonintegrable terms due to the presence of

gravity [25, 37]. Therefore, there are no exact analytical solutions for this stance

map. Nevertheless, there are several studies on approximate solutions of SLIP

stance dynamics in literature. We consider two such approximations introduced

in [2] and [3] in Section 2.2.

For completeness, we give stance dynamics in cartesian coordinates with

ḃ =

























ḃx

ḃẋ

ḃy

ḃẏ

ḃtx

























=

























bẋ

−Fs(qr,qṙ) sin(qθ)
m

bẏ

Fs(qr,qṙ) cos(qθ)
m

− gs

0

























=





























bẋ

−Fs(
√

(bx−btx)2+(by−Fg(btx))2,
(bx−btx)bẋ+(by−Fg(btx))bẏ√

(bx−btx)2+(by−Fg(btx))2
) sin(arctan(

by−Fg(btx)

bx−btx
))

m

bẏ

Fs(
√

(bx−btx)2+(by−Fg(btx))2,
(bx−btx)bẋ+(by−Fg(btx))bẏ√

(bx−btx)2+(by−Fg(btx))2
) cos(arctan(

by−Fg(btx)

bx−btx
))

m
− gs

0





























.

For simplicity, if we assume a flat ground with zero height (i.e. Fg(x) = 0 ) and

that the toe of the leg is located at zero (btx = 0). Then, the stance dynamics in
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cartesian coordinates become

ḃ =





























bẋ

−Fs(
√

bx
2+by

2,
bxbẋ+bybẏ√

bx
2+by

2
) sin(arctan(

by

bx
))

m

bẏ

Fs(
√

bx
2+by

2,
bxbẋ+bybẏ√

bx
2+by

2
) cos(arctan(

by

bx
))

m
− gs

0





























. (2.13)

2.1.3 Possible Modes of Control

Now that we have introduced the system model, we will discuss in this section,

possible modes of controlling SLIP locomotion.

Two of the control parameters for the spring-mass hopper system are common

to all controllers:

• The touchdown leg angle, qθ

• The amount of change in the total mechanical energy, ∆E

The first control parameter, qθ, is an essential and indispensable for most mono-

pod and biped systems. However, there are several ways to control the change

in total mechanical energy, ∆E. In the sequel, we classify these possible control

modes into three groups based on how total mechanical energy may be physically

changed.

Leg Length Control - LLC : This is a mode of control for SLIP-like systems

where leg stiffness is fixed during locomotion. Instead, the total mechanical

energy is controlled by changing leg lengths at touchdown and liftoff. For

example, to increase the total mechanical energy the touchdown leg length

is chosen to be smaller than the liftoff leg length. An example physical
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platform using the LLC mode of control is the Bow Leg hopping robot,

which uses a precompressed leg with stored potential energy during flight

to release stored energy during stance [38, 39].

Leg Stiffness Control - LSC : This is another control scheme to modify the

total mechanical energy of SLIP-like systems such that the leg stiffness

throughout whole stance phase is set to a fixed value and can be modified

during flight across subsequent steps. The amount of change in the total

mechanical energy is also controllable using only either the touchdown or

liftoff leg lengths. The other leg length is kept equal to the rest leg length.

For example, adjustments to the touchdown leg length are needed to inject

energy while the liftoff leg length is set to be equal to the rest leg length.

Similarly, liftoff leg length adjustment is required to take out energy with

the touchdown leg length is kept equal to rest leg length.

Two-Phase Stiffness Control - TPSC : This is the last mode of control for

adjusting the total mechanical energy such that the touchdown and liftoff

leg lengths are kept equal to the rest leg length and energy adjustment

is done by separately controlling leg stiffness during compression and de-

compression subphases. For instance, to increase the total system energy,

the compression leg stiffness must be smaller than the decompression leg

stiffness. We note that Raibert’s hoppers are examples such legged systems

and use TPSC to modify the system energy. During locomotion, the hop-

per detects the bottom instant, then, according to a control strategy, the

total system energy is adjusted by controlling the air pressure inside leg

actuator to change leg stiffness [9]. Another example is BiMASC, a biped

with a mechanically tuneable leg stiffness, that can use this mode of control

since it has a tunable leg compliance [21]. One of the practical difficulties

of TPSC is the detection of the bottom instance and fast adjustment of

stiffness. Moreover, there is another novel leg structure, a half circular leg
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with variable compliance, which enables TPSC like mode of control for a

RHex like robots or biped as in [40, 41].

2.2 Approximate Stance Maps

Since stance dynamics of the spring-mass hopper are noninegrable [25, 37], ap-

proximate analytical models for the stance motion of SLIP are the next best

solution. Moreover, approximate stance maps are very useful for the stability

analysis of locomotion, the design of control algorithms and motion planning for

SLIP and SLIP-like platforms. Before approximate stance maps became avail-

able, several controllers were designed based on empirical data captured from

running videos of legged runners or animals, or numerical solutions of the SLIP

dynamics. For example, in [24], a real-time deadbeat controller was designed

by interpolating previously observed gaits. This was an expensive way of de-

signing control laws for monopod runners. Once studies on approximate stance

maps became available, several controllers, especially deadbeat controllers, were

designed [23, 42, 43] which were applicable to real-time locomotion control and

were computationally inexpensive compared to [24].

The general idea behind approximate stance maps is the estimation of the

next apex state, ba[n + 1], from the current apex state, ba[n], with a chosen

control set, u[n], (touchdown leg angle and total mechanical energy adjustment

- LLC, LSC or TPSC). Also, more detailed maps, i.e. bottom to apex or apex

to bottom, may be necessary for other purposes such as support for two-phase

variable stiffness. Fig. 2.3 represents these maps for a nonsymmetrical gait.

In the following sections, two previous studies on approximate stance maps,

[2] and [3], are examined and summarized with notation consistent with the rest

of this thesis.

22



b [n]a

b [n+1]=f( )a b [n],u[n]a

b [n+1]a

b [n]a

b [n+1]b

b [n+1]=f( )b b [n],u[n]a
b [n]a

b [n]b

b [n]=f( )a b [n],u[n]b

b := [b b. b b. b ]x x y y tx
T

Figure 2.3: Left : Apex to Bottom Map. Middle: Apex Return Map. Right :
Bottom to Apex Map.

2.2.1 Simple Approximate Stance Map by Geyer et al.

In this section, we briefly review the approximation method proposed in [2].

Recall from (2.10) and (2.11) that the equations of motion for the stance phase

of SLIP in polar coordinates are given by

mq̈r = mqrq̇θ
2 + k(l0 − qr) − mg cos(qθ),

0 =
d

dt
(mqr

2q̇θ) + mgqr sin qθ.

Assumption 1. If a sufficiently small angular span ∆qθ is assumed for the

stance phase, the effect of gravity can be linearized by assuming cos(qθ) ≈ 1 and

sin(qθ) ≈ 0. ¥

Under this assumption, the equations of motion simplify to

mq̈r = mqrq̇θ
2 + k(l0 − qr) − mg,

d

dt
(mqr

2q̇θ) = 0,

which are now integrable since the angular momentum, pθ := mqr
2q̇θ and the

total energy become constants of the motion. Similarly, assuming cos(qθ) ≈ 1,

the total energy can now be written as

E :=
m

2
q̇r

2 +
pθ

2

2mqr
2

+
k

2
(l0 − qr)

2 + mgqr. (2.14)
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Remark 1. As a result of Assumption 1, it seems that angular momentum is

also conserved during stance phase. However, in reality, angular momentum may

change at the end of stance due to gravity. Therefore, the conservation of angular

momentum is purely a result of this first assumption.

Defining the parameters

ρ :=
qr − l0

l0
≤ 0, ǫ :=

2E

ml0
2 , ω :=

pθ

ml0
2 and ω0 :=

√

k

m
,

and substituting them into (2.14), yields

ǫ = ρ̇2 +
ω2

(1 + ρ)2
+ ω0

2ρ2 +
2g

l0
(1 + ρ). (2.15)

Assumption 2. The above definition of ρ represents the relative spring compres-

sion. If we assume that the leg spring is only subjected to small compressions,

namely |ρ| ≪ 1, then the term 1/(1 + ρ)2 can be approximated by a Taylor series

expansion around zero to yield

1

(1 + ρ)2

∣

∣

∣

∣

ρ=0

= 1 − 2ρ + 3ρ2 − O(ρ3). ¥

Combining Assumption 2 with the energy equation (2.15) and using further

simplifications detailed in [2], an analytical solution to the radial motion qr(t)

can be found as

qr(t) = l0(1 + a + b sin(ω̂0t)), (2.16)

where we define

ω̂0 :=
√

ω0
2 + 3ω2,

a := (ω2 − g/l0)/ω̂
2
0,

b :=
√

a2 + (ǫ − ω2 − 2g/l0)/ω̂2
0.

Fig. 2.4 shows one period of this approximate solution for the leg length

trajectory during the stance phase. As seen from the figure, it is a sinusoidal
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motion with amplitude l0b, frequency ω̂0 and offset l0(1+a). Since it is a solution

for only the stance phase, we only care about the part of solution where qr(t) ≤ l0.

Also, ∆lmax represents the maximum spring compression and it is the difference

between l0b and l0a (∆lmax = l0b − l0a). Additionally, using Assumption 3 and

definition of ρ we can conclude that b − a ≪ 1 (|ρ| ≪ 1 and |ρ| = ∆lmax

l0
= b − a

implying that b − a ≪ 1).

qr(t)

l (1+a)0

l0

l b0

l a0

Dlmax

ttd tlo

stance
phase

0 2p

ŵ0

p

ŵ0

Figure 2.4: General solution for the leg length, qr(t), during stance. The sinu-
soidal solution has amplitude l0b and frequency ω̂0 with offset l0(1+a). Since the
solution is only suitable for the stance phase, only the portion where qr ≤ l0 is
significant. The parameter a can also be negative, in which case l0 will be above
l0(1+a). ∆lmax represents the maximum leg compression. (reproduced from [2])

The equation (2.16) can conveniently be used to determine the times for

critical events such as touchdown, bottom and liftoff relative to an unknown

time origin, yielding

ttd = (π − arcsin(−a/b))/ω̂0, (2.17)

tb = 3π/2ω̂0, (2.18)

tlo = (2π + arcsin(−a/b))/ω̂0, (2.19)
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where we assume that the liftoff and touchdown leg lengths, qrlo
and qrtd

, are

equal to the rest leg length, l0.

Using this analytical solution for the radial motion, the angular motion of the

SLIP can also be derived since angular momentum is assumed to be conserved

during the stance phase as a result of Assumption 1. Using ρ and ω, we can

write

qθ̇ =
ω

(1 + ρ)2
. (2.20)

Using Assumption 2 once again, (2.20) becomes qθ̇ = ω(1 − 2ρ). Recalling

that ρ := (qr− l0)/l0 = a+b sin(ω̂0t)), an analytic solution to the angular motion

can be found as

qθ(t) = qθtd
+

∫ t

ttd

ω[(1 − 2a) − 2b sin(ω̂0t)]dt,

qθ(t) = qθtd
+ ω(1 − 2a)(t − ttd) +

2bω

ω̂0

[cos(ω̂0t) − cos(ω̂0ttd)], (2.21)

where ttd ≤ t ≤ tlo, and ttd and tlo as in (2.17) and (2.19). Moreover, the stance

time, ts, can easily be calculated as

ts = tlo − ttd = [π + 2 arcsin(−a/b)]/ω̂0. (2.22)

Moreover, if the touchdown instance is shifted to t = 0, the equations for the

leg length and the leg angle take the form,

qr(t) = l0 + l0[a(1 − cos(ω̂0t)) −
√

b2 − a2 sin(ω̂0t)],

qθ(t) = qθtd + (1 − 2a)ωt +
2ω

ω̂0

[a sin(ω̂0t) +
√

b2 − a2(1 − cos(ω̂0t))],

while the stance time, ts, remains the same as in (2.22).

If the predefined parameters a, b, ǫ, ω and ω0 are replaced by touchdown

states and system parameters, and if the touchdown time is selected as zero, the
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radial and angular trajectories become

qr(t) = l0 −
|qṙtd|
ω̂0

sin(ω̂0t) +
qθ̇td

2l0 − gs

ω̂2
0

(1 − cos(ω̂0t)),

qθ(t) = qθtd + (1 − 2
qθ̇td

2 − gs/l0
ω̂2

0

)qθ̇td
t

+
2qθ̇td

ω̂0

[
qθ̇td

2 − gs/l0
ω̂2

0

sin(ω̂0t) +
|qṙtd

|
ω̂0l0

(1 − cos(ω̂0t))],

where the oscillation frequency is calculated by ω̂0 :=
√

k/m + 3qθ̇td

2 and the

stance time, ts, and the bottom time, tb, are given by

ts =
1

ω̂0

[

π + 2 arctan(
gs − l0qθ̇td

2

|qṙtd
|ω̂0

)

]

,

tb =
1

ω̂0

arctan

(

|qṙtd
|ω̂0

q2
θ̇td

l0 − gs

)

.

2.2.2 Iterative Approximate Stance Map by Schwind et

al.

In [3], Schwind and Koditschek proposed an analytic approximation to the non-

integrable stance dynamics of SLIP through an iterative application of the mean

value theorem for integral operators. They showed that this iterative method

converges to the true SLIP dynamics under certain assumptions, which are un-

fortunately easily violated for non-symmetric trajectories. Furthermore, the pre-

sented form of their approximation only gives a map from the bottom to the

apex point and does not support the entire apex return map. In this section,

we briefly describe and extend their method to enable comparisons with our

proposed approximations.

The Hamiltonian function for the stance phase of SLIP is given by

H =
1

2m

(

p2
r +

p2
θ

q2
r

)

+
1

2
k(l0 − qr)

2 + mgqr cos(qθ),

Solving the equation H(qr, pr, qθ, pθ) = E for pr yields

pr = H†(qr, qθ, pθ, E) :=

√

2m

(

E − 1

2
k(l0 − qr)2 − mgqr cos(qθ)

)

− p2
θ

q2
r

, (2.23)
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Since

ṗj = −dH

dqj

, q̇j =
dH

dp
,

the Hamiltonian vector field is given by

XH =



















q̇r

q̇θ

ṗr

ṗθ



















=



















pr

m

pθ

mq2
r

p2
θ

mq3
r

+ kd(l0 − qr) − mgs cos(qθ)

mgsqrsin(qθ)



















.

Using the Hamiltonian vector field and the conservation of energy5, the equa-

tions of motion can be written as

dts
dqr

(qr, qθ, pθ, E) =
m

pr(qr, qθ, pθ, E)
, (2.24)

dqθ

dqr

(qr, qθ, pθ, E) =
pθ

q2
rpr(qr, qθ, pθ, E)

, (2.25)

dpθ

dqr

(qr, qθ, pθ, E) =
m2gsqrsin(qθ)

pr(qr, qθ, pθ, E)
, (2.26)

where pr(qr, qθ, pθ, E) is given by (2.23).

Since there is an implicit function for radial momentum, pr, if the other two

states, qθ and pθ, are solved then pr can be calculated by using (2.23). However,

(2.24), (2.25) and (2.26) are nonlinear coupled differential equations. The exact

analytical solution is unknown but by using the mean value theorem an iterative

solution procedure can be derived. In fact, Schwind and Koditschek have shown

the following results in [45]:

Theorem 1. Suppose that the function f is continuous on (a,b] and g is an

integrable function on (a,b) with g(t) ≥ 0 ∀t ∈ (a,b). Let x ∈ (a,b]. If both

limits

lim
t→a

f(t) − K

(t − a)r
lim
t→a

g(t)

(t − a)s

exist and are nonzero for some constant K, some nonzero r, and some s > −1

with r + s > −1, then

5The ideal SLIP template does not contain any damping. In [44], we also derive an analytical
approximation to the stance dynamics of SLIP with damping.
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1. there exists a ξx ∈ (a, x] such that

∫ x

a

f(t)g(t)dt = f(ξx)

∫ x

a

g(t)dt (2.27)

2. for any such choice of ξx

lim
x→a

ξx − a

x − a
=

(

s + 1

r + s + 1

)
1
r

(2.28)

Moreover, in [45] a practical observation is presented for the calculation of

ξx.

