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Navigation in the Space of Hierarchies

Motivation

» Efficient and informative comparison of hierarchical structures used in
bioinformatics, pattern recognition and data mining [1]

» Adaptive (randomized) restructuring of hierarchical clustering models for
dynamically evolving (big) data [2]

* Analysis and (high-level) planning of structural transitions in grouping of
multiagent systems [3]

» Adaptive dependency trees for approximating probability distributions [4]

 Structural anomaly detection and context-aware pattern recognition [5]

A Set Theoretic View of Hierarchies

Definition: Two sets, A and B, are said to be compatible if one is a

subset of the other or they are disjoint, i.e.,
ACB or A2B or ANB =0

Definition: A hierarchy is equivalently represented, in graph theory, by a

rooted tree, 1,(i.e., a connected directed acyclic graph) and, in set theory,

by a laminar family, C(7), (i.e., a collection of compatible cluster sets).
C(7)

%

Remark: A binary tree, 7 € BT, iIs a maximal collection of compatible
subsets of its leaf set, {1,2, ...,n}.

Definition: A nearest neighbor interchange (NNI) move on a hierarchy,
T € BT, swaps a cluster, G € C(t), with its parent’s sibling, Pr(G, )~ ".

Accordingly, the NNI graph is formed over the vertex set of binary trees,
B7T,,, by declaring two trees to be connected by an edge if and only if one
can be obtained from the other by a single NNI move.

Omiir Arslan

NNI Navigation Algorithm

To navigate from any given initial hierarchy ¢ € B7,, towards a desired
goal hierarchy T € BT, one can find an NNI move on ¢ at cluster G € C(0)
as follows:
1) If o = 1, then return the identify move, G < @.
2) Otherwise,
a) Find a common cluster K of o and t with incompatible children.
b) Find a descendant I of K in tree g which is incompatible with Ch(K, )
and whose children Ch(I, o) are compatible with Ch(K, 7).
c) Return a proper NNI navigation move on ¢ at a child cluster in Ch(l, o):
. If G7° UI7° is compatible with Ch(K, t) for some G € Ch(I,0), then
return G.
ii. Otherwise, return an arbitrary NNI move at a child ¢ € Ch(l, o).
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Proposition: All NNI navigation paths between a pair of binary trees have
the same length.

Proposition: An NNI navigation move over B7,, can be computed in 0(n)
time with the number of leaves n.

NNI Navigation Dissimilarity

Definition: The NNI navigation dissimilarity, d,,,, (o, 7), on BT, is the count
of NNI moves along an NNI navigation path joining a pair of trees, ¢ and .

Important Properties:

* d,qy has a closed form formula that is a weighted count of pairwise
iIncompatibilities of clusters of trees.

* d,., IS positive definite, symmetric, but it is not a metric (because it
fails to satisty the triangle inequality).

 d,., ON BT, can be computed in 0(n?) time.

* diam(B7T,, dpgy) = ;(n — 1)(n — 2).
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Relations with Other Tree Measures

2 2 2
Theorem: ngF < 3 dnng < 3 Anav <dcm < dcc

* The Robinson-Foulds distance, dzr, is the count of the disparate edges of
trees (diam(B7;, drr) = n — 2, Time Complexity: 0(n)).

 The NNI distance, dpy;, IS the shortest path distance in the NNI graph

(diam (BT, dyn;) = 0(nlogn), Time Complexity: NP-hard).

* The crossing dissimilarity, d -, is the count of pairwise incompatible clusters
of trees (diam (BT, d¢y) = (n — 2)?, Time Complexity: 0(n?)).

* The cluster-cardinality distance, d.., is a pullback of the matrix norm of an
ultrametric embedding of hierarchies ( diam(B7,,d.-) =0(®n3) , Time
Complexity: 0(n?)).

Probability Distributions of Tree Dissimilarities

Cluster—Cardinality Distance NNI Navigation Dissimilarity

Matching Split Distance Crossing Dissimilarity

Robinson—Foulds Distance
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Applications

« Coordinated Multirobot Navigation via Hierarchical Clustering [3]
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Space-time curve of robots

Navigation paths of disk-shaped robots

 Anytime Hierarchical Linkage Clustering™* [2]
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* Instead of cluster compatibility, each NNI move aims to increase cluster homogeneity, i.e.,
1 1,177 < min(l(x; 1, Pr(1, 7)), 1(x; I, Pr(1,©)77)).
** Here, the single linkage function is used to measure cluster dissimilarity.
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