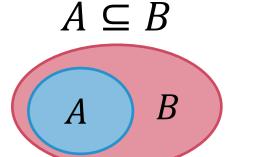
Max Planck Institute for Intelligent Systems – Autonomous Motion Department Navigation in the Space of Hierarchies

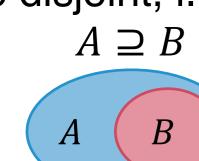
Motivation

- Efficient and informative comparison of hierarchical structures used in bioinformatics, pattern recognition and data mining [1]
- Adaptive (randomized) restructuring of hierarchical clustering models for dynamically evolving (big) data [2]
- Analysis and (high-level) planning of structural transitions in grouping of multiagent systems [3]
- Adaptive dependency trees for approximating probability distributions [4]
- Structural anomaly detection and context-aware pattern recognition [5]

A Set Theoretic View of Hierarchies

Definition: Two sets, A and B, are said to be *compatible* if one is a subset of the other or they are disjoint, i.e.,



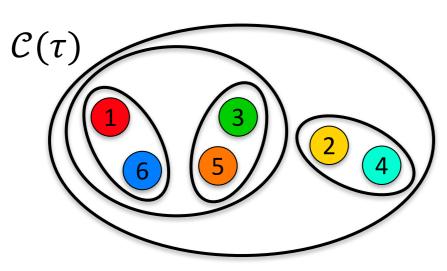


 $A \cap B = \emptyset$ *A B*

or

Definition: A *hierarchy* is equivalently represented, in graph theory, by a **rooted tree**, τ ,(i.e., a connected directed acyclic graph) and, in set theory, by a *laminar family*, $C(\tau)$, (i.e., a collection of compatible cluster sets).

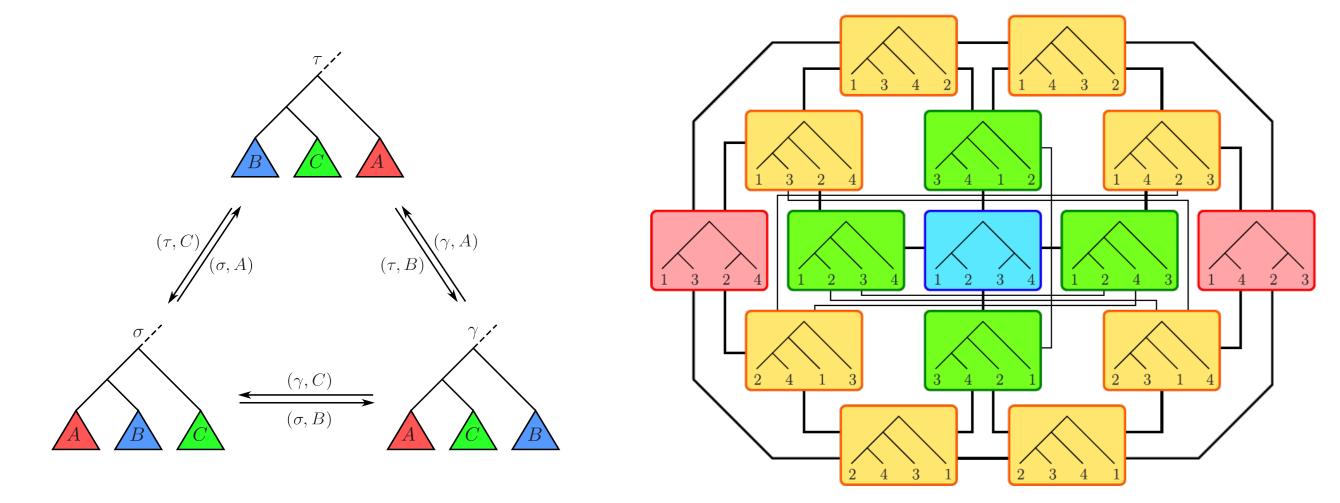




Remark: A binary tree, $\tau \in \mathcal{BT}_n$, is a maximal collection of compatible subsets of its leaf set, $\{1, 2, ..., n\}$.