Observation 1. If, motivated by (2.28), ξx is approximated by

ξ̂x = a +

(

s + 1

r + s + 1

)
1
r

(x − a) for x near a, (2.29)

and ξx is replaced by ξ̂x in (2.27), an approximation is obtained for the integral

as
∫ x

a

f(t)g(t)dt ≈ f(ξ̂x)

∫ x

a

g(t)dt for x near a. (2.30)

Using Theorem 1 and Observation 1 and under reasonable assumptions, ξx is

found as in [3, Appendix A] for the following integrals.

∫ qr

qrb

1

H†(σ, qθ, pθ, E)
dσ ≈ 1

H†(ξ̂x, q̂θ(ξ̂x), p̂θ(ξ̂x), E)
(qr − qrb

), (2.31)

∫ qr

qrb

1

σ2H†(σ, qθ, pθ, E)
dσ ≈ 1

ξ̂2
xH

†(ξ̂x, q̂θ(ξ̂x), p̂θ(ξ̂x), E)
(qr − qrb

), (2.32)

∫ qr

qrb

σ

H†(σ, qθ, pθ, E)
dσ ≈ ξ̂x

H†(ξ̂x, q̂θ(ξ̂x), p̂θ(ξ̂x), E)
(qr − qrb

), (2.33)

where ξ̂r is found to be the same for all of the integrals as

ξ̂x =
3

4
qrb

+
1

4
qr. (2.34)
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In order to derive the full apex return map, we use the iterative bottom to

liftoff map given in [3] as

t̂s(n+1)
(qr) = tb + m(qr − qrb

)/H†
n,

q̂θ(n+1)
(qr) = qθb

+ p̂θn
(ξ̂r)(qr − qrb

)/(ξ̂2
rH

†
n),

p̂θ(n+1)
(qr) = pθb

+ m2gξ̂r sin(q̂θn
(ξ̂r))(qr − qrb

)/H†
n,

p̂r(n+1)
(qr) = H†

n+1,

where n is the iteration number, ξ̂r := 3qrb
/4 + qr/4 and H†

k :=

H†(ξ̂r, q̂θk
(ξ̂r), p̂θk

(ξ̂r), E). The zeroth (initial) iteration can be any approximate

analytical solution for the stance phase as in [3].

Similarly, an approximate touchdown to bottom map can be derived as

t̂s(n+1)
(qr) = ttd − m(qr − qrtd

)/H†
n,

q̂θ(n+1)
(qr) = qθtd

− p̂θn
(ξ̂r)(qr − qrtd

)/(ξ̂2
rH

†
n),

p̂θ(n+1)
(qr) = pθtd

− m2gξ̂r sin(q̂θn
(ξ̂r))(qr − qrtd

)/H†
n,

p̂r(n+1)
(qr) = −H†

n+1,

where n is the iteration number, ξ̂r := 3qrtd
/4 + qr/4 and H†

k :=

H†(ξ̂r, q̂θk
(ξ̂r), p̂θk

(ξ̂r), E). As before, the zeroth (initial) iteration can be any

approximate analytical solution for the stance phase as in [3].

The overall apex return map is obtained by combining the above approxima-

tions under any number of desired iterations for the stance approximations given

above with solutions to the flight dynamics. However, the stance components

of this formulation have one important unknown: the bottom leg length, qrb
.

This parameter is critical since it divides the stance map into two components.

Even though an exact solution for the bottom leg length does not exist, several

approximate solutions can be used. Under assumptions of symmetry and conser-

vation of angular momentum, one approximate solution is given by the quartic

30



equation arising from the total energy relation as

k

2
q4
r + (mg − kl0)q

3
r +

(

kl20
2

− E

)

q2
r +

p2
θ

2m
= 0,

for which a real analytic solution that is less than or equal to the rest leg length

can be found. An alternative approximate solution is given by the approximate

stance map of [2] as

qrb
= l0(1 + a − b),

where a and b are as defined in Section 2.2.1.

In the following chapter, we will discuss necessity of more accurate analytic

approximations for nonsymmetric steps and introduce our proposed gravity effect

correction methods. We then continue with approximate stance model for two-

phase variable stiffness control.
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Chapter 3

MODELLING AND CONTROL

OF NONSYMMETRIC SLIP

STEPS

3.1 Nonsymmetric Steps During Legged Loco-

motion

In Section 1.2, we discussed advantages of legged systems over wheeled vehicles.

One of the important highlights of legged robots is their increased mobility.

Theoretically, legged vehicles can reach all the regions that animals can travel

on foot. On the other hand, wheeled systems are mostly used in structured

environments and have limited motion capabilities on unstructured and rough

surfaces.

Even though control of legged locomotion on structured environments is much

simpler than on broken and uneven terrains, it is still difficult compared to
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wheeled platforms. Legged systems moving over flat surfaces generally use sym-

metric steps and existing researches mostly focus on this kind of stable running

over even surfaces. However, the main reason why legged robots are appealing

to researchers is their increased capability of traversing rough surfaces. Interest-

ingly, locomotion over an uneven terrain predominantly requires nonsymmetric

steps to accelerate, decelerate, step up, step down, jump and change the direc-

tion of motion. Therefore, the true performance of legged systems may only be

achieved with effective and reliable nonsymmetric step control.

3.2 An Approximate Stance Map with Gravity

Correction

3.2.1 Analytical Approximation Model

In Section 2.2, we reviewed two leading methods [2, 3] to find analytic approx-

imations to the stance map of SLIP, both of which were based on assumptions

of symmetric gaits. In this section, we extend the method presented in [2] with

a gravity correction to yield a much larger domain of validity in the presence of

non-symmetric trajectories.

Figure 3.1: The total gravity effect on the angular momentum at the end of the
stance phase compared to the touchdown instant (blue and red regions represent
decreasing and increasing effects of gravity, respectively). (a) decreasing effect
on magnitude, (b) angular momentum stays the same due to the symmetric step,
(c) increasing effect on magnitude.
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Figure 3.2: The effect of gravity on the angular momentum: τ , gravitational
torque on the spring-mass hopper

As illustrated in Fig. 3.1, the angular momentum from touchdown to liftoff

is conserved only for symmetric SLIP trajectories. Consequently, while the con-

servation of angular momentum is a reasonable assumption for symmetric steps,

it becomes rather inaccurate for non-symmetric trajectories.

During stance (see Fig. 3.2), the angular momentum around the toe, P (t),

can be computed as

P (t) = Pt0 +

∫ t

t0

τ(ζ)dζ, (3.1)

τ(t) := mgqr(t) sin qθ(t),

where τ(t) is the torque applied by the gravitational acceleration around the toe

point and Pt0 is angular momentum of the SLIP at time t0. Unfortunately, even

with the analytic approximations (2.16) and (2.21), these expressions are too

complex for symbolic integration. Consequently, our method involves an n-point

approximation to the integral in (3.1), yielding

P (t) ≈ Pt0 + (t − t0)

(

1

n

n
∑

k=1

mgqr[n] sin qθ[n]

)

. (3.2)

Using this approximation, we propose to model the total effect of gravity on

the angular momentum from any initial state to any final state during stance

with a constant total correction. To this end, we first compute an average leg
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length, qrav
(ti, tf ), for the period of interest. We then use this general formulation

to compute a correction for the apex return map, using touchdown and liftoff as

the initial and final states, respectively.

Using (2.16) and letting ti and tf be the initial and final state times such that

ttd ≤ ti < tf ≤ tlo, we have

qrav(ti, tf ) ≈ 1

tf − ti

∫ tf

ti

l0(1 + a + b sin(ω̂0t))dt,

= l0(1 + a) − b

ω̂0(tf − ti)
(cos(ω̂0tf ) − cos(ω̂0ti)),

where a, b and ω̂0 can be calculated by using related formulas in Section 2.2.1.

Using (3.2), the total effect of gravity becomes

Pc :=
(tf − ti)mgsqrav

(ti, tf )

2
(sin qθ(ti) + sin qθ(tf )) , (3.3)

where qθ(t), is as given in Section 2.2.1.

We propose to incorporate Pc into the approximation as a simple correction

term added to the original angular momentum, pθ, otherwise assumed to be

constant for the formulations in [2]. This yields a new angular momentum term

p̂θ = pθ + Pc.

which replaces pθ in all derivations. Using touchdown and liftoff times as the

initial and final states yields our corrective method for the apex return map.
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3.2.2 Performance Analysis

Simulation Environment and Performance Criteria

Our interest in analytic approximations to the stance dynamics of SLIP arises

from our need to compute the apex return map for a given set of controls.(i.e.

touchdown angle and leg stiffness). Therefore, the most important performance

criteria for us is the accuracy of the predicted apex position and velocity. To

this end, we use two measures to quantify the prediction performance of both

our method and existing methods: Normalized percentage errors in the apex

position and liftoff velocity predictions, respectively defined as

PEap = 100
||(bxa

, bya
) − (b̂xa

, b̂ya
)||2

||(bxa
, bya

)||2
,

PElov = 100
||(bẋlo

, bẏlo
) − (b̂ẋlo

, b̂ẏlo
)||2

||(bẋlo
, bẏlo

)||2
.

We use the liftoff velocity rather than the apex velocity to ensure that nor-

malization is practical even for non-symmetric gaits for which the apex velocity

may become zero.

In order to compare different methods of approximation, we ran simulations

spanning four different dimensions of initial states and control inputs: the apex

height (bya
), the apex velocity (bẋa

), the spring constant (k) and the relative

touchdown angle qθtdrel
:= qθtd

− qθtdn

1. The ranges considered for these dimen-

sions were determined based on biomechanics literature as well as structural

properties of various legged robots. In particular, experiments on humans (with

80kg mass and 1m leg length on average) running at different speeds (in the range

2.5-6.5m/s) reveals that their leg stiffnesses are in the range [10, 50] kN/m [46] .

In the robotic domain, the small hexapod robot RHex [22], has an approximate

mass of 10kg, leg length of 0.25 m and compliant legs with stiffness of around

1qθtdn
is the neutral touchdown angle, which can be defined as a touchdown angle that results

in a symmetric SLIP trajectory and depends on the initial conditions. For each simulation, we
numerically calculated this angle to be used as the origin for our plots.
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2000N/m for each leg. Based on a dimensionless stiffness measure k̂ = l0
mg

k,

these examples motivate our choice of simulation parameters of Table 3.1 and

control input ranges of k ∈ [125, 1000] N/m and qθtdrel
∈ [-0.4, 0.4] rad.

Table 3.1: Simulation Parameters

m (kg) l0 (m) g (m2/s) bya
(m) bẋa

(m/s) k (N/m) qθtdrel
(rad)

1 1 9.81 1.1 - 1.5 0 - 8 125 - 1000 -0.4 - 0.4

For each of our simulations, we checked whether they satisfy two conditions to

ensure that we can support meaningful comparisons of all approximations to the

stance map. Firstly, due to the hybrid nature of SLIP locomotion, certain stance

trajectories never leave the ground or prevent foot protraction. Consequently,

we restricted our domains to exclude simulations where the next apex height

is smaller than the rest length of the leg spring, ensuring that there are no

limitations on the touchdown angle for the next step. Second, in order to preserve

similarity to results presented in both [3] and [2], we restricted the maximum

allowable leg compression to a maximum of 25% and excluded trajectories that

violate this condition. From among a total of 25500 initial states and control

inputs, 10264 were found to satisfy these two conditions.

We computed “ground truth”2 through numerical integration of SLIP dy-

namics within MATLAB using a variable time-step, fourth order Runge-Kutta

integrator. We then computed approximate estimates of the apex states based on

two previously proposed approximations and our new gravity correction scheme

and compared estimation performances using the error criteria defined above.

For the Schwind approximations, we used the 10th iterate (after which further

iterations yield no improvements) to make sure we obtained the best possible

performance for their method.

2The ground truth represents the actual SLIP motion during stance.
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Simulation Results

Our general simulation results are illustrated in Fig. 3.3, where we show the

mean, standard deviation and maximum values for the apex position and liftoff

velocity percentage errors, PEap and PElov, across all valid simulations and all

three approximation methods. Our results show that there is a notable perfor-

mance improvement on the average for our proposed gravity correction method

compared both to Geyer’s and Schwind’s approximations.
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Figure 3.3: Approximation performances for the stance maps of Geyer [2],
Schwind [3] and our proposed Gravity Correction method. PEap (left) and PElov

(right) are apex position and liftoff velocity percentage errors. Empty markers,
filled markers and colored vertical bars represent mean, maximum and standard
deviations of associated approximations.

A more informative comparison between different approximation alternatives

can be achieved by investigating the estimation performance as a function of

the relative touchdown angle. Since our method is expected to perform well

for non-symmetric trajectories, its error performance should be better than the

alternatives for nonzero relative angle values. As illustrated by Figures 3.4 and

3.5, this was indeed the case both error measures, PEap and PElov.

38



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

14

16

Relative Touchdown Angle − (qθ td
 − qθ td n

) − (rad.)

%
 E

rr
or

Mean Apex Position Percentage Error vs. Relative Touchdown Angle

 

 
Geyer [10]
Schwind [17]
Gravity Correction

Figure 3.4: Mean Apex Position Percentage Error (PEap) versus Relative Touch-
down Angle (qθtd

− qθtdn
). The vertical bars represent standard deviations for the

approximate stance map with gravity correction.

In almost all cases, our approximation performed better than Geyer’s method

for non-symmetric trajectories. Note that these two approximations are expected

to perform identically for symmetric gaits (zero relative touchdown angle), which

is also confirmed by their almost identical estimation performance for qθtdrel
∈

[−0.1, 0] rad.

On the other hand, Schwind’s iterative approximation has an almost uniform

performance profile, relatively independent of symmetry. Consequently, it per-

forms better than our approximation for some non-symmetric trajectory regions

far out into the touchdown angle spectrum. However, these regions correspond

to rather extreme transient conditions unlikely to be observed for locomotion

on reasonable terrain. Furthermore, some of their method’s performance can

be attributed to the fact that we used the 10th iterate of their approximations

rather than more reasonable ones such as the first or second iterate for which the

analytical nature of the approximations can still be preserved.
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Figure 3.5: Mean Liftoff Velocity Percentage Error (PElov) versus Relative
Touchdown Angle (qθtd

− qθtdn
). The vertical bars represent the standard de-

viations for the approximate stance map with gravity correction.

Overall, our gravity correction scheme performs best for relative touchdown

angles in the range of [−0.2 0.2] rad. Fortunately, angles outside this range

correspond to very sudden changes in the locomotion and can safely be left unused

by a reasonable planner cognizant of the limitations of available approximations.

Finally, Figs. 3.6 and 3.7 illustrate regions in the control input space for

which different approximants produce the best error performance. Schwind’s

method once again, is observed to have good performance far from symmetric

gaits. When the relative touchdown angle is in the range [−0.2, 0.2] rad, our

gravity correction scheme has the best performance for both error measures. In

Fig. 3.6, even though Geyer’s approximations seem to be better than ours for

larger leg stiffnesses and nearly symmetric gaits, their performance is actually

almost identical to ours in those areas as can be observed from corresponding

regions in Fig. 3.4.
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Figure 3.6: Comparison of the mean Apex Position Percentage Errors. Colored
regions show where the associated approximation performs better.

As illustrated by these results, our proposed method improves the accuracy

of approximations presented in [2]. When compared to Schwind’s iterative ap-

proximations presented in [3], our approximation also performs better for the

most commonly used subset of non-symmetric trajectories. It is important to

note that the higher iterates of the Schwind approximations have much more

complicated analytical forms, a significant handicap for the design of control al-

gorithms and dynamic locomotion planning for SLIP. Our approximations, even

with the gravity correction, have a very simple analytical form that can easily

support control algorithms for dynamical locomotion and footstep planning for

the SLIP model.

