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The Spring-Loaded Inverted Pendulum (SLIP) model has been established
both as a very accurate descriptive tool as well as a good basis for the design

and control of running robots. In particular, approximate analytic solutions to
the otherwise nonintegrable dynamics of this model provide principled ways in
which gait controllers can be built, yielding invaluable insight into their sta-

bility properties. However, most existing work on the SLIP model completely
disregards the effects of damping, which often cannot be neglected for physi-
cal robot platforms. In this paper, we introduce a new approximate analytical
solution to the dynamics of this system that also takes into account viscous

damping in the leg. We compare both the predictive performance of our ap-
proximation as well as the tracking performance of an associated deadbeat
gait controller to similar existing methods in the literature and show that it
significantly outperforms them in the presence of damping in the leg.
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1. Introduction

Legged robot morphologies offer clear advantages on rough, outdoor terrain

both in terms of the robustness and the diversity of their feasible locomotory

behaviors. However, in light of complexities and inefficiency associated with

slow, purely kinematic morphologies, it is fairly clear that legged systems

can simultaneously achieve speed, agility and efficiency only by adopting

dynamic modes of operation such as running and leaping. In this context,
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the Spring-Loaded Inverted Pendulum (SLIP) model is widely accepted in

the literature as a very successful descriptive dynamical model for such

behaviors.1–3 Not surprisingly, the same model has also been used as the

basis of numerous robots capable of dynamic locomotion.4–8

Nevertheless, despite the apparent simplicity of this model, its dynamics

during stance are nonintegrable, motivating a number of analytical approxi-

mations to support the analysis of its behaviors and the design of associated

controllers.3,8–11 In this paper, we introduce a new analytical approximation

method which takes into account damping in the leg, a dominant element for

any physical legged robot often completely ignored by existing methods. We

show that when the effects of damping are not neglected, our method sig-

nificantly outperforms existing approximations in the literature3,10,12 both

in its prediction of the stance map as well as its performance as a feed

forward model within locomotion controllers.

Fig. 1. The SLIP Model. (a) Coordinates and model parameters. (b) Locomotion phases
(shaded regions) and transition events (boundaries).

2. The SLIP Model and Dynamics

Fig. 1 illustrates SLIP model we use, consisting of a point mass attached to

a compliant, massless leg with viscous damping. Throughout locomotion,

the model alternates as usual between stance and flight phases, which are

further divided into compression, decompression and ascent, descent sub-

phases respectively. Four important events define transitions between these

subphases: touchdown, as the leg comes into contact with the ground, bot-

tom, as the leg reaches its maximum compression, liftoff, as the toe takes off

from the ground and finally apex, as the body reaches its maximum height

during flight. Table 1 details the notation used throughout the paper.
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Table 1. Notation used throughout the paper

SLIP States

r, θ, ṙ, θ̇ Leg length, leg angle and their derivatives
pθ Angular momentum during stance

re, θe, te Leg length, leg angle and time at events e ∈ {td, b, lo},

touchdown, bottom and liftoff, respectively.

x, y, ẋ, ẏ Horizontal and vertical body positions and velocities

ya, ẋa Body height and velocity at apex

SLIP Parameters

m, g Body mass and gravitational acceleration

l0, k, b Leg rest length and leg stiffness and damping coefficient

During flight, the body follows a ballistic trajectory, whereas during

stance, the toe remains stationary on the ground with no torque applied to

the leg. The stance dynamics of this model in polar leg coordinates are

mr̈ = mrθ̇2 + k(l0 − r) − mg cos(θ) − bṙ , (1)

0 =
d

dt
(mr2θ̇) + mgr sin θ . (2)

Subsequent sections present our analytical approximations to these dynam-

ics as well as an associated deadbeat controller for SLIP running.

3. An Approximate Stance Map for SLIP with Damping

In deriving our analytical approximation to the stance dynamics of the

SLIP model, we make the commonly used assumption that the leg remains

close to the vertical throughout the entire stance phase. Consequently, the

effects of gravity can be linearized around θ = 0. The resulting conservation

of the angular momentum pθ := mr2θ̇ reduces the radial dynamics to

r̈ + bṙ/m + kr/m − p2
θ/(m2r3) = −g + kl0/m . (3)

Unfortunately, even these reduced dynamics do not admit an analytical

solution. However, inspired by the method proposed by Geyer,10 we further

assume that the relative spring compression, defined as l0−r
l0

≪ 1, remains

sufficiently small that the term 1/r3 can be approximated by a Taylor series

expansion around l0, resulting in

1/r3
∣

∣

r=l0
≈ 1/l30 − 3/l40(r − l0) + O((r − l0)

2) . (4)