Nearest Neighbor Interchange Moves

Definition: A *nearest neighbor interchange* (NNI) move on a hierarchy, $\tau \in \mathcal{BT}_n$, swaps a cluster, $G \in \mathcal{C}(\tau)$, with its parent's sibling, $\Pr(G, \tau)^{-\tau}$. Accordingly, the **NNI graph** is formed over the vertex set of binary trees, \mathcal{BT}_n , by declaring two trees to be connected by an edge if and only if one can be obtained from the other by a single NNI move.



Ömür Arslan

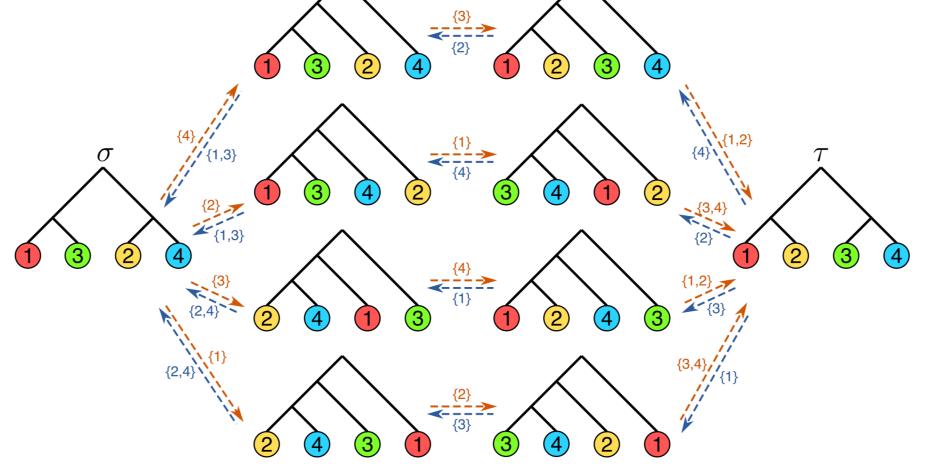
NNI Navigation Algorithm

To navigate from any given initial hierarchy $\sigma \in \mathcal{BT}_n$ towards a desired goal hierarchy $\tau \in \mathcal{BT}_n$, one can find an NNI move on σ at cluster $G \in \mathcal{C}(\sigma)$ as follows:

- 1) If $\sigma = \tau$, then return the identify move, $G \leftarrow \emptyset$.
- 2) Otherwise,
- a) Find a common cluster K of σ and τ with incompatible children. b) Find a descendant I of K in tree σ which is incompatible with $Ch(K, \tau)$ and whose children $Ch(I, \sigma)$ are compatible with $Ch(K, \tau)$. c) Return a proper NNI navigation move on σ at a child cluster in $Ch(I, \sigma)$:

- i. If $G^{-\sigma} \cup I^{-\sigma}$ is compatible with $Ch(K, \tau)$ for some $G \in Ch(I, \sigma)$, then return G.
- ii. Otherwise, return an arbitrary NNI move at a child $G \in Ch(I, \sigma)$.

Example:



Proposition: All NNI navigation paths between a pair of binary trees have the same length.

Proposition: An NNI navigation move over \mathcal{BT}_n can be computed in O(n)time with the number of leaves n.

NNI Navigation Dissimilarity

Definition: The NNI navigation dissimilarity, $d_{nav}(\sigma, \tau)$, on \mathcal{BT}_n is the count of NNI moves along an NNI navigation path joining a pair of trees, σ and τ . **Important Properties:**

- d_{nav} has a closed form formula that is a weighted count of pairwise incompatibilities of clusters of trees.
- d_{nav} is positive definite, symmetric, but it is not a metric (because it fails to satisfy the triangle inequality).
- d_{nav} on \mathcal{BT}_n can be computed in $O(n^2)$ time.
- diam $(\mathcal{B}\mathcal{T}_n, d_{nav}) = \frac{1}{2}(n-1)(n-2).$