3.2.3 Discussion

In this section, we proposed a novel gravity correction method to improve the

performance of previously proposed analytic approximations to the stance dy-

namics of the SLIP model in [2]. Our method is based on the hypothesis that for

non-symmetric locomotion trajectories, the effect of gravity on the total angular
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Figure 3.7: Comparison of the mean Liftoff Velocity Percentage Errors. Colored
regions show where the associated approximation performs better.

momentum can be summarized with a constant correction term. We demon-

strated that this is indeed the case through comparisons of estimation errors for

both Geyer’s method, our method as well as a different analytic approximation

method proposed in [3]. Our method is found to perform best for relative touch-

down angles in the range [-0.2 0.2] rad. For gaits that are sufficiently far from

symmetric, Schwind’s iterative stance map is observed to have better perfor-

mance but under the condition that it is iterated until convergence, which usu-

ally results in unacceptable analytical complexity. Overall, our method seems to

present the best combination of accuracy and simplicity for non-symmetric SLIP

trajectories and is suitable for the design of footstep planning algorithms that

rely on the use of transient stepping behavior.

Even though it is the scope of the following section, our approximations can

also be easily applied to using tunable stiffness during stance as a control input

as introduced in [9] and also embodied in the passive dynamics of the BiMASC

leg [21]. This aspect turns out to be critical for nontrivial planning tasks with the
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SLIP model since it allows inducing changes in the total energy of the system,

allowing finer control over possible maneuvers.

The goal of the second part of thesis is the design of reactive planning con-

trollers for the SLIP model, which can in turn be applied to more complex legged

robots through passive or active embedding of the SLIP model. To this end, we

believe that analytic approximations to the dynamic behavior of this model will

be invaluable both in the design of controllers that can accurately and efficiently

regulate its discrete control inputs as well as in the analytical characterization of

such controllers for planning purposes. Our proposed method fills a gap in this

area and provides an analytic approximation that remains valid for a large range

of control inputs and initial conditions of the SLIP model.

3.3 An Approximate Stance Map for Two-

Phase Stiffness Control

As mentioned earlier in Section 2.1.3, the SLIP template has relatively few control

parameters since it is one of the simplest models for legged systems. While the

touchdown leg angle is the most critical control parameter for stable locomotion,

leg compliance parameters are also needed to adjust the total energy of the

system such that desired properties of locomotion, apex velocity and height, can

be achieved. In general, there are two different approaches to adjust stiffness

properties of SLIP for controlling locomotion. First, the spring constant can

be assumed constant during stance and the touchdown and liftoff leg lengths

can be controlled to inject or take out energy from the system (Leg Length

Control - LLC). In [38] and [39], a similar approach was used on an experimental

robotic platform, the Bow-Leg hopping robot, such that the total energy of

the robot was controlled by compressing the leg during flight to store energy.

Also, in [42], a deadbeat gait controller for a biped was designed by adjusting
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touchdown and liftoff leg lengths. The second approach is to separately control

the spring constant during compression and decompression phases to modify

the total system energy (Two-Phase Stiffness Control - TPSC). Simulation and

experimental studies on this approach have been done by Raibert in [9] where the

control of leg spring constant was done by adjusting air pressure in leg piston

by a pneumatic actuator during flight phase to adjust the compression spring

constant and at bottom to adjust the decompression spring constant.

In our studies, we will use the latter control approach together with the

touchdown angle control for motion planning of SLIP in 2D. Consequently, we

need an approximate stance map for the variable stiffness case. During the rest

of the thesis, we will refer to the use of different stiffness for the compression and

decompression phases as two-phase stiffness control. In the following sections,

two different approximate stance maps built on [2] and [3] are introduced. The

main difference of TPSC from other alternatives is that the apex return map

should be divided into two parts, the apex to bottom map and the bottom to

apex map, with different spring constants for each. The general idea for two-

phase variable stiffness stance map is represented in Fig. 3.8.

b [n]a

b [n+1]=f( )a b [n],u[n]a

b [n+1]a

b [n]a

b [n+1]b

b [n+1]=f( )b b [n],u[n]a
b [n]a

b [n]b

b [n]=f( )a b [n],u[n]b

b := [b b. b b. b ]x x y y tx
T

+ kd

kc

kc kc

kc

kc
kd kd

kd

kd

Figure 3.8: SLIP apex return map for two-phase variable stiffness case. The
two-phase variable stiffness apex return map is composed of the apex to bottom
map with compression phase leg stiffness, kc, and the bottom to apex map with
decompression phase stiffness, kd.
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3.3.1 Simple Approximate Stance Map For Two-Phase

Variable Stiffness

In [2], an approximate apex return map was found as a function of model param-

eters, touchdown states, total energy and angular momentum while the spring

constant was assumed to change during the stance phase. Also, since the ideal

SLIP template has no damping, the total energy of the system is conserved.

However, for the variable compliance case, the total energy of the model can be

modified by controlling the spring constant at the bottom instant, so that the

total energy changes during stance with a discrete change at bottom. In such

cases, the apex return map can be obtained by considering the apex to bottom

map and the bottom to apex map separately as in Fig. 3.8.

The Apex to Bottom Map

Using the results of [2], the apex to bottom map can be easily written as

qr(t) = l0(1 + aab + bab sin(ω̂0ab
t)), (3.4)

qθ(t) = qθtd + ω(1 − 2aab)(t − ttd) +
2babωab

ω̂0ab

[cos(ω̂0ab
t) − cos(ω̂0ab

ttd)], (3.5)

where ttd ≤ t ≤ tbab

3 and ttd and tbab
are given by

ttd =
1

ω̂0ab

{

π − arcsin(
qrtd

/l0 − 1 − aab

bab

)

}

, (3.6)

tbab
=

1

ω̂0ab

{

3

2
π

}

, (3.7)

with the parameters aab, bab, ωab and ω̂0ab
defined as

ǫab =
2Eab

ml0
2 , ωab =

pθ

ml0
2 , ω0ab

=

√

kc

m
, ω̂0ab

=
√

ω0ab
2 + 3ωab

2,

aab =
ωab

2 − gs/l0
ω̂2

0ab

,

bab =

√

a2
ab +

ǫab − ωab
2 − 2gs/l0

ω̂2
0ab

,

3Subscript ab stands for apex to bottom mapping.
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where Eab is the total mechanical energy at touchdown, conserved during the

compression phase, and pθ is the total angular momentum during stance, assumed

to be conserved during the compression phase.

Finally, (3.6) can be simplified for a special case when the touchdown leg

length, qrtd
, is kept equal to rest leg length, l0, to yield

ttd =
1

ω̂0ab

{

π − arcsin(−aab

bab

)

}

. (3.8)

The Bottom to Apex Map

The bottom to apex map has the same form as the apex to bottom mapping

qr(t) = l0(1 + aba + bba sin(ω̂0ba
(t + tbba

− tbab
))), (3.9)

qθ(t) = qθb + ω(1 − 2aba)(t − tbab
)

+
2bbaωba

ω̂0ba

[cos(ω̂0ba
(t + tbba

− tbab
)) − cos(ω̂0ba

tbba
)], (3.10)

where tbab
≤ t ≤ tlo

4. Interestingly, the bottom times, tbab
and tbba

, may be

different since leg compliance now be diferent for the compression and decom-

pression phases. Hence, we have to use a time shift (tbab
− tbba

) for the derivation

of the bottom to apex map. As such, tbab
is calculated by (3.7) and tbba

and tlo

are given by

tbba
=

1

ω̂0ba

{

3

2
π

}

, (3.11)

tlo =
1

ω̂0ba

{

2π + arcsin(
qrlo

/l0 − 1 − aba

bba

)

}

+ tbab
− tbba

. (3.12)

Finally, (3.12) can be simplified for a special case when liftoff leg length, qrlo
, is

equal to rest leg length, l0,

tl0 =
1

ω̂0ba

{

(2π + arcsin(−aba

bba

)

}

+ tbab
− tbba

. (3.13)

4Subscript ba stands for bottom to apex mapping.
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Remark 2. The angular momentum, pθ = mq2
rqθ̇, is assumed to be separately

conserved during the compression and decompression phases. In order to check if

the total angular momentum is conserved during the entire stance phase, we must

consider the SLIP states just before and after the bottom instant. At bottom, we

only change the spring constant, so there are discrete jumps on only the total

energy and the spring force. Thus, system accelerations may have discrete jumps

but velocity and position states are continuous at bottom. Since the total angular

momentum depends only on position and velocity states, it remains continuous

and constant during the entire stance phase.

Remark 3. At the bottom instant, the leg stiffness is changed based on a control

algorithm and some amount of energy is injected or taken out from the springy

leg. This additional energy is given by

Eadditional =
1

2
(kd − kc)(l0 − qrb

)2, (3.14)

where qrb
and tb can be calculated by (3.4) and (3.7). Therefore, the total energy

during the decompression phase, Eba, is given by

Eba = Eab + Eadditional = Eab +
1

2
(kd − kc)(l0 − qr(tb))

2. (3.15)

The parameters aba, bba, ωba and ω̂0ba
are defined for (3.9)-(3.13) as

ǫba =
2Eba

ml0
2 , ωba =

pθ

ml0
2 = ωab, ω0ba

=

√

kd

m
, ω̂0ba

=
√

ω0ba
2 + 3ωba

2,

aba =
ωba

2 − gs/l0
ω̂2

0ba

, (3.16)

bba =

√

a2
ba +

ǫba − ωba
2 − 2gs/l0

ω̂2
0ba

. (3.17)

Remark 4. The above formulation of the bottom to apex map may cause discon-

tinuities on the position and velocity states as in Fig. 3.9. This arises from the

fact that the parameters of the bottom to apex map are solved without considering

the continuity of position and velocity states at bottom. We know that qθb
and
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qṙb
are continuous due to the formulation of the solution, so we only need to con-

strain continuity of qr(t) and qθ̇(t) at bottom. Recall that the general expressions

for qr(t) and qθ̇(t) were given by

qr(t) = l0(1 + a + b sin(ω̂0)t), (3.18)

qθ̇(t) = ω(1 − 2a − 2b sin(ω̂0)t). (3.19)

kc
kd

Figure 3.9: Left: Separate Approximate Stance Map for not variable compliance
with spring constants kc and kd. Middle: Approximate Stance Map for Variable
Stiffness with only parameter updates. A discontinuity is observed on stance map
at bottom instance. Right: Approximate Stance Map for variable stiffness with
parameter updates and velocity and position state continuity constraints

As indicated by Remark 2, the angular momentum is assumed to be constant

during stance, i.e. ωab = ωba, and the continuity constraints can be written as

l0(1 + aab + bab sin(ω̂0ab
tbab

)) = l0(1 + aba + bba sin(ω̂0ba
tbba

)),

ωab(1 − 2aab − 2bab sin(ω̂0ab
tbab

)) = ωba(1 − 2aba − 2bba sin(ω̂0ba
tbba

)),

Using (3.7) and (3.11), the relation between parameters aab, bab, aba and bba is

found as

aab − bab = aba − bba (3.20)

As such, (3.20) is the constraint on aba and bba for a continuous stance map

with variable stiffness. Similarly, (3.16) and (3.17) are unconstraint parametric

solutions for aba and bba. To prevent discontinuities at bottom for the stance
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map, we assume that the trajectory of the decompression phase is invariant

under small shift operations, so an offset term on qr(t) can be reformulated, this

means that bba is given by (3.17) and the continuity constraint can be used for

the calculation of aba as follows

aba = aab − bab + bba. (3.21)

At this point, we can ensure the continuity of the stance map in such a way

that aba is calculated by (3.16) and we calculate bba from the continuity constraint

bba = bab + aba − aab. (3.22)

As a result, the whole stance map for the variable stiffness case is given by

qr(t) =







l0(1 + aab + bab sin(ω̂0ab
t)), if ttd ≤ t ≤ tbab

l0(1 + aba + bba sin(ω̂0ba
(t + tbba

− tbab
))), if tbab

≤ t ≤ tlo

(3.23)

qθ(t) =



































qθtd + ωab(1 − 2aab)(t − ttd)

+ 2babωab

ω̂0ab

[cos(ω̂0ab
t) − cos(ω̂0ab

ttd)], if ttd ≤ t ≤ tbab

qθb + ωba(1 − 2aba)(t − tbab
)

+ 2bbaωba

ω̂0ba

[cos(ω̂0ba
(t + tbba

− tbab
)) − cos(ω̂0ba

tbba
)], if tbab

≤ t ≤ tlo

(3.24)

Furthermore, the continuous stance map can be obtained by vertically shift-

ing the bottom to apex map. However, even though this shifting can guarantee

a continuous stance trajectory, it may not handle the continuity of velocity com-

ponents at bottom.

Note that, as in [2] the derivation of the approximate stance map for the

variable stiffness case, (3.23) and (3.24), also assumes conservation of angular

momentum. However, this assumption fails for nonsymmetric gaits as explained

in Section 3.2. Nevertheless we may still compensate for the effect of gravity on

the angular momentum using the idea of gravity correction introduced in Section

3.2. The effect of gravity during the compression, Pcab
, and decompression, Pcba

,
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phases can be approximated using (3.3) with corresponding initial and final time

of subphases. Then, the corrected angular momenta for the compression and

decompression phases are given by

p̂θab
= pθ + Pcab

,

p̂θba
= p̂θab

+ Pcba
,

which replace pθ in the corresponding derivation step of the simple two-phase

variable stiffness approximation.

3.3.2 Iterative Approximate Stance Map For Two-Phase

Variable Stiffness

In this section, we present the derivation of an iterative approximate stance map

for two-phase variable stiffness control using the methods of [3] and the idea of

partitioning the apex return map into the apex to bottom and the bottom to

apex maps as in Fig. 3.9. In fact, this form of the apex return map is the same

as in Section 2.2.2 with the main difference due to different leg stiffness for the

compression and decompression phases. Consequently, we only need to use two

different hamiltonian functions and their inverses.

The Apex to Bottom Map

The Hamiltonian function for the compression phase is given by

Hab =
1

2m

(

p2
r +

p2
θ

q2
r

)

+
1

2
kc(l0 − qr)

2 + mgqr cos(qθ).

Solving the equation Hab(qr, pr, qθ, pθ) = Eab for pr yields

pr = H†
ab(qr, qθ, pθ, Eab) :=

√

2m

(

Eab −
1

2
kc(l0 − qr)2 − mgqr cos(qθ)

)

− p2
θ

q2
r

,

where Eab is the conserved total mechanical energy of the system during the

compression phase. The iterative touchdown to bottom map hence takes the
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form

t̂s(n+1)
(qr) = ttd − m(qr − qrtd

)/H†
abn

,

q̂θ(n+1)
(qr) = qθtd

− p̂θn
(ξ̂r)(qr − qrtd

)/(ξ̂2
rH

†
abn

),

p̂θ(n+1)
(qr) = pθtd

− m2gξ̂r sin(q̂θn
(ξ̂r))(qr − qrtd

)/H†
abn

,

p̂r(n+1)
(qr) = −H†

abn+1,

where n is the iteration number, ξ̂r = 3qrtd
/4 + qr/4 and H†

abk
:=

H†
ab(ξ̂r, q̂θk

(ξ̂r), p̂θk
(ξ̂r), Eab). The zeroth (initial) iteration can be any approxi-

mate analytical solution for the stance phase as in [3]. Also, the approximate

mapping from apex to bottom in Section 3.3.1 may be a good initial iteration

for this approximation.

The Bottom to Apex Map

In this case, the Hamiltonian function for the decompression phase, Hba, and the

solution of the equation Hba(qr, pr, qθ, pθ) = Eba for pr are given by

Hba =
1

2m

(

p2
r +

p2
θ

q2
r

)

+
1

2
kd(l0 − qr)

2 + mgqr cos(qθ),

pr = H†
ba(qr, qθ, pθ, Eba) :=

√

2m

(

Eba −
1

2
kd(l0 − qr)2 − mgqr cos(qθ)

)

− p2
θ

q2
r

,

where Eba is the conserved total energy during the decompression phase. The

relation between Eba and Eab is given by (3.15).