Under this approximation, (3) is reduced to

r̈ + (b/m)ṙ + (ω2
0 + 3ω2)r = −g + l0ω

2
0 + 4l0ω

2 , (5)

where we define ω := (pθ)/(ml0
2) and ω0 :=

√

k/m. In order to solve (5) in

a more compact form, we define ω̂0 :=
√

ω0
2 + 3ω2, F := −g+ l0ω

2
0 +4l0ω

2,
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ζ := b/(2mω̂0) and ωd := ω̂0

√

1 − ζ2. Assuming ζ < 1, we then have

r = e−ζω̂0t(A cos(ωdt) + B sin(ωdt)) + F/ω̂2
0 , (6)

with A and B determined by touchdown states, rtd and ṙtd, as

A = rtd − F/ω̂2
0 ,

B = (ṙtd + ζω̂0A)/ωd .

Simple differentiation yields the radial velocity as

ṙ = −M e−ζω̂0t(ζω̂0 cos(ωdt + φ) + ωd sin(ωdt + φ)) , (7)

where M :=
√

A2 + B2 and φ := arctan(−B/A). Defining a new phase

value, φ2 := arctan(−
√

1 − ζ2/ζ), the simplest form of the radial motion

can be obtained as

r(t) = M e−ζω̂0t cos(ωdt + φ) + F/ω̂2
0 , (8)

ṙ(t) = −Mω̂0 e−ζω̂0t cos(ωdt + φ + φ2) . (9)

Now that an analytical approximation to the radial trajectory is avail-

able, the angular trajectory can be determined using the constant angular

momentum θ̇ = pθ/(mr2). To this end, we linearize the term 1/r2 around

the rest length of the leg spring as

1/r2
∣

∣

r=l0
= 1/l20 + 2/l30(r − l0) + O((r − l0)

2) , (10)

and obtain an analytical solution for the rate of change of the leg angle as

θ̇(t) = 3ω − 2ωF/(l0ω̂
2
0) − 2ωMe−ζω̂0t cos(ωdt + φ)/l0 , (11)

whose integral can then be used to determine the angular trajectory

θ(t) = θtd + X t + Y (e−ζω̂0t cos(ωdt + φ + φ3) − cos(φ + φ3)) , (12)

where X := 3ω − 2ωF
l0ω̂2

0

, Y := 2ωM
l0ω̂0

and φ3 := arctan(
√

1 − ζ2/ζ). These

approximations yield a sufficiently simple analytic solution to the stance

dynamics of the SLIP model with damping, leaving only the determination

of times at which the critical bottom and liftoff events occur during stance.

4. Times for Critical Events: Bottom and Liftoff

The bottom event is defined as the time at which the leg reaches its maxi-

mum compression with ṙ(tb) = 0. Using (9), this yields the solution

tb = (π/2 − φ − φ2)/ωd . (13)

In contrast, the liftoff event occurs when the toe loses contact with the

ground. Normally, when no damping is present in the leg with ζ = 0, (6)
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becomes r = M cos(ω̂0 + φ) + F/ω̂2
0 , and an analytical solution for the

liftoff time can easily be obtained. However, when damping is present in

the system, the calculation of the liftoff time is considerably more difficult.

This is because, regardless of the leg length, the SLIP toe leaves the ground

when the ground reaction force induced by the leg crosses zero and starts

to become negative. As a result, the liftoff time is computed as

k(l0 − r(tc1lo )) − b ṙ(tc1lo ) = 0 . (14)

On the other hand, there are also cases where liftoff may be caused by

explicit constraints imposed by the morphology of particular robots such

as the BowLeg hopper.8 In this paper, we also allow explicit choice of the

liftoff length, rlo by a high-level gait controller. In this case, the liftoff time

is determined by the solution to the equation

r(tc2lo ) = rlo . (15)

The actual liftoff time can then be found as tlo = min(tc1lo , tc2lo ). Un-

fortunately, exact analytical solution of these equations is not possible and

numerical methods, which are feasible due to the simple, one dimensional

nature of these equations, need to be adopted.

Nevertheless, in order to preserve the fully analytic nature of the

SLIP return map, we use a sufficiently accurate analytical approxima-

tion to compute both liftoff times. Since the exponential term multiply-

ing the radial solution of (8) is the main source of the problem, we ap-

proximate it with its value at a specific instant during decompression as

e−ζω̂0t ≈ e−ζω̂0γtb , where γ ≥ 1 is a tunable parameter. A reasonable choice

is γ = 1+(rlo−rb)/(l0−rb), which incorporates the relative ratios of touch-

down and liftoff lengths to estimate the liftoff time. Under this assumption,

we have

tc1lo ≈ (2π − arccos(k(l0 − F/ω̂2
0)/(MMe−ζω̂0γtb)) − φ − φ4)/ωd , (16)

tc2lo ≈ (2π − arccos((l0 − F/ω̂2
0)/(Me−ζω̂0γtb)) − φ)/ωd , (17)

where M :=
√

(bω̂0)2 + k2 − 2kbω̂0 cos(φ2) & φ4 := arctan( bω̂0 sin(φ2)
bω̂0 cos(φ2)−k

).