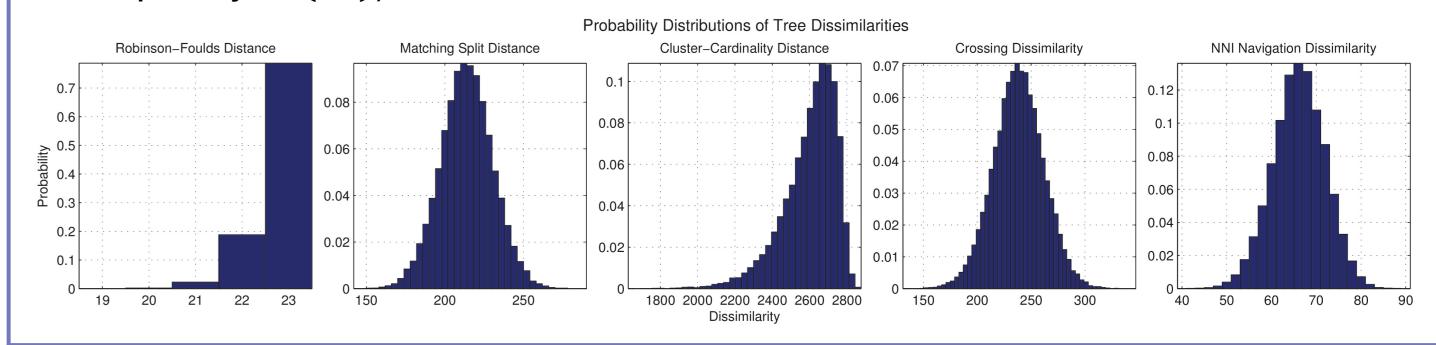
References

[1] O. Arslan, D.P. Guralnik and D.E. Koditschek, "Discriminative Measures for Comparison of Phylogenetic Trees," Discrete Applied Mathematics, vol. 217, pp. 405-426, 2017. [2] O. Arslan and D.E. Koditschek, "Anytime Hierarchical Clustering", arXiv:1404.3439, 2014. [3] O. Arslan, D.P. Guralnik and D.E. Koditschek, "Coordinated Robot Navigation via Hierarchical Clustering," IEEE Transactions on Robotics, vol. 32, no. 2, pp. 352-371, 2016. [4] C. Chow and C. Liu. "Approximating Discrete Probability Distributions with Dependence Trees," IEEE Transactions on Information Theory, vol. 14, no. 3, pp. 462-467, 1968. [5] M.J. Choi, J.J. Lim, A. Torralba and A.S. Willsky, "Exploiting Hierarchical Context on a Large Database of Object Categories," IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 129-136.

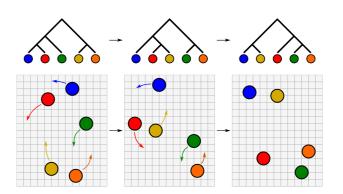
Relations with Other Tree Measures

Theorem: $\frac{2}{3}d_{RF} \le \frac{2}{3}d_{NNI} \le \frac{2}{3}d_{nav} \le d_{CM} \le d_{CC}$

- trees (diam(\mathcal{BT}_n, d_{RF}) = n 2, Time Complexity: O(n)).
- $(\operatorname{diam}(\mathcal{BT}_n, d_{NNI}) = O(n \log n),$ Time Complexity: NP-hard).
- Complexity: $O(n^2)$).



Coordinated Multirobot Navigation via Hierarchical Clustering [3]