With these definitions, the approximate iterative bottom to apex map is given

by

t̂s(n+1)
(qr) = tb + m(qr − qrb

)/H†
ban

,

q̂θ(n+1)
(qr) = qθb

+ p̂θn
(ξ̂r)(qr − qrb

)/(ξ̂2
rH†

ban
),

p̂θ(n+1)
(qr) = pθb

+ m2gξ̂r sin(q̂θn
(ξ̂r))(qr − qrb

)/H†
ban

,

p̂r(n+1)
(qr) = H†

ban+1
,
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where n is the iteration number, ξ̂r = 3qrb
/4 + qr/4 and H†

bak
:=

H†
ba(ξ̂r, q̂θk

(ξ̂r), p̂θk
(ξ̂r), Eba). The zeroth iteration can be any approximate an-

alytical solution for stance phase. In [3], three different initial approximate so-

lutions are used and the approximation in Section 3.3.1 based on [2] may be a

good initial iteration for this iterative approximation.

The general formulation of the iterative apex return map for two-phase vari-

able stiffness control can hence be derived with one missing important parameter:

the bottom leg length, qrb
. The bottom leg length is crucial since the apex re-

turn map is divided into two parts around the bottom instant. Unfortunately,

an exact solution of the bottom length cannot be found, but several approximate

solutions can be used. The first alternative is obtained by using the symmetric

gait assumption with constant leg stiffness , i.e kc = kd, and the approximate

bottom length can be calculated by using the total energy relation below since

SLIP is vertical at bottom for symmetric gaits:

Eab =
pθ

2mq2
r

+
kc

2
(l0 − qr)

2 + mgsqr, (3.25)

kc

2
q4
r + (mgs − kcl0)q

3
r +

(

kcl
2
0

2
− Eab

)

q2
r +

p2
θ

2m
= 0. (3.26)

Note that (3.26) is a quartic equation for the bottom leg length and the

solution to this quartic equation which is real and less than or equal to the rest

leg length gives the bottom leg length.

Another way of approximately calculating the bottom leg length is to use the

approximate stance map of [2] up to the bottom instant. using this method, the

approximate bottom leg length, qrb
, is given by

qrb
= l0(1 + aab − bab) (3.27)

where aab and bab are the same as in Section 3.3.1.
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3.3.3 Performances of Proposed Approximations

Simulation Environment and Performance Criteria

Our interest in analytic approximations to the SLIP stance dynamics for vari-

able stiffness arises from one of the possible control modalities, the Two-Phase

Stiffness Control (TPSC). We want to design position aware deadbeat controllers

which will enables us the control and planning of legged locomotion for a spec-

ified high level tasks. Deadbeat controllers that appear in the literature mostly

concentrate on apex height and apex velocity to obtain desired gait properties

without dealing with the horizontal position of the system in the environment.

However, to achieve realistic planning for legged locomotion over rough terrain,

we need to consider both gait properties and the robot position. Consequently,

position aware deadbeat controllers are necessary for automated legged locomo-

tion over rough surfaces.

Position aware deadbeat controllers require good approximations to SLIP

stance dynamics and in this section we investigate how well the two-phase vari-

able stiffness approximation captures dynamical SLIP behavior for the TPSC

control mode. In doing this, the most important performance criteria for us is

the accuracy of the predicted apex position and velocity as in Section 3.2. To

this end, we use two measures to quantify the prediction performance of approxi-

mations described above: Normalized percentage errors in the apex position and

liftoff velocity predictions, defined respectively as:

PEap = 100
||(bxa

, bya
) − (b̂xa

, b̂ya
)||2

||(bxa
, bya

)||2
,

PElov = 100
||(bẋlo

, bẏlo
) − (b̂ẋlo

, b̂ẏlo
)||2

||(bẋlo
, bẏlo

)||2
.

As in Section 3.2, we use the liftoff velocity rather than the apex velocity to

ensure that normalization is practical even for non-symmetric gaits for which the

apex velocity may become zero or very small in magnitude.

53



In order to compare prediction performance of the proposed approximations,

we ran simulations spanning five different dimensions of initial states and control

inputs: the apex height (bya
), the apex velocity (bẋa

), the compression phase

spring constant (kc), the stiffness ratio (kd/kc) and the relative touchdown angle

(qθtdrel
:= qθtd

− qθtdn

5). The ranges considered for these dimensions were deter-

mined based on experimental observation in the biomechanics literature as well

as structural properties of various legged robots as in Section 3.2. Therefore, our

choice of simulation parameters and control input ranges are listed Table 3.2.

Table 3.2: Simulation Parameters

m(kg) l0(m) g(m2/s) bya
(m) bẋa

(m/s) kc(N/m) kd/kc qθtdrel
(rad)

1 1 9.81 1.1 - 1.5 0 - 5 250 - 1000 0.5 - 2 -0.25 - 0.25

For each of our simulations, we checked whether they satisfied conditions

presented in Section 3.2.2 to ensure that we can support meaningful comparisons

of all approximations and preserve similarity to existing analytical models of SLIP

stance dynamics. From among a total of 258570 initial states and control inputs,

216770 were found to satisfy these two conditions.

Then, we computed approximate estimates of the apex states based on three

proposed approximations in the previous section and compared estimation per-

formances with ”ground truth” using the error criteria defined above. The first

approximation is the simple variable stiffness approximation, Simple VS Approx-

imation, described in Section 3.3.1 where aba is calculated from parameter defi-

nitions (3.16) and bba is found by continuity equation (3.22). We must note that

there are several ways of satisfying continuity at bottom instant as mentioned in

Section 3.3.1, but the most reliable one is that parameter bba which is calculated

from continuity equation. The second approximation for the variable stiffness

5qθtdn
is the neutral touchdown angle, which can be defined as a touchdown leg angle that

results in a vertical SLIP state at bottom instant and depends on the initial conditions. When
kd/kc is equal to one, then the neutral touchdown angle result in symmetric steps. For each
simulation, we numerically calculated this angle and it is used as the origin for our plots.
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case is iterative approximation, Iterative VS Approximation, based on [3] and

we used the 10th iterate (after which further iterations yield no improvements)

to make sure we obtained the best possible performance for this approximation.

Finally, the last approximation model uses the gravity correction method and has

the same form as the simple variable stiffness approximation. In other words, it

is the gravity corrected version of the first approximation.

Simulation Results

Our simulation results are illustrated in Fig. 3.10, where we show the mean,

standard deviation and maximum values for the apex position and liftoff velocity

percentage errors, PEap and PElov, across all valid simulations and all three

approximation methods. First two approximations, the simple variable stiffness

(VS) and the iterative VS approximations, are derived using the results of [2]

and [3]. Third approximation is obtained by modifying the results of [35]. Our

results show that there is a notable performance improvement on the average for

the gravity correction method compared both to the simple VS and the iterative

VS approximations.

A more informative comparison between different approximation alternatives

can be achieved by investigating the estimation performance as a function of

the relative touchdown angle. Since our gravity correction method is expected

to perform well for non-symmetric trajectories, its error performance should be

better than the alternatives for nonzero relative angle values. As illustrated by

Fig. 3.11, this was indeed the case for both error measures, PEap and PElov.

In all cases, our variable stiffness approximation with gravity correction per-

forms better than other approximations for non-symmetric trajectories. In fact it

performs best for relative touchdown angles in the range of [−0.25 0.25] rad. On
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Figure 3.10: Estimation performances for the stance maps of Simple, Iterative
and Simple Gravity Corrected Variable Stiffness (VS) Approximations. PEap

(left) and PElov (right) are apex position and liftoff velocity percentage errors.
Empty markers, filled markers and colored vertical bars represent mean, maxi-
mum and standard deviations of associated approximations.

the other hand, iterative approximation has an almost uniform performance pro-

file, relatively independent of symmetry. Consequently, it performs better than

our approximation for some non-symmetric trajectory regions far out into the

touchdown angle spectrum. However, these regions correspond to rather extreme

transient conditions unlikely to be observed for locomotion on reasonable terrain,

so we limited our simulation studies to frequently used relative touchdown angle

range. Furthermore, some of its performance can be attributed to the fact that

we used the 10th iterate of iterative approximation rather than more reasonable

ones such as the first or second iterate for which the analytical nature of the

approximations can still be preserved.

Another detailed comparison between different approximation methods can

be achieved by investigating the estimation performance as a function of the

stiffness ratio, kd/kc. In Fig. 3.12, we present average apex position and liftoff

velocity mapping performances of all three approximation and once again our
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Figure 3.11: Upper:Mean Apex Position Percentage Error (PEap) versus Rela-
tive Touchdown Angle (qθtd

− qθtdn
). Lower: Mean Liftoff Velocity Percentage

Error (PElov) versus Relative Touchdown Angle (qθtd
− qθtdn

). The vertical bars
represent standard deviations for the approximate stance map with gravity cor-
rection.

simple variable stiffness approximation with gravity correction is the best one

for stiffness ratio, kd/kc, in the range of [0.5 2]. In reality, this range of stiffness

ratio is acceptable and practical since we may suddenly double or halve the spring

potential energy, in other words, a significant amount of total system energy can

be controllable. Moreover, Fig. 3.12 illustrates that the apex position estima-

tion performance becomes worse with increasing stiffness ratio. In other words,

the apex position estimation performance worsen as expected with increasing

liftoff energy (or liftoff velocity). On the contrary, the liftoff velocity estimation
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Figure 3.12: Upper:Mean Apex Position Percentage Error (PEap) versus Stiffness
Ratio (kd/kc). Lower: Mean Liftoff Velocity Percentage Error (PElov) versus
Stiffness Ratio (kd/kc). The vertical bars represent standard deviations for the
approximate stance map with gravity correction.

becomes better with increasing stiffness ratio since the expected liftoff velocity

increases in this case, making the percentage error become smaller, assuming

almost constant absolute prediction error.

On the whole, our approximate map with gravity correction is the best pre-

dictor for the behavior of the spring mass hopper on the average for significant

and practical ranges of control parameters and initial configurations. In this

sense, in Figures 3.13, 3.14, 3.15 and 3.16, we illustrate the relations between the

estimation performance and relative touchdown angle, compression leg stiffness,
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Figure 3.13: Upper:Mean Apex Position Percentage Error vs Stiffness Ratio
and Relative Touchdown Angle. Lower: Mean Apex Position Error vs Relative
Touchdown Angle at different Stiffness Ratio.

and stiffness ratio for two-phase variable stiffness approximation with gravity cor-

rection. As previously observed, apex position prediction performance increases

with decreasing stiffness ratio (i.e. decreasing system energy or liftoff velocity)

and increasing compression phase leg stiffness. Because increasing leg stiffness

decreases the amount of leg compression, and so the actual SLIP motion becomes

closer to approximation assumptions. Note that, the accuracy of the liftoff ve-

locity estimation becomes better with increasing stiffness ratio and compression

phase leg stiffness. Similarly, the actual motion has very similar characteristics to

the assumption of the approximation. Finally, the dependence of both the apex
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Figure 3.14: Upper:Mean Liftoff Velocity Percentage Error vs Stiffness Ratio
and Relative Touchdown Angle. Lower: Mean Liftoff Velocity Error vs Relative
Touchdown Angle at different Stiffness Ratio.

position and the liftoff velocity predictions on the relative touchdown angle has

a general characteristic due to approximation assumptions such that mapping

performance is better around neutral touchdown angle, i.e. qθtdrel
= 0. Overall,

our gravity correction method performs best for relative touchdown angles in

the range of [−0.25 0.25] rad. Fortunately, angles outside this range correspond

to very sudden changes in the locomotion and can safely be left unused by a

reasonable planner cognizant of the limitations of available approximations.
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Figure 3.15: Upper:Mean Apex Position Percentage Error vs Stiffness Ratio and
Compression Phase Leg Stiffness. Lower: Mean Apex Position Error vs Stiffness
Ratio at different Compression Phase Leg Stiffness.

3.3.4 Discussion

In this section of the thesis, we proposed three novel approximation for two-

phase variable stiffness control based on [2], [3] and [35] and we illustrate the

effect of gravity correction on the performance for estimating SLIP trajectories.

The general idea behind the two-phase variable stiffness approximation is division

of the apex return map into two parts: the apex to bottom and the bottom to

(next) apex maps. As a result, we can separately control leg compliance during

compression and decompression to reach a desired apex position and apex speed.
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Figure 3.16: Upper:Mean Liftoff Velocity Percentage Error vs Stiffness Ratio and
Compression Phase Leg Stiffness. Lower: Mean Liftoff Velocity Error vs Relative
Touchdown Angle at different Compression Phase Leg Stiffness.

In fact, position aware-deadbeat controllers resulting from this mode of control

differ from previous controllers in a way that previous approaches only deal with

gait properties (apex height and velocity) instead of horizontal system position

as well. However, legged locomotion planning requires both horizontal system

position and gait control to ensure safe, reliable and robust mobility. Therefore,

motion prediction performance of a candidate approximation becomes critical.
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The average performance of our variable stiffness approximation with grav-

ity correction was found to be highest in both its apex position and liftoff

velocity prediction performances for relative touchdown angles in the range

[−0.25 0.25] rad.. For gaits that are sufficiently far from symmetric, iterative

stance map for two-phase variable stiffness is observed to have better performance

but under the condition that it is iterated until convergence, which usually results

in unacceptable analytical complexity. Overall, the gravity corrected simple vari-

able stiffness approximation seems to present the best combination of accuracy

and simplicity for non-symmetric SLIP trajectories and is suitable for the design

of two-phase stiffness controllers used by footstep planning algorithms that rely

on the use of transient stepping behavior for robots likes Raibert’s hopper [9] and

the BiMASC leg [21]. This aspect turns out to be critical for nontrivial planning

tasks with the SLIP model since it allows inducing changes in the total energy

of the system, allowing finer control over possible maneuvers.

In the second part of the thesis, we will discuss the design of reactive planning

controllers for the SLIP model, which can in turn be applied to more complex

legged robots through passive or active embedding of the SLIP model. To this

end, we believe that analytic approximations to the dynamic behavior of this

model will be important both in the design of position aware deadbeat controllers

that can accurately and efficiently regulate its discrete control inputs as well as

in the analytical characterization of such controllers for planning purposes. Our

proposed method fills a gap in this area and provides an analytic approximation

that remains valid for a large range of control inputs and initial conditions of the

SLIP model.
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Chapter 4

BACKGROUND: CONTROL

AND PLANNING OF LEGGED

LOCOMOTION OVER ROUGH

TERRAIN

Robotics is a comprehensive field of engineering and science with a large number

of application areas (e.g. military, manufacturing, automation, rescue, medical).

As a result, there are different robot motion planning and control problems in

various environments with diverse robot morphologies and capabilities. In this

extremely wide research area, we are particularly interested in legged locomotion

and especially its control and planning over rough terrain. This chapter starts

the second part of the thesis: Reactive footstep planning of legged systems over

rough surfaces. We will first summarize previous approaches on footstep plan-

ning and control of legged systems in the following sections. According to our

observations of studies appeared in the literature, existing approaches can be clas-

sified as: either static and quasistatic (e.g. walking and crawling) or dynamic

(e.g. running and trotting) legged locomotion. On the other hand, an equally
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important problem is the solution of control and planning for running robots.

Traditional approaches to this problem divide it into two separate problems:

Planning of the solution strategy and the necessary control for its realization.

Solving these subproblems individually and combining them later gives the final

solution. However, this approach doesn’t work very efficiently and is very sensi-

tive to modelling uncertainty and environment noise for complex problems like

kinodynamic motion planning and dynamical legged locomotion. A new trend

in robotics is the integration of planning, control and high level tasks for more

reliable algorithms for autonomous systems and real time applications. An ear-

lier method for simultaneous planning and control is the sequential composition

[30]. This chapter continues with the background on static and dynamic legged

locomotion and sequential composition.