Finally, we perform a small correction on the liftoff angular velocity to ac-

count for the energy difference erroneously indiced by our approximations.

While it is also possible to use gravity corrections on the angular momen-

tum,11 the effect of this linearization is minimal compared to damping losses

and this simple correction proved to be more than adequate.
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5. Simulation Results

5.1. Predictive Performance

In order to assess the performance of our method, we simulated a single

stride of the SLIP model using a range of different initial conditions and

damping coefficients, and compared its predictions to Geyer’s10 analytic ap-

proximations. All simulations were done with m = 1 and rtd = rl0 = l0 = 1,

together with initial conditions and remaining parameters accordingly

scaled to be representative of natural runners, yielding 94248 simulations

covering ẋ ∈ [1, 5](m/s), y ∈ [1.15, 1.75](m), k ∈ [250, 2000](N/m), θtdrel
∈

[−0.150.25](rad.) and ζ0 := b/(2
√

mk) ∈ [0, 0.5], where θtdrel
denotes the

deviation of the touchdown angle from its value that would result in a neu-

tral stride. For each simulation, we evaluated the performance of each ap-

proximation method using the percentage error PE = 100
||xtrue−xapprox||2

||xtrue||2
associated with each relevant variable.

Table 2. Average percentage prediction errors for both Geyer’s and our
methods in predicting various elements of the SLIP state.

Geyer’s Approximation Proposed Method

µ ± σ max µ ± σ max

liftoff pos. plo 3.25 ± 3.00 21.37 0.36 ± 0.44 4.58

total energy ET 22.90 ± 20.49 102.95 0.05 ± 0.08 1.44

apex height ha 29.79 ± 28.05 170.07 0.11 ± 0.36 16.36

apex pos. pa 37.92 ± 34.23 170.78 0.28 ± 0.84 29.26

liftoff vel. vlo 45.52 ± 46.74 291.20 0.66 ± 1.98 61.23

stance time ts 9.28 ± 8.35 41.50 0.20 ± 0.28 3.23
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Fig. 2. Left: Average apex position prediction performance as a function of damping.
Right: Average total mechanical energy prediction performance as a function of damping.

The vertical bars represent the corresponding standard deviation.
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As shown in Table 2, the average predictive performance of our algo-

rithm across the entire range of simulations is significantly better than that

of Geyer’s method.10 Similarly, Fig. 2 illustrates the consistency of our ap-

proximations as a function of damping. Interestingly, our approximations

perform better on the average with increased damping, which is due to the

decreased amount of time spent in the stance phase when the radial velocity

is decreased with higher damping in the leg.

5.2. Tracking Performance under Gait Control
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Fig. 3. Comparison of apex forward speed (left) and height (right) mean tracking errors
at steady-state for a spring-mass runner with different damping coefficients in the leg.

In order to characterize the utility of our approximation method for the

design of locomotion controllers, we compared the tracking performance of

a deadbeat gait controller9 based on Geyer’s approximations and our new

method. Simulations were done with m = 1 and l0 = 1, covering ẋa ∈ [1, 4],

ẋ∗
a ∈ [1, 4], ya ∈ [1.5, 1.8], y∗

a ∈ [1.5, 1.8], k ∈ [1000, 2000] and ζ0 ∈ [0, 0.3],

where ẋ∗
a and y∗

a denote the desired goal state.

Fig. 3 shows average steady state tracking errors for gait controllers

based on Geyer’s approximations and our method in trying to stabilize lo-

comotion around the desired apex speed and height. Our results show that

in both apex states of the SLIP, the tracking performance of the controller

based on our algorithm outperforms existing alternatives in the presence

of damping. Even though the accuracy‘ of both controllers decreases with

increased damping, Geyer’s map is much more sensitive to this parame-

ter. The real difference between the controllers is seen in the apex height

performance, which indicates the dominant effect of damping in the verti-

cal dynamics. Overall, these results show that our analytic approximation

provides a very accurate characterization of the SLIP stance dynamics for
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physical robot platforms where the effects of damping cannot be ignored.

6. Conclusion

In this paper, we proposed an analytical approximation to the stance dy-

namics of the Spring-Loaded Inverted Pendulum model that also takes into

account non-negligible damping in the leg. Our simulation studies showed

that both the predictive performance of our fully analytic approximations

as well as the tracking performance of the resulting deadbeat controller

significantly outperform existing approximation methods. We believe that

such an accurate analytical stance map to the dynamics of the SLIP model

will be invaluable in the design and analysis of physically realizable and

effective controllers for dynamic legged locomotion.
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