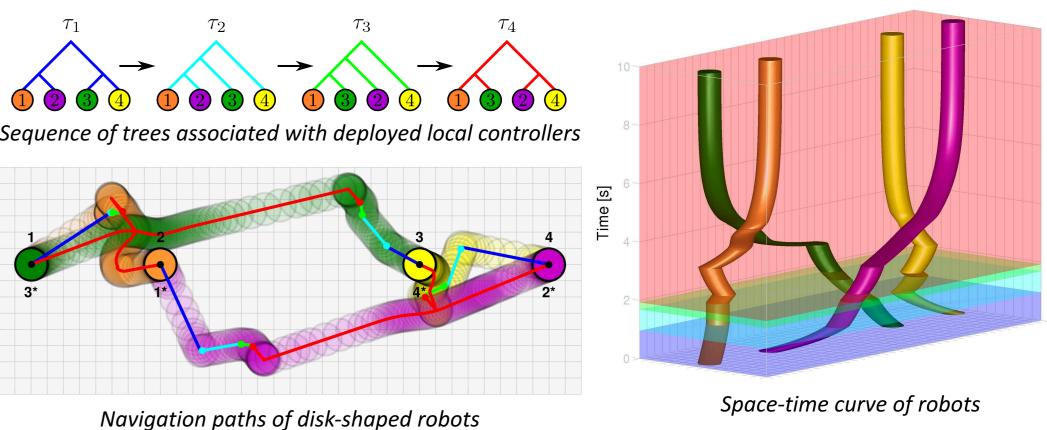
resolution correspondina to

transitions between different

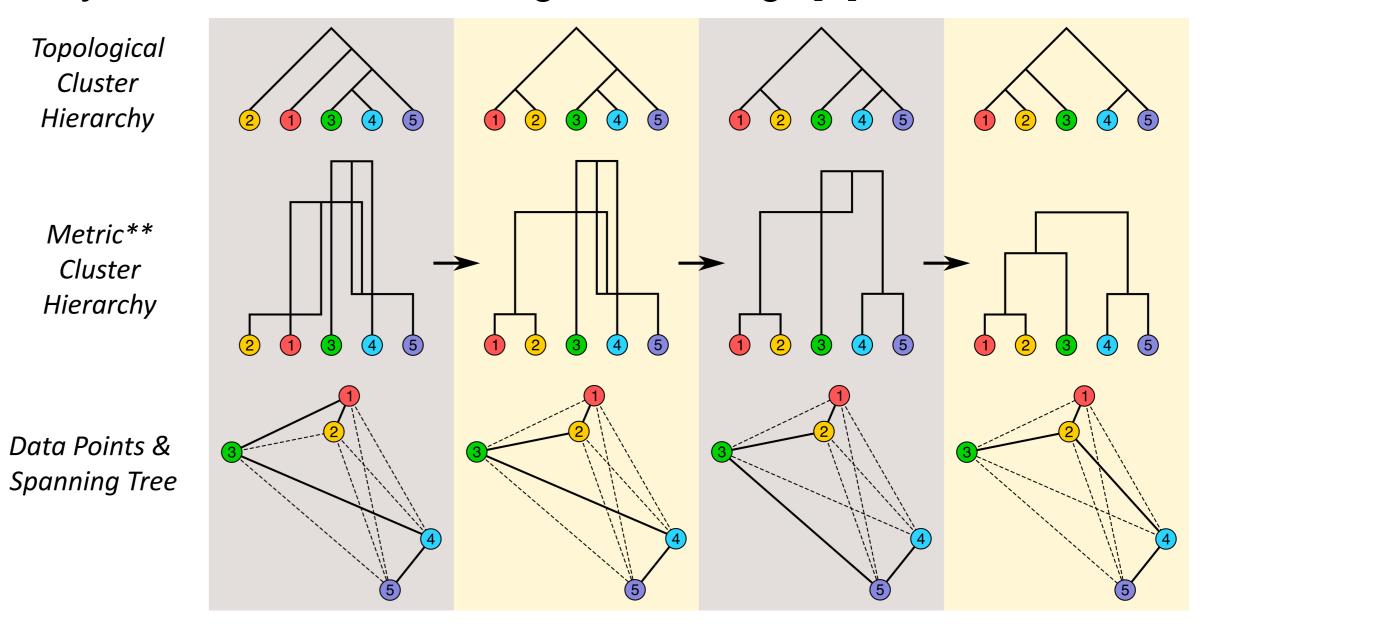
cluster structures (hierarchies).

groups (clusters)

at different



• Anytime Hierarchical Linkage Clustering* [2]



МАХ-РLА NСК-СЕЅЕLLSСНАЕТ

• The Robinson-Foulds distance, d_{RF} , is the count of the disparate edges of

The NNI distance, d_{NNI} , is the shortest path distance in the NNI graph

The crossing dissimilarity, d_{CM} , is the count of pairwise incompatible clusters of trees $(\operatorname{diam}(\mathcal{BT}_n, d_{CM}) = (n-2)^2$, Time Complexity: $O(n^2)$).

• The cluster-cardinality distance, d_{CC} , is a pullback of the matrix norm of an ultrametric embedding of hierarchies (diam $(\mathcal{BT}_n, d_{CC}) = O(n^3)$, Time

Applications

Instead of cluster compatibility, each NNI move aims to increase cluster homogeneity, i.e. $l(x; I, I^{-\tau}) \le \min(l(x; I, Pr(I, \tau)^{-\tau}), l(x; I, Pr(I, \tau)^{-\tau}))$ ** Here, the single linkage function is used to measure cluster dissimilarity.

am.is.tuebingen.mpg.de