4.1 Planning and Control of Static and Qua-

sistatic Legged Locomotion

Initial studies on human motion planning concentrated on statically stable loco-

motion and started with simple motion model by projecting the 3D environment

of a human character onto approximate 2D models such as differential drive

circular robot approximation since researchers mainly looked for possible col-

lision free locomotion trajectories from a start point to a goal point. In [47],

the navigation problem of an animated character in a maze is studied and the

character is assumed to be bounded by an appropriate cylinder and a 2D cir-

cular differential drive robot model is used to characterize human motion. In

fact, a quasi-nonholonomic system assumption is reasonable since experimental

observations on human locomotions shows the nonholonomic nature of human

locomotion [48]. Also, the human motion planning algorithm in [47] assumes

obstacles with infinite height and that the human character cannot take a step
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over or onto any obstacle. However, in reality, legged systems are able to step

over or onto obstacles which is a unique and distinctive feature of such systems.

Additionally, in [27], an offline approach is introduced in a simulation envi-

ronment while considering the capability of the system to step over obstacles. In

subsequent studies, obstacles are modelled as holes in the floor so that robot can

take a step over these holes and several simulation and experimental online plan-

ning studies on bipeds are performed for statically stable locomotion [29, 49, 50].

In [28, 51], the problem of biped navigation over complex environments is in-

vestigated using full static locomotion capability ( i.e. stepping over and upon

obstacles).

In contrast, [52] shows a different approach to find more realistic planning

trajectories. The algorithm proposed in [52] is based on planning for static loco-

motion and the dynamical consistency is preserved by using dynamical filtering.

To sum up, most of these studies focus on statically stable locomotion and they

are not suitable and sufficient for dynamical legged locomotion.

Finally, there is also significant research on footstep planning for quadrupeds

and hexapods, mostly concentrating on statically stable locomotion. In contrast,

we focus on monopod or biped robots since their morphologies are much more

similar to the spring mass hopper.

4.2 Planning and Control of Dynamic Legged

Locomotion

Motion planning and control of second order systems, also known as kinodynamic

motion planning, has always been challenging and it has not been yet completely

solved. Since dynamic analysis and the design of a universal controller for all
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possible motion of a specific robot is difficult or may be even impossible, re-

searchers use different approximate solutions with limited capabilities or proba-

bilistic approaches for kinodynamic planning. A good example for gait planning

of humanoid robot is presented in [53], where a sampling based approach is used

while considering both kinematics and dynamics of the system. Sampling based

approaches are excellent ways of solving the control problem for complex and high

dimensional systems and are mostly used for offline planning. However, they are

not immediately applicable to online planning for highly dynamic locomotion.

For this kind of applications, dynamical behavior needs to be characterized well

and controllers should be designed according to system dynamics.

In [9], several control structures are proposed for the control of dynamical

locomotion, based on good characterizations of system dynamics. These locomo-

tion control algorithms are used to adjust step lengths over rough terrain [26].

These studies concentrate on dynamical locomotion problem over rough surfaces

and their methodology separates the navigation and control problems. As a first

step, footholds to be used during locomotion are determined and the control

policy tries to achieve the resulting offline plan as accurate as possible while en-

suring the balance of the hopper. There are several limitations of this approach

due to its nonreactive feature against changing conditions.

Furthermore, the bow leg robot is an accomplished monopod robot with

compliance which has 2D and 3D versions. There are many dynamical locomotion

research over rough surfaces with discrete stones and obstacles [1, 38, 39, 54]. The

approaches presented in these studies are based on offline planning of possible foot

placements to realize the specified task and stepwise feedback control. In these

studies, the attention is also given to the limitation of offline footstep planning

for long range locomotion and necessity of integrated planning and control.
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4.3 Simultaneous Planning and Control via Se-

quential Composition

Traditional robot motion planning and control approaches separate these strongly

related issues into two independent planning and control problems and tries to

solve them individually. The independence of motion planning and control is

acceptable for static environments and slow systems. However, this approach

has limited capabilities or sometimes does not work for changing conditions and

highly dynamic robots. The main reason for insufficiency of this approach is

that motion planning need to consider capabilities of existing control policies for

dynamic robot behaviors.

On the other hand, an alternative framework for integrating motion planning

and control is the composition of controllers [30]. For a specified planning prob-

lem, design of a global controller is generally very difficult or sometimes impossi-

ble for complex systems. However, the sequential composition method proposes

a switching control strategy such that the desired task of the global controller

can be achieved by an autonomous switching of existing local controllers. There

are several requirements for a valid local control policy such as:

• Safety: the domain of attraction of a policy must be in free configuration

space,

• Convergence In Finite Time: if a given state is inside the domain of attrac-

tion it must converge to policy goal set in finite time,

• Conditionally Invariant: if a given state is inside the domain of attraction

of a local policy, then it must stay in that local policy domain until it

reaches to goal set,
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• Efficient Inclusion test : there must be simple and efficient test to check if

the given state is inside the given local control policy. It is an important

policy feature because of practical reasons.

The sequential decomposition method has successfully been applied to many

problems and it is known to be robust which respects to uncertainties and changes

in the environment. For instance, in [33, 55] navigation and control of a fully ac-

tuated point robot is solved by using sequential composition. The sequential

composition has also been applied to navigation and control of wheeled sys-

tems [31, 32, 56]. These studies show satisfying performance of the method for

changing environment conditions. Additionally, sequential composition can be

used for safe transition between different walking speed of a bipedal robot as in

[57]. Furthermore, sequential composition is a good framework to describe high

level tasks using linear temporal logic which enables multi-goal oriented motion

planning [32, 58].

In the second part of thesis, we will describe a reactive footstep planning

algorithm for dynamical locomotion of a simplified hopper via sequential com-

position.
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Chapter 5

POSITION AWARE

DEADBEAT CONTROLLER

In Section 2.1.3, we discussed possible modes of controlling SLIP locomotion. In

summary, there are two common control parameters, the touchdown leg angle

and the amount of change in the total mechanical energy. We described three

different control modes, Leg Length Control (LLC), Leg Stiffness Control (LSC)

and Two-Phase Stiffness Control (TPSC), classified according to way of control-

ling the total system energy. In this section, we will introduce different deadbeat

controller1 based on these controller modes to achieve a desired apex position and

velocity relatively specified to the current apex state within a single step period.

Hence, we will need a good predictor of the SLIP motion during a single step and

as discussed in Chapter 3, we have several approximate stance maps with reason-

able accuracy to design such controllers. Once again, we need to emphasize that

existing deadbeat controllers in the literature are mostly designed for one period

symmetric steps and concentrate on general characteristic of a gait (apex height

and speed). However, since we are interested in motion planning of SLIP-like

robots, our proposed deadbeat controllers have position aware structure to reach

1A deadbeat controller gives a discrete stepwise control actions at each apex to control SLIP
locomotion.
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a desired gait characteristic at a specific horizontal position without collision.

In this chapter, we will mention the general form and implementation of these

deadbeat controllers and possible applications.

5.1 General Form of Deadbeat Controllers

Existing studies on the control of the SLIP model are generally designed for

a desired stable locomotion on flat surfaces and the resultant steps generally

symmetric. These approaches mostly based on feedback control and an accurate

modelling of SLIP is not critical. Desired motion can be obtained within a finite

number of steps. On the other hand, dynamic gait planning over rough surfaces

necessitates high performance controllers within single step action. Hence, our

deadbeat controllers need an accurate motion predictor of SLIP.

For every SLIP step, the apex return map is a mapping from the current

apex state, ba[n], to the next apex state, ba[n + 1], by using the selected control

action, u[n]:

ba[n + 1] = Fa(ba[n], u[n]). (5.1)

The apex return map is composition of the apex to touchdown map, btd[n] :=

fa 7→td(ba[n], u[n]), the SLIP stance map, blo[n + 1] := ftd 7→lo(btd[n], u[n]) and

the liftoff to apex map, ba[n + 1] := flo 7→a(blo[n + 1]). Also, control input, u[n],

is a vector of control parameters defined as

u[n] := [ qθtd
qrtd

qrlo
kc kd ]n.

Since we could not have the actual SLIP stance trajectory, we can use any

appropriate stance approximation introduced in Chapter 3. Our deadbeat con-

trollers will be based on approximate stance map of the SLIP model. In fact,

the gravity corrected version of simple approximate stance map for two-phase

variable stiffness in Section 3.3.1 has simple functional form and better accuracy
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as compared to other alternatives. Also it is suitable for all three possible modes

of control (LLC, LSC and TPSC). In this sense, for the rest of thesis, we gen-

erally use simple approximate map for two-phase variable stiffness with gravity

correction and we will directly refer it as approximate stance map.

The general form of the deadbeat controllers depends on the inverse of the

apex return map in (5.1) and we calculate the control action,u[n], which takes

SLIP from specified current apex state, ba[n], to next apex state ba[n + 1]. The

control action is given by

u[n] = F−1
a (ba[n],ba[n + 1]). (5.2)

For the time being, analytical form of the inverse of the apex return map is

not available. Therefore, (5.2) can be solved as an optimization problem defined

as finding u[n] ∈ U to minimize ||ba[n + 1] − Fa(ba[n], u[n])||.

For the different modes of control, the optimization parameters will be dif-

ferent. For example, Leg Length Control (LLC) assumes fixed leg stiffness, k,

during the entire stance phase. Also, the required change in the total mechanical

energy is known since the current and next apex states are specified. Eventually,

we have a relation between the touchdown and liftoff leg lengths as follows

E(ba[n + 1]) − E(ba[n]) = 0.5k((l0 − qrtd
)2 − (l0 − qrlo

)2). (5.3)

Consequently, for LLC, we only need to determine two control parameters, the

touchdown leg angle, qθtd
, and the touchdown leg length, qrtd

, to step from the

current apex state, ba[n], to the next apex state, ba[n + 1]. The corresponding

optimization problem is as follows

“ Find u[n] := [ qθtd
qrtd

qrlo
k k ] ∈ U to minimize ||ba[n + 1] − Fa(ba[n], u[n])|| ”

where leg stiffness, k, is constant and the liftoff leg length, qrlo
, is calculated

using (5.3).
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On the other side, Leg Stiffness Control (LSC) assumes tunable leg stiffness

and it is kept constant during stance. In other words, the compression and

decompression leg stiffness are the same and adjustable, kc = kd. Similarly, we

may calculate the energy difference between the current and next apex states to

determine the touchdown and liftoff leg lengths. The relation between additional

energy to the system energy and leg lengths at the touchdown and liftoff instants

is given in Table 5.1. Consequently, for LSC, we only need to determine two

Table 5.1: LSC - Energy and Leg Length Relation for a Chosen Leg Compliance

∆E = E(ba(n + 1)) − E(ba(n)),

if (∆E > 0)

qrtd
= l0 −

√

2∆E
kc

,

qrlo
= l0,

else

qrtd
= l0,

qrlo
= l0 −

√

2∆E
kd

,

end

control parameters, the touchdown leg angle, qθtd
, and leg stiffness during stance,

k = kc = kd to reach from the current apex state, ba[n], to the next apex state,

ba[n + 1]. The corresponding optimization problem to determine these control

parameters can be defined as

“ Find u[n] := [ qθtd
qrtd

qrlo
k k ] ∈ U to minimize ||ba[n + 1] − Fa(ba[n], u[n])|| ”

where the touchdown and liftoff leg lengths, qrtd
and qrlo

, are calculated using

the relation in Table 5.1.

Finally, Two-Phase Stiffness Control (TPSC) is another possible mode of

controlling SLIP locomotion and this control scheme assumes that the touchdown

and liftoff leg lengths are equal to the rest length, i.e. qrtd
= qrlo

= l0. Also, we

assume that we can instantaneously adjust leg stiffness at bottom instant. In a

similar manner to previous control modes, the additional amount of change in

the total mechanical energy of SLIP is calculated from the current and next apex
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states. The compression leg stiffness, kc, and the decompression leg stiffness, kd,

are determined by using the required change in the total system energy and the

bottom leg compression as in Table 5.2.

Table 5.2: TPSC - Energy and Decompression Stiffness Relation for a Chosen
Touchdown Leg Angle and Compression Leg Stiffness

∆E = E(ba[n + 1]) − E(ba[n]),

qrb
= Lb(ba[n], qθtd

, kc),

kd = kc − (2∆E)/(l0 − qrb
)2.

where Lb(ba[n], qθtd
, kc) gives the approximate bottom leg length, qrb

, for the

current apex state, ba(n) with chosen control inputs qθtd
and kc. Accordingly,

for TPSC, we only need to determine two control parameters, the touchdown

leg angle, qθtd
, and the compression leg stiffness during stance, kc to achieve

stepping from the current apex state, ba[n], to the next apex state, ba[n + 1].

The corresponding optimization problem to determine these control parameters

is as follows

“ Find u[n] := [ qθtd
l0 l0 kc kd ] ∈ U to minimize ||ba[n + 1] − Fa(ba[n], u[n])|| ”

where the touchdown and liftoff leg lengths, qrtd
and qrlo

, are kept equal to the

rest length of the system and the decompression leg stiffness can be calculated

using the relation in Table 5.2.

In the following section, we will describe implementation steps of these con-

trol modes and our assumption to reduce computational complexity from two

dimensional space search to two nested one dimensional space search.
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5.2 Implementation of Deadbeat Controllers

In the previous section, we describe the general form of different control modes of

SLIP. For every possible mode of control, there are two control parameters to be

found to achieve the desired motion. The touchdown leg angle, qθtd
, is a common

control parameter for all control approaches designed for the SLIP-like system.

Fortunately, for flat surfaces the touchdown leg angle has a monotonic effect on

the locomotion characteristic such that for a chosen energy adjustment for the

next apex state the increasing touchdown leg angle decreases the apex velocity.

Accordingly, we concentrate on rough terrain at discrete height levels with flat

surfaces and assume that the toe of SLIP touches the ground at the same height

for all possible allowed touchdown angles. In fact, it is possible to characterize a

local controller used by a high level gait planner to guarantee that all apex states

in its domain touches the same flat ground portion. Also, this monotonicity of

touchdown leg angle is independent of other control parameter (touchdown leg

angle for LLS, leg stiffness for LSC and compression leg stiffness for TPSC).

Therefore, we may implement the two dimensional optimization problems defined

in Section 5.1 as two nested one dimensional optimization problems. In the

following paragraphs, we give the general implementation procedure for different

modes of controlling SLIP steps and the cost functions used during optimization.

First of all, since we will divide our two dimensional optimization problem into

two nested one dimensional optimizations, we have two different cost functions

used by these one dimensional optimizations. One of these cost functions used

by inner optimization is defined to determine that how well the liftoff state is

obtained compared to the next apex state. We need to predict the liftoff and

apex states which are given by

b̂lo[n + 1] = fa 7→lo(ba[n], u[n]), (5.4)

b̂a[n + 1] = flo 7→a(blo[n + 1]), (5.5)
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where fa 7→lo(ba[n], u[n]) and flo 7→a(blo[n+1]) are the apex to liftoff and the liftoff

to apex maps, respectively and also the apex to liftoff map consists of the apex

to touchdown and our approximate stance map. Accordingly, the cost function

used by inner optimization is defined as

InnerCostFunction(ba[n + 1], b̂lo[n + 1], b̂a[n + 1]) :=

w1FDT (ba[n + 1], b̂lo[n + 1])2

+ w2(π2 ◦ ba[n + 1] − π2 ◦ b̂lo[n + 1])2

+ w3Dss(ba[n + 1], b̂a[n + 1]), (5.6)

where b̂lo[n + 1] and b̂a[n + 1] are estimated liftoff and next apex states given

by (5.4) and (5.5),respectively. w1, w2 and w3 are weights of corresponding

performance criteria. FDT (ba[n], b̂lo[n]) gives the distance of the predicted liftoff

state, b̂lo[n], to flight trajectory ending at the next apex position, ba[n] and

Dss(b1,b2) calculates the Euclidian distance between the given SLIP states b1

and b2. Also, π is the projection operator.

Furthermore, another cost function for the outer optimization stage charac-

terizes the accuracy of reaching the next apex state and it is given by

OuterCostFunction(ba[n + 1], b̂a[n + 1]) :=

w2(π2 ◦ ba[n + 1] − π2 ◦ b̂a[n + 1])2

+ w3Dss(ba[n + 1], b̂a[n + 1]), (5.7)

where the parameters and functions are the same as above. The weights w2 and

w3 are needed to be constant or have the same ratio as the used values for inner

cost function. Thereby, for the ideal case if the outer cost function is equal to

zero then the inner one has to be zero as well.

For Leg Length Control (LLC), we have two control parameters, the touch-

down leg angle, qθtd
, and the touchdown leg length, qrtd

, determined during the
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optimization problems. As mentioned above, if we assume that SLIP touches the

same flat surface portion for all possible control inputs, then the effect of touch-

down angle on gait properties becomes independent of touchdown leg length and

has a monotonic behavior. Therefore, the original two dimensional optimiza-

tion problem can be solved by using two nested one dimensional optimization

as described in Table 5.3. Many of the parameters and functions are previously

described , only F(5.3)(ba[n], ba[n + 1],qrtd
) is a new function, see (5.3).

Table 5.3: LLC Deadbeat Controller Algorithm

1: Algorithm LLC Deadbeat Controller(ba[n], ba[n + 1])

2: k : constant
3: u[n] := [0 l0 l0 k k]
4: u[n] :=OuterOptimizationSearch(ba[n], ba[n + 1], u[n], U)
5: {
6: do

7: qrtd
:= Selected by optimization search algorithm from allowed range

8: qrlo
:= F(5.3)(ba[n], ba[n + 1], qrtd

)

9: u[n] := [0 qrtd
qrlo

(π4 ◦ u[n]) (π5 ◦ u[n])]
10: qθtd

:= InnerOptimizationSearch(ba[n], ba[n + 1], u[n], U)
11: {
12: do

13: qθtd
:= Selected by optimization search algorithm from allowed range

14: u[n] := [qθtd
(π2 ◦ u[n]) (π3 ◦ u[n]) (π4 ◦ u[n]) (π5 ◦ u[n])]

15: b̂lo[n + 1] := fa 7→lo(ba[n], u[n])

16: b̂a[n + 1] := flo 7→a(b̂lo[n + 1])

17: until Minimize InnerCostFunction(ba[n + 1], b̂lo[n + 1], b̂lo[n + 1])
18: return qθtd

19: }
20: u[n] := [qθtd

(π2 ◦ u[n]) (π3 ◦ u[n]) (π4 ◦ u[n]) (π5 ◦ u[n])]

21: b̂a[n + 1] := Fa(ba[n], u[n])

22: until Minimize OuterCostFunction(ba[n + 1], b̂a[n + 1])
23: return u[n]
24: }

25: return u[n]

Secondly, for Leg Stiffness Control -LSC, there are two control parameters,

the touchdown leg angle, qθtd
, and leg stiffness during stance, k = kc = kd,

which are to be found during optimization. Using the monotonic behavior of

SLIP over flat surface, once again we will solve the original two dimensional
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optimization problem as two nested one dimensional optimization problem as

described in Table 5.4. The parameters and functions used in LSC Deadbeat

Controller algorithm are mostly described above, FT−5.1(ba[n], ba[n + 1], k) is

only a new function referring Table 5.1.

Table 5.4: LSC Deadbeat Controller Algorithm

1: Algorithm LSC Deadbeat Controller(ba[n], ba[n + 1])

2: u[n] := [0 l0 l0 1 1]
3: u[n] :=OuterOptimizationSearch(ba[n)], ba[n + 1], u[n], U)
4: {
5: do

6: k := Selected by optimization search algorithm from allowed range
7: [qrtd

qrlo
] := FT−5.1(ba[n], ba[n + 1], k)

8: u[n] := [0 qrtd
qrlo

k k]
9: qθtd

:= InnerOptimizationSearch(ba[n], ba[n + 1], u[n], U)
10: {
11: do

12: qθtd
:= Selected by optimization search algorithm from allowed range

13: u[n] := [qθtd
(π2 ◦ u[n]) (π3 ◦ u[n]) (π4 ◦ u[n]) (π5 ◦ u[n])]

14: b̂lo[n + 1] := fa 7→lo(ba[n], u[n])

15: b̂a[n + 1] := flo 7→a(b̂lo[n + 1])

16: until Minimize InnerCostFunction(ba[n + 1], b̂lo[n + 1], b̂lo[n + 1])
17: return qθtd

18: }
19: u[n] := [qθtd

(π2 ◦ u[n]) (π3 ◦ u[n]) (π4 ◦ u[n]) (π5 ◦ u[n])]

20: b̂a[n + 1] := Fa(ba[n], u[n])

21: until Minimize OuterCostFunction(ba[n + 1], b̂a[n + 1])
22: return u[n]
23: }

24: return u[n]

Finally, we have two control parameters, the touchdown leg angle, qθtd
, and

the compression leg stiffness, kc, for Two-Phase Stiffness Control (TPSC), and

they are determined using the algorithm described in Table 5.5 to solve the cor-

responding optimization problem. Again, many of the parameters and functions

are previously described, only FT−5.2(ba[n], ba[n + 1], qθtd
, kc) is a new function,

see Table 5.2.
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Table 5.5: TPSC Deadbeat Controller Algorithm

1: Algorithm TPSC Deadbeat Controller(ba[n], ba[n + 1])

2: qrtd
:= l0

3: qrlo
:= l0

3: u[n] := [0 qrtd
qrlo

1 1]
4: u[n] :=OuterOptimizationSearch(ba[n], ba[n + 1], u[n], U)
5: {
6: do

7: kc := Selected by optimization search algorithm from allowed range
9: u[n] := [0 (π2 ◦ u[n]) (π3 ◦ u[n]) kc 1]
10: u[n] := InnerOptimizationSearch(ba[n], ba[n + 1], u[n], U)
11: {
12: do

13: qθtd
:= Selected by optimization search algorithm from allowed range

8: kd := FT−5.2(ba[n], ba[n + 1], qθtd
, kc)

14: u[n] := [qθtd
(π2 ◦ u[n]) (π3 ◦ u[n]) (π4 ◦ u[n]) kd]

15: b̂lo[n + 1] := fa 7→lo(ba[n], u[n])

16: b̂a[n + 1] := flo 7→a(b̂lo[n + 1])

17: until Minimize InnerCostFunction(ba[n + 1], b̂lo[n + 1], b̂lo[n + 1])
18: return u[n]
19: }
21: b̂a[n + 1] := Fa(ba[n], u[n])

22: until Minimize OuterCostFunction(ba[n + 1], b̂a[n + 1])
23: return u[n]
24: }

25: return u[n]

In this section, we mentioned implementation of the possible modes of con-

trolling the SLIP in a much more efficient way by using the monotonic effect of

touchdown leg angle on gait properties on flat surfaces. In the following section,

we will discuss some possible application of these deadbeat controllers for the

gait planning of the SLIP-like systems.

5.3 Applications

There are three possible modes of deadbeat controller to achieve stepping from

the current apex state to the next apex state, and in the previous sections, we
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mentioned the general form and implementations of these controllers. During our

studies we assume that the ground profile is composed of flat ground portions at

different levels. In this section, we will consider this type of terrains and traverse

over them by reaching previously determined a sequence of apex states. At this

point of the thesis, we assume availability of an offline high-level gait planner

such that for a given start and goal states with known ground profile it gives a

sequence of apex states to reach desired goal location. One of the critical property

of this planner is that locomotion planning is performed while considering the

limitations on control input and realizability of each SLIP steps. As mentioned

previously, our deadbeat controllers are based on approximate stance map of

the SLIP model. We generally use simple approximate map for the two-phase

variable stiffness control described in Section 3.3.1, and we will directly refer to

it as approximate stance map.

Firstly, existing controllers for SLIP are generally designed for symmetric

steps over flat surfaces, hence we will begin with symmetric locomotion over flat

surfaces. In Figures 5.1, 5.2 and 5.3, we illustrate performance of LLC, LSC and

TPSC for a given set of symmetric apex states. These figures also include the

“ground truth“2 for these possible modes of control which are obtained by using

the numerically obtained apex return map. From the existing studies and our

observations we know that symmetric steps are the most accurately predicted

steps by approximate stance map, eventually the performance of the controllers

are very close to “ground truth”. Also, for a given flat surface we easily know

the height of the touchdown point on the ground which is equal to height of

flat ground, but for a general ground profile it is not the case and we need to

compute that information for each possible control iteration and it also increases

the computation complexity drastically. At that point we focus on the worst case

and we implement a general algorithm for any ground profile to find that height.

2The ground truth for each control modes is obtained using the actual apex return map that
is numerical solution of the SLIP dynamics.
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In fact, for ground profiles with flat ground portion at discrete levels we may use

much more efficient algorithms but we want to show the importance of knowing

the height of the ground portion where the spring-mass hopper lands. Hence,

design of local controllers for selected flat ground portions may be an efficient

approach for footstep planning of the SLIP-like systems.
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Figure 5.1: Leg Length Control - LLC for Symmetric Steps over a flat surface.
Upper : The apex return map used by LLC is based on our approximate stance
map. Number of iterations during optimization is around 191 and the computa-
tion time is around 0.31 secs for each steps. Lower :“Ground Truth” for LLC. The
apex return map used by LLC is based on numeric solution of the SLIP dynam-
ics. Number of iterations during optimization is around 235 and the computation
time is around 6.1 secs for each steps. If we also compute the height of the flat
ground portion where the SLIP lands for every iteration, the computation time
increases to 5.1 secs and 12.4 secs for the upper and lower cases, respectively.

Another explanatory example is usage of nonsymmetric steps over flat sur-

faces. We illustrate in Figures 5.4, 5.5 and 5.6 that how well nonsymmetric

steps can be generated by using the proposed deadbeat controllers. A set of

apex states during the locomotion is assumed to be given by a high-level plan-

ner. As seen from the figures, deadbeat controllers based on the approximate

stance map improves the performance for nonsymmetric steps as well and they

result with similar trajectories as numerically solved “ground truth”. As seen

from the simulation times, computation time dramatically increases for a known
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Figure 5.2: Leg Stiffness Control - LSC for Symmetric Steps over a flat surface.
Upper : The apex return map used by LSC is based on our approximate stance
map. Number of iterations during optimization is around 238 and the compu-
tation time is approximately 0.32 secs for each steps. Lower :“Ground Truth”
for LSC. The apex return map used by LSC is based on numeric solution of the
SLIP dynamics. Number of iterations during optimization is around 192 and
the computation time is around 5.2 secs for each steps. If we also compute the
height of the flat ground portion where the SLIP lands for every iteration, the
computation time increases to 7.1 secs and 10.6 secs for the upper and lower
cases, respectively.

general ground profile since for each iteration during the execution of deadbeat

controller, we need to calculate height of the touchdown point for each possible

control iterations. This increases the cost of computation. Therefore, as will be

discussed in the next chapter, a local controller need to be designed for a flat

ground portion with known ground height for real-time applications.

Moreover, another interesting application of LLC,LSC and TPSC is control-

ling SLIP locomotion over stair like grounds as illustrated in Figures 5.7, 5.8

and 5.9. Once again, we assume that a high level locomotion planner gives a se-

quence of apex states to traverse over a stair and our deadbeat controllers aim to

achieve successful stepping between these apex states. In this case, we couldn’t

know height of the touchdown point without knowing the current apex state and

selected control action. Accordingly, the computation times disables this kind off
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Figure 5.3: Two-Phase Stiffness Control - TPSC for Symmetric Steps over a flat
surface. Upper : The apex return map used by TPSC is based on our approximate
stance map. Number of iterations during optimization is around 215 and the
computation time is approximately 0.41 secs for each steps. Lower :“Ground
Truth” for TPSC. The apex return map used by TPSC is based on numeric
solution of the SLIP dynamics. Number of iterations during optimization is
around 192 and the computation time is around 8.2 secs for each steps. If we
also compute the height of the flat ground portion where the SLIP lands for every
iteration, the computation time increases to 5.75 secs and 13 secs for the upper
and lower cases, respectively.

approach for real time application. One possible solution is usage of much more

computationally efficient algorithms to determine height of toe at the touchdown

instant. However, a much more efficient solution is the characterization of local

controllers for a specific flat ground portion. For instance, in the next chapter, we

propose to design local controllers for a flat ground portion with known ground

height to be applicable for real-time applications.

5.4 Discussion

In the previous section, we gave several examples of the applications of LLC, LSC

and TPSC for controlling SLIP locomotion by using a set apex states . These

apex states are assumed to be generated by a high-level planner such that this
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Figure 5.4: Leg Length Control - LLC for Nonsymmetric Steps over a flat sur-
face. Upper : The apex return map used by LLC is based on our approximate
stance map. Number of iterations during optimization is around 224 and the
computation time is around 0.34 secs for each steps. Lower :“Ground Truth” for
LLC. The apex return map used by LLC is based on numeric solution of the
SLIP dynamics. Number of iterations during optimization is around 213 and
the computation time is around 5.6 secs for each steps. If we also compute the
height of the flat ground portion where the SLIP lands for every iteration, the
computation time increases to 7.1 secs and 10.8 secs for the upper and lower
cases, respectively.

planer considers limitation of control inputs and it also satisfies that starting

from any apex state in the domain of a local controller the SLIP touches the

same flat ground segment with all possible control action. For the time being,

we do not have this kind of local controllers and high level planner. These are

the novel extensions and open research problems related to footstep planning of

SLIP-like systems.

One of the critical property of the SLIP model used for deadbeat controller

design, which enables us to deal with two nested one dimensional optimization

rather than two dimensional one, is monotonicity with respect to the touchdown

leg angle over flat surfaces. Another interesting problem is the design of local

control policies for the SLIP-like system for a selected flat ground portion. For a
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Figure 5.5: Leg Stiffness Control - LSC for Nonymmetric Steps over a flat sur-
face. Upper : The apex return map used by LSC is based on our approximate
stance map. Number of iterations during optimization is around 258 and the
computation time is approximately 0.35 secs for each steps. Lower :“Ground
Truth” for LSC. The apex return map used by LSC is based on numeric solution
of the SLIP dynamics. Number of iterations during optimization is around 215
and the computation time is around 5.6 secs for each steps. If we also compute
the height of the flat ground portion where the SLIP lands for every iteration,
the computation time increases to 8.3 secs and 13.3 secs for the upper and lower
cases, respectively.

given control input sets, determination of the domain and goal regions of these

kind of local policies are significant for footstep planning over rough surfaces

with flat surfaces at different levels. Also, if we design local controllers for a

specific portion of the ground, we easily calculate the touchdown states for a

chosen control action with is really important for real-time applications. Similar

approaches is used in the next chapter for a simplified hopper to design reac-

tive footstep algorithm and it is an introductory idea for a possible longer term

research on reactive footstep planning of the SLIP-like monopods and bipeds.
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Figure 5.6: Two-Phase Stiffness Control - TPSC for Nonsymmetric Steps over a
flat surface. Upper : The apex return map used by TPSC is based on our approx-
imate stance map. Number of iterations during optimization is around 282 and
the computation time is approximately 0.56 secs for each steps. Lower :“Ground
Truth” for TPSC. The apex return map used by TPSC is based on numeric solu-
tion of the SLIP dynamics. Number of iterations during optimization is around
253 and the computation time is around 8.2 secs for each steps. If we also
compute the height of the flat ground portion where the SLIP lands for every
iteration, the computation time increases to 8.6 secs and 18.4 secs for the upper
and lower cases, respectively.

Orthogonally, the deadbeat controllers proposed here are based on approxi-

mate stance map. In reality, there are several limitation on the prediction perfor-

mance of the SLIP stance approximation and to increase the estimation perfor-

mance of approximation we may also force deadbeat controller to select control

inputs which results with steps with properties close to the assumption for the

derivation of the approximate stance maps. Therefore, the closeness of the gait

properties to approximation assumption may be included as a part of optimiza-

tion cost functions. At this moment, we don’t need this kind of modification for

cost function but it will result in much more reliable motions.

Furthermore, we designed three different deadbeat controllers, LLC, LSC and

TPSC, and each of them has good performances compared to the “ground truth”
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Figure 5.7: Leg Length Control - LLC for Nonsymmetric Steps over a flat sur-
face. Upper : The apex return map used by LLC is based on our approximate
stance map. Number of iterations during optimization is around 202 and the
computation time is around 6.8 secs for each steps. Lower :“Ground Truth” for
LLC. The apex return map used by LLC is based on numeric solution of the
SLIP dynamics. Number of iterations during optimization is around 220 and the
computation time is around 12.8 secs for each steps.

obtained by numerically computed apex return map of the SLIP. If we compare

these three controller modes, LEG Stiffness Control - LSC seems to the most

accurate and computationally efficient one. For instance, LLC sometimes select

control inputs which results with large amount of compression during stance but

the approximate stance map assumes small leg compression. On the other hand,

TPSC has worse computational efficiency since it needs to know bottom leg

length to determine the decompression leg stiffness. Also, for LLC and LSC we

guarantee that the exact amount of energy is added to or taken out from system,

but TPSC uses the estimated bottom leg length to adjust system energy which

is not necessarily to be equal to the exact amount. This is another problematic

issue which is related with TPSC.
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Figure 5.8: Leg Stiffness Control - LSC for Nonymmetric Steps over a flat surface.
Upper : The apex return map used by LSC is based on our approximate stance
map. Number of iterations during optimization is around 258 and the compu-
tation time is approximately 10.6 secs for each steps. Lower :“Ground Truth”
for LSC. The apex return map used by LSC is based on numeric solution of the
SLIP dynamics. Number of iterations during optimization is around 210 and the
computation time is around 13.7 secs for each steps.

88



−2 0 2 4 6 8 10
0

1

2

3

b
a
(n) b

a
(n+1)

b
a
(n+2)

b
a
(n+3)

b
a
(n+4) b

a
(n+5)

b
a
(n+6)

b
a
(n+7)

b
a
(n+8) b

a
(n+9)

y (m)

z 
(m

)

Two−Phase Stiffness Control − TPSC

−2 0 2 4 6 8 10
0

1

2

3

b
a
(n) b

a
(n+1)

b
a
(n+2)

b
a
(n+3)

b
a
(n+4) b

a
(n+5)

b
a
(n+6)

b
a
(n+7)

b
a
(n+8) b

a
(n+9)

y (m)

z 
(m

)

Two−Phase Stiffness Control − TPSC

Figure 5.9: Two-Phase Stiffness Control - TPSC for Nonsymmetric Steps over a
flat surface. Upper : The apex return map used by TPSC is based on our approx-
imate stance map. Number of iterations during optimization is around 234 and
the computation time is approximately 8.0 secs for each steps. Lower :“Ground
Truth” for TPSC. The apex return map used by TPSC is based on numeric solu-
tion of the SLIP dynamics. Number of iterations during optimization is around
223 and the computation time is around 18.7 secs for each steps.
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Chapter 6

REACTIVE FOOTSTEP

PLANNING

The second part of this thesis, reactive footstep planning, will be mainly intro-

duced within this chapter. To make clear the advantage of reactivity, we need

to define it. In general, reactive and adaptive behaviors sounds the same and

they are commonly confused, but essentially they are different. Adaptive acting

is a type of behavior to adjust the current behavior according to several obser-

vation from the environment and results of current action. On the other hand,

reactive behavior is tendency to show a response in all situations. Accordingly,

proposed algorithm guaranties to stay inside the global domain of local policies

since the sequential composition method has conditionally invariance property

(see Section 4.3) and gives a reasonable control action to reach the goal state for

all states insides the global domain. This chapter composes of general planning

framework for any type of hopper over an uneven surface as in Fig. 6.1 and

illustrative application on a simplified hopper with simulation results.
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Figure 6.1: A spring-mass hopper running over rough terrain.

6.1 Planning Framework

6.1.1 A Generic Hopper Model

Running trajectories for all one or two legged systems exhibit a common struc-

ture: They alternatingly go through flight and stance phases, separated by touch-

down and liftoff events as the foot comes into contact and leaves the ground,

respectively. Most specific examples in the literature also find it useful to define

an apex event associated with the highest point of the center of mass (COM)

during flight, whose height and forward velocity are often used as a representa-

tive state vector for the subsequent stride. In this section, we will make as few

assumptions as possible about the underlying legged system for such structures

in order to ensure general applicability of our reactive planning framework.

Throughout this thesis, we assume that a planar one-legged hopper is running

on a piecewise flat ground (such as the example shown in Fig. 6.1), possibly with

a number of “holes” on which no foot placement is possible. During flight, we

assume that the robot COM follows a ballistic trajectory, whereas during stance,

its dynamics are determined by its leg morphology and control which we leave

unspecified. We also assume that gait control is achieved with per-step control

inputs selected at each apex (but possibly realized throughout the entirety of

the following flight and stance phases), allowing independent, possibly limited

control of all three degrees of freedom for the next apex. This framework, for

which a single stride is illustrated in Fig. 6.2, is consistent with most planar
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Figure 6.2: An illustration of ground support Rg(Φi), policy domain D(Φi), and
feasible goal Gf (Φ1) regions for the spring mass hopper.

running robot morphologies in the literature ranging from the SLIP model to

more complex, multi-jointed leg designs.

We associate with each ground segment, one or more single-step “local” fam-

ilies of control policies Φi that use that segment for their foothold during stance,

while using control inputs from a constrained set U(Φi) to take the robot to an

associated set of possible apex states. Our planning algorithm seeks to find a

particular reactive sequencing of these policies to ensure that the robot is driven

to a desired goal state from as large a set of initial conditions as possible.

In the spirit of sequential composition, we associate with each family of poli-

cies Φi, a domain D(Φi), including those apex states from which the correspond-

ing ground segment Rg(Φi) is reachable, as well as a feasible goal set Gf (Φi)

including only apex states that are achievable from every state within the do-

main within a single stride using allowable control inputs. In the sequel, we will

use Xn := {yn, zn, ẏn, 0} to denote the state of the hopper at the nth apex event,
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Table 6.1: Notation associated with reactive footstep planning used throughout
the thesis

State Parameters

y, z Horizontal and vertical system positions
ẏ, ż Horizontal and vertical system velocities

Xn = [y, ẏ, z, ż]T State vector representation
πi ◦ Xn Gives the ith state variable, i.e. π3 ◦ Xn = z

Policy Parameters

Φi A local policy

Φ̂i An initiated local policy,
i.e. it has a unique goal state

D(Φi) Domain region of a local policy Φi

Gf (Φi) Feasible goal region of a local policy Φi

Gs(Φ̂i) Goal state of an initiated local policyΦ̂i

u, U Control input and control input set
RE(Φi) The apex energy range of a local policy Φi

RV (Φi) The apex velocity range of a local policy Φi

Rg(Φi) The portion of ground that a local policy Φi

can use ( The region of attraction of local
policy Φi on the ground)

Useful Functions

yf,td(Xn, u) Gives the horizontal touchdown position of
system

Fa(Xn, u) Apex return map, gives the next apex state
according to the current state and selected
control input

E(Xn) Total mechanical energy of a system state
TD(Xn, Φi) Flight Trajectory from Xn to touchdown

instance over a flat surface at policy height
TA(Xn+1, Φi) Flight Trajectory from corresponding liftoff

instance to Xn+1 over a flat surface at
policy height

Several Definitions

FS Free Configuration Space of Apex States

and Fa(Xn, u) to denote the apex return map under a specific control input u.

Formal definitions of the domain and feasible goal sets hence take the form
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D(Φi) := {Xn | ẏn ∈ RV (Φi), En ∈ RE(Φi),

∀u ∈ U(Φi). yf,td(Xn, u) ∈ Rg(Φi),

TD(Xn, Φi) ⊂ FS } (6.1)

Gf (Φi) := {Xn+1 | ∀Xn ∈ D(Φi), ∃u ∈ U(Φi).

Xn+1 = Fa(Xn, u),

TA(Xn+1, Φi) ⊂ FS} , (6.2)

where the sets RV (Φi) and RE(Φi) are allowed ranges for the velocity and energy

of the initial apex state, U(Φi) is the allowable set of control inputs, and Rg(Φi)

denotes the ground segment associated with the policy on which the hopper

will land as shown in Fig. 6.2. In order to prevent collisions with the ground

we also require descent and ascent trajectories, denoted with TD(Xn, Φi) and

TA(Xn+1, Φi), to be contained in free space FS.

Intuitively, D(Φi) captures apex states having energy and forward velocity

values in the associated ranges RV (Φi) and RE(Φi) from where the hopper can

reach the corresponding ground segment using available control inputs u ∈ U(Φi).

In contrast, the feasible goal region Gf (Φi), represents all apex states that are

guaranteed to be reachable from the entire domain using whatever control input

is necessary from within the allowable set U(Φi).

6.1.2 Reactive Footstep Planning

As described above, computation of the domain and feasible goal regions de-

pends on the system dynamics. Nevertheless, once computed, they present a

very convenient abstract interface between planning and control since the above

construction ensures by design, the existence of a single-step controller that can

take any apex state inside the domain to any subsequent apex state within the
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feasible goal region. In this section, we describe how to automatically construct

a reactive, provably correct hybrid footstep controller that uses a given set of

policies Φi.

The Prepares Relation

The sequential composition formalism introduced in [30] defines a relation be-

tween local controller policies that captures whether their sequencing is feasible

or not. Policy definitions in their domain include only a single goal point, whose

inclusion in the domain of another policy is sufficient to ensure the validity of

sequencing. Our formulation of the goal set is more general in the sense that the

feasible goal set Gf (Φi) includes an entire range of possible goal points that can

be chosen to yield a particular policy instance. Consequently, we define a more

general relation can prepare, indicating the availability of a goal choice that can

guarantee proper sequencing.

Definition 2. A policy Φi can prepare another policy Φj, denoted by Φi ºc Φj,

if and only if the following condition holds,

Gf (Φi) ∩ D(Φj) 6= ∅ .

This freedom in choice for the goal point associated with a policy allows the

planner to consider optimality or safety criteria to increase the efficiency and

robustness of the final reactive controller. Much like the original sequential com-

position algorithm, this relation induces a directed, possibly cyclic can prepare

graph G := {Φi,ºc} between all policies. Before we proceed with the description

of our planning algorithm, we will find the following definition useful.

Definition 3. A policy instance Φ̂i(Xg) is a controller that will take the hopper

from an apex state Xn ∈ D(Φi) and bring it to a specific, feasible goal point

Xn+1 = Xg ∈ Gf (Φi) using an allowable control input u ∈ U(Φi) and stepping

once on the ground range Rg(Φi) associated with the policy.
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Planning by Prioritizing Policies

The formulation of the “can prepare graph” above captures all relevant sequenc-

ing constraints between different control policies. However, a robot running

across rough terrain must still decide at every step which one of these policies

will be used to determine proper control inputs for the next stride. The original

sequential composition method divides this problem into two stages. First, the

prepares graph is converted into a total order whose top element is chosen as a

policy that can take the robot to the desired global goal. The resulting explicit

prioritization of policies is then used at runtime to determine which policy should

be used from among those whose domains cover the measured robot state. Even

though different alternatives such as sequence-based and automata-based plan-

ners are possible [31], we adopt the order-based method, adapted to deal with

larger, non-point goal sets as well as the discrete nature of our system.

Suppose a global goal is supplied to the planner in the form of a desired

apex state Xg. Our algorithm starts by choosing goal policies Φj such that

Xg ∈ Gf (Φj) and instantiates them for the specific desired goal as Φ̂j(Xg). The

algorithm then proceeds by backchaining on G, incrementally building a total

order of instantiated policies until all policy nodes in the graph are traversed.

The instantiation of each policy chooses a single goal point which is both in its

feasible goal set as well as the domain of the policy that it prepares, using a

heuristic cost function that takes into account appropriate safety and efficiency

criteria to determine the best candidate from among available goal alternatives.

Table 6.2 gives the detailed planning algorithm that yields the final pol-

icy ordering to be used for reactive control. Note that for each instantiated

policy, the algorithm computes a specific goal point Gs(Φ̂j), and a priority

P(Φ̂j) according to which the final total order will be obtained. The procedure

CostFunction(Φj, Φ̂i) is expected to return both the best candidate goal point
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Table 6.2: Order Based Policy Priority Planner

1: Algorithm Order Based Policy Planner(Xg, G)

2: PolicyFIFO := ∅
3: GP := FindGoalPolicies(Xg, G)
4: for all Φj ∈ GP do

5: Gs(Φ̂j) := Xg

6: P(Φ̂j) := 0

7: Push(PolicyFIFO, Φ̂j)
8: endfor
9: while not(isempty(PolicyFIFO))

10: Φ̂i := Pop(PolicyFIFO)

11: PP := FindPreparingPolicies(Φ̂i,G)
12: for all Φj ∈ PP do

13: [CT , XgT
] = CostFunction(Φj, Φ̂i)

14: if (CT + P(Φ̂i)) < P(Φj) then

15: Gs(Φ̂j) := XgT

16: P(Φ̂j) := CT + P(Φ̂i)

17: Push(PolicyFIFO, Φ̂j)
20: endif
21: endfor
22: endwhile

23: return {Φ̂1,N}

for policy Φj and a cost related to how effectively it prepares the instantiated

policy Φ̂i.

6.2 Reactive Foorstep Planning of a Simplified

Hopper: Ball Hopper

In this section, we will present a simple example of reactive footstep planning

algorithm for a simplified hopper, mainly for a ball hopper, which we also refer

to a controllable ball.
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6.2.1 Simplified Hopper Model

Efficient, preferably analytic characterization of the domain and particularly the

feasible goal regions for even the relatively well-studied SLIP model is a chal-

lenging, currently unsolved problem. Despite recent availability of very effective

analytical maps for the stance dynamics of this model, numerical solutions are

still needed for the characterization of the feasible goal region. Since our primary

emphasis in this paper is the reactive planning framework, we will investigate the

efficacy of our proposed method in a hopper model whose simplified dynamics

will structurally mimic SLIP behavior while admitting analytical characteriza-

tion of the feasible goal region Gf (Φi) for individual policies. This simplified

model can be best described as a controllable ball, which will summarize stance

dynamics of the SLIP model with a “bounce” from a virtual surface elevated by

a height equal to the SLIP spring rest length, changing the liftoff velocity and

position of the body center of mass in a controllable fashion. Fig. 6.3 illustrates

this idea for the scenario previously depicted in Fig. 1.5.
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Figure 6.3: An illustration of locomotion trajectories for the simplified “control-
lable ball” hopper model together with the “virtual ground” constructed from
the scenario depicted in Fig. 1.5.

98



System Dynamics

During flight, the simplified hopper follows an uncontrollable ballistic trajectory,

whose dynamics are given by

Ẋ =
[

ẏ ż ÿ z̈
]

=
[

ẏ ż 0 −g
]

.

Flight dynamics are particularly important in computing both the domain

and feasible goal regions associated with a given ground segment.

The stance phase for the SLIP model is governed by the compression and

decompression of the leg spring until the liftoff event. For the simplified hop-

per, we capture this behavior by using a direct, “instantaneous” touchdown to

liftoff map, controlled by a horizontal shift ∆y, and adjustments θ and k on the

angle and normal magnitude of the liftoff velocity with respect to a symmetric

gait and an oblique “virtual bounce surface”. These control parameters have

very close correspondence to control parameters that are frequently used for the

SLIP model and associated robot morphologies. The following list details these

correspondences.

• The liftoff velocity magnitude gain, k, roughly corresponds to the energy

control for the SLIP model through the decompression and compression

stiffness ratio kd/kc.

• The liftoff velocity angle adjustment closely corresponds to the touchdown

leg angle for the SLIP model with respect to the neutral angle, qθt
− qθn

.

• The position shifting control, ∆y, corresponds to the average stiffness of

the SLIP leg, which can increase or decrease the positional span of the

stance phase. In the SLIP model, this displacement nonlinearly depends

on other control parameters, but can be independently chosen by adjusting

kc.
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For example, a symmetric step can be obtained in the SLIP model by choos-

ing kc = kd and qθt
= qθn

with the horizontal liftoff position independently

adjustable through the common stiffness value. For the simplified hopper model,

this corresponds to choosing θ = 0 and k = 1 with ∆y independently adjusting

the horizontal displacement during stance.

The resulting stance map for the simplified hopper model is hence given by

Xlo = AXtd + B (6.3)

where we define

A =



















0 0 0 0

0 0 0 0

0 0 1 − (1 + k) sin2(θ) 0.5(1 + k) sin(2θ)

0 0 0.5(1 + k) sin(2θ) 1 − (1 + k) cos2(θ)



















B =



















∆y

0

0

0



















Gait Control for the Simplified Hopper

The gait controller associated with each instantiated policy Φ̂i is responsible from

finding control inputs necessary to bring the robot from any state Xn ∈ D(Φ̂i) to

the selected goal point Xg of Φ̂i. To this end, we use a simple deadbeat controller

for the simplified hopper, similar to those frequently used for the SLIP model,

yielding reactive control inputs computed as u = F−1
a (Xn, Xg).
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Derivation of the Domain Region

Before we proceed with an analytical representation of the domain region asso-

ciated with a ground segment Rg(Φi), we add an additional constraint on the

minimum apex height hmin to ensure that the leg can always clear the ground

for protraction. This leads to a redefinition of the domain as

DSH(Φi) := {Xn|Xn ∈ D(Φi), zn ≥ hmin}

Figure 6.4: Global domain coverage Dg :=
⋃

i D(Φi) for a planar rough surface,
showing the union of all instantiated policy domains. Note that the depth axis
represents the apex velocity.

Apart from this adjustment, policy domains are simply constrained by the

selected energy and velocity ranges together with the constraint of landing on

the selected ground segment. For a given energy E and velocity ẏ, the ballistic

flight trajectories yield simple expressions for the upper and lower limits of the

horizontal position as

ymin(ẏ, E) = yg − 0.5lg − ẏ

√

2(E − 0.5mẏ2 − mgzg)

mg

ymax(ẏ, E) = yg + 0.5lg − ẏ

√

2(E − 0.5mẏ2 − mgzg)

mg
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Figure 6.5: A cross section of the global domain Dg at apex speed ẏ = 1m/s.

where (yg, zg) and lg are the center and length of ground segment of associated

policy.

The resulting simple analytical formulation yields a computationally efficient

inclusion test for measured apex states. An illustration of the global domain of

attraction Dg :=
⋃

i D(Φi) resulting from the deployment of such policies over

the complex terrain shown in Fig. 6.3 is illustrated in Fig. 6.4. Similarly, Fig.

6.5 illustrates a cross section of the same domain at ẏ = 1m/s, showing positions

from which the hopper can successfully recover from and find a foothold while

traveling at ẏ = 1m/s.

Derivation of the Feasible Goal Region

The feasible goal region for a policy includes all apex states reachable in a single

step from every initial apex state in the domain, using only control inputs from

within the allowable set. In deriving a computational representation of this set,

we proceed by analyzing each of the three dimensions in the apex state, namely

the height z, the horizontal position y and the forward velocity ẏ. The following

steps outline our method for finding the representation of Gf (Φi) where we will

omit analytical details for space considerations.
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i) We first find the feasible z range, [zmin, zmax], using analytical solutions to

the equations

zmin = argmax
Xn∈D(Φi)

(argmin
u∈U(Φi)

π2 ◦ Fa(Xn, u))

zmax = argmin
Xn∈D(Φi)

(argmax
u∈U(Φi)

π2 ◦ Fa(Xn, u))

ii) Then, for any z ∈ [zmin, zmax], we find the feasible y range, [ymin, ymax], by

analytically solving

ymin(z) = argmax
Xn∈D(Φi)

( argmin
zn+1=z, u∈U(Φi)

π1 ◦ Fa(Xn, u))

ymax(z) = argmin
Xn∈D(Φi)

( argmax
zn+1=z, u∈U(Φi)

π1 ◦ Fa(Xn, u))

iii) Finally, for any z ∈ [zmin, zmax] and y ∈ [ymin, ymax], we find the feasible

velocity range, [ẏmin, ẏmax], by

ẏmin(z, y) = argmax
Xn∈D(Φi)

( argmin
(z,y)n+1=(z,y), u∈U(Φi)

π3 ◦ Fa(Xn, u))

ẏmax(z, y) = argmin
Xn∈D(Φi)

( argmax
(z,y)n+1=(z,y), u∈U(Φi)

π3 ◦ Fa(Xn, u))

Note that we have been able to derive fully analytical solutions to these

equations, yielding a very simple inclusion test for membership in the feasible

goal set. Fig. 6.6 illustrates the resulting goal regions Gg := Dg

⋂

(
⋃

i Gf (Φi))

for the example of Fig. 6.3. Note that feasible goal regions that do not intersect

any of the instantiated policy domains can be considered “as good as lost” since,

by definition, states that are not in any the domain of any policies correspond to

catastrophic situations from which none of the existing controllers are capable of

recovering.
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Figure 6.6: Global goal coverage Gg := Dg

⋂

(
⋃

i Gf (Φi)) over a planar rough
surface, showing the union of feasible goal regions for all instantiated policies
that are also inside the global domain. Note that the depth axis represents the
apex velocity.

6.2.2 Simulation Results

Simulation Environment

In order to illustrate the effectiveness of our algorithm, we conducted a range

of simulations of the simplified planar hopper on the rough terrain illustrated in

Fig. 1.5, with different initial conditions and goal configurations under both ideal

models as well as different noise conditions. All simulations were run in Matlab,

numerically integrating the equations of motion described in Section 6.2.1 using

control inputs selected by the reactive controller deployment.

Policy Generation and Deployment

Our planning algorithm assumes that a map of the environment is available in

the form of the locations and heights of each flat ground segment. In practice,
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this information can be obtained through exteroceptive sensors such as cameras

and range sensors as the robot locomotes over new terrain.

Before our planning algorithm in Table 6.2 can be applied, a collection of

local control policies Φi must be generated. To this end, we start by coarsely dis-

cretizing the known environment map into a set of constant length (lg = 0.25m)

sections. We then consider for each such region, four “exiting” policies that

allow free transition between forward (RV (Φi) = [0, 2.5]m/s) and backward

(RV (Φi) = [−2.5, 0]m/s) locomotion (ff, bb, fb, bf) and two “goal” policies that

can stop the robot from either slow forward (RV (Φi) = [0, ǫ]m/s) or slow back-

ward (RV (Φi) = [−ǫ, 0]m/s) locomotion (fs, bs). Orthogonal to these choices,

we also consider different energy levels by imposing a global constraint on the

hopping height as z ∈ [0.2, 3]m and dividing this range into as many energy levels

as necessary to obtain policies whose domain and goal regions exhibit maximal

overlap. This results in four different energy levels in our case: very low, low,

medium and high, yielding a total of 6*4 = 24 policies associated with each

ground segment.

For each policy, we also impose certain limits on control inputs. First, global

limits on the velocity gain and angle adjustment are imposed with k ∈ [0.5, 2],

and θ ∈ [−π/2, π/2]rad. Limits on the horizontal shift ∆y are designed to

ensure close correspondence to trajectories feasible in the SLIP model. For steps

resulting in nonzero forward or backward speeds, we require ∆y ∈ [0, 0.5]m,

and ∆y ∈ [−0.5, 0]m, respectively. In contrast, for stopping controllers, we

require smaller displacements with ∆y ∈ [−0.25, 0.25]m, realized through a two-

step controller. As a result of this construction, we assign each policy to their

corresponding ground segment Rg(Φi), apex velocity range RV (Φi), apex energy

range RE(Φi), minimum apex height Fhmin
(Φi), and allowable control set U(Φi).

Once all policies are generated (a total of 960 for the example in Fig. 1.5,

corresponding to 40 ground segments), we proceed with the generation of the
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prepares graph G. Having the analytical representations and associated inclusion

checks for the domain and goal regions described in Sections 6.2.1 and 6.2.1, the

construction of the prepares graph is straightforward and can be done offline.

This graph, whose representation is very concise with only as many nodes as

there are policies, can be reused every time a different apex goal state is supplied.

The deployment of a reactive controller for a specific apex goal involves the

application of the algorithm shown in Table 6.2 to obtain a total order of instanti-

ated policies Φ̂i from the prepares graph G constructed above. During execution,

the reactive controller measures the system state at every apex, performs a pri-

oritized inclusion test to determine which policy to activate, and then applies a

single-step deadbeat controller to select control inputs that will bring the hopper

to the goal state associated with the selected policy instance.

Results

Figure 6.7: A example hopper trajectory over rough terrain with reactive plan-
ning, starting from initial state y = 0.2m, z = 1.2m, ẏ = 0 and going to the goal
y = 10.6m, z = 0.7m, ẏ = 0. Cross sections of domain (green) and feasible goal
(red) regions are illustrated at every apex event.

106



Fig. 6.7 illustrates an example run with reactive control over rough terrain,

starting from y = 0.2m and going to a goal state of y = 10.6m. At every apex,

the reactive controller performs ordered inclusion tests on all policy domains

and selects the first match as the policy to apply. The domain of the selected

policy is illustrated with the red region in the figure while the feasible goal for

the previously used policy is illustrated with the green region. As visible from

the figure, the prepares relation is satisfied with nonempty intersections with the

feasible goal and domain regions of successive policies. Furthermore, policies are

instantiated with goals that are maximally safe, lying as far in the domain of

the next policy as possible. Note that only activated policies are shown, but the

union of all domains has substantially more coverage as shown in Fig. 6.4. This

example illustrates that under ideal conditions with no model or measurement

uncertainty, our planner and reactive controller performs as expected.

In contrast to the ideal environment with no model uncertainty, Fig. 6.8

illustrates simulation runs with a constant “wind” force, constantly pushing the

hopper to the East. The top figure shows that if control inputs computed offline

under an ideal model assumption are applied, hopper trajectories slowly deviate

from the generated “plan” and eventually crash into the side of the wall around

y = 8.5m. In contrast, the application of our reactive control method ensures

that proper control policies are selected at each apex, safely taking the hopper

across the terrain.

Finally, Fig. 6.9 illustrates a scenario wherein the “sensed” ground (i.e. the

ground profile used by the planner, shown with dashed lines) is different than

the actual ground profile. This corresponds to a possibly more problematic

situation since rather than the gradual noise introduced by the wind disturbance

above, surface discrepancies may result in sudden, large disturbances that may

quickly invalidate previously constructed plans. Indeed, as show in the figure, the

large difference between the sensed ground and the actual ground profile in the
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range y ∈ [0, 1]m causes the application of control inputs computed offline to fail

catastrophically, causing a crash into the wall at y = 5m. However, our reactive

controller, once it finds itself in a new, unexpected apex state, automatically

selects the control policy that is guaranteed to eventually drive it to the overall

goal, following a completely different plan than what was originally intended.

6.2.3 Discussion

In this part of the thesis, we introduced a novel algorithm for the automated

construction of a reactive footstep controller for a planar hopper. Our method

is based on a careful characterization of the attracting domain and feasible goal

sets of potential footholds on a piecewise flat surface map, combined through

backchaining in a sequential composition framework to yield a full reactive control

policy that guides the robot to a specified goal point, while providing an almost

global region of attraction for the overall behavior.

We demonstrate the performance of our algorithm with a series of simula-

tions of a simplified planar hopper, capturing essential properties of the popular

SLIP model while preserving analytical derivability of domain and goal regions

for individual control policies and associated deadbeat controllers. We show that

even in the presence of significant model and measurement noise, the global con-

troller deployed by our algorithm is capable of successfully reaching the desired

goal point, automatically taking alternative paths when the original, ideal plan

fails due to unexpected disturbances. Compared to existing, mostly quasi-static

footstep planning algorithms, both the ability of our algorithm to handle fully dy-

namic legged locomotion as well as its robustness against external, large sources

of noise represents an important step towards autonomous deployment of legged

robots on realistic, rough terrain.
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In the near future, we will extend our results and analytical domain and goal

representations obtained for the simplified hopper to the more realistic SLIP

model. This will ensure that our results are immediately applicable to a large

class of legged robots whose morphology and controls closely parallel those of

the SLIP model. Also, in the near future, we are planning to demonstrate the

experimental applicability of our method through a SLIP-like robot.

Automated deployment with variable length ground segment selection and

the incorporation of inclined surfaces are the among possible future extensions

to the method proposed above. The consideration of ceiling constraints may also

be interesting for indoor or otherwise covered settings. Finally, simultaneous

mapping and policy deployment for fully autonomous utilization of the proposed

algorithm is among the interesting future directions for this research.
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Figure 6.8: Example hopper trajectories under a constant “wind” force of 0.02
N in the East direction. Top figure compares trajectories with no noise (green)
to trajectories when control inputs computed offline are directly applied (red).
The bottom figure compares trajectories with no noise (green) to trajectories
resulting from our reactive control (blue).
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Figure 6.9: Example hopper trajectories under a mismatch between sensed and
actual ground heights. Top figure compares trajectories with no noise (green)
to trajectories when control inputs computed offline are directly applied (red).
The bottom figure compares trajectories with no noise (green) to trajectories
resulting from our reactive control (blue).
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Chapter 7

CONCLUSIONS

The Spring-Loaded Inverted Pendulum (SLIP) model has long been established

as an effective and accurate descriptive model for running animals of widely

differing sizes and morphologies. In this thesis, we studied analytical models

for and control of nonsymmetric SLIP steps, and reactive footstep planning of a

planar spring mass hopper.

The existing studies are generally related to modelling and controlling of sym-

metric SLIP steps. However, nonsymmetric steps are indispensable for legged

locomotion to accelerate, decelerate, step up and step down. Eventually, in the

first part of the thesis, we proposed a gravity correction method to compensate

the gravity effect on angular momentum to enable much more accurate approxi-

mations for the SLIP stance dynamics during nonsymmetric steps. We compared

the prediction performance of our approximation with the previous studies on

approximating SLIP stance dynamics [2] and [3], and our method was found to

perform better for a reasonable range of nonsymmetric steps. Furthermore, we

introduced approximate stance maps for two-phase variable stiffness case based

on the approximation stance maps in [2] , [3] and [35]. We demonstrated that

gravity correction method performs better for two-phase variable stiffness. In
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short, with a simple correction term, we obtained more accurate approximate

stance map for nonsymmetric steps as well.

In the second part of the thesis, we studied on position aware deadbeat con-

trollers which are different than many existing deadbeat controllers. By using the

SLIP properties on flat surfaces, we designed three different deadbeat controller,

LLC, LSC and TPSC, based on the approximate stance map with gravity correc-

tion for two-phase stiffness control. We illustrated the performance of deadbeat

controller for both symmetric and nonsymmetric steps. We also studied on the

design of reactive planning controllers for dynamic legged robots. We introduced

a novel reactive footstep planning algorithm based on sequential composition

and illustrated the performance of the proposed algorithm on a simplified hop-

per and showed the reactivity and robustness of the algorithm with respect to

the environment noise and modelling uncertainty.

We finished this thesis with a lot of interesting open research topics. One of

the novel extension of our reactive footstep algorithm is more realistic character-

ization of the domain and goal region for the planar SLIP model. We may use

the undisturbed system approach (zero gravitational acceleration during stance

phase) to find approximate analytical forms of the domain and goal region of a

local policy. Another interesting problem is simultaneous mapping and policy

deployment to achieve much more autonomy. The next stage of this problem may

be adding some logical reasoning capabilities for more intelligent behaviors. One

of the necessary future work is experimental verification of all these extensions

on a real hopper.

Additionally, 3D SLIP Model and 2D SLIP with aptitude pose a number

of still unsolved problems. Approximate stance map for these platforms and

reactive footstep planning and control of these systems are unanswered problems

of dynamical legged locomotion.
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Furthermore, the analytical models for the SLIP stance trajectory and po-

sition aware deadbeat controllers can also be used with probabilistic approach

like the Rapidly-Exploring Random Tree for efficient motion planning SLIP like

systems.

All these research questions will fill a significant gap in the field of dynamical

legged locomotion.